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Required Readings

◼ This week

❑ Pipelining

◼ H&H, Chapter 7.5

❑ Pipelining Issues

◼ H&H, Chapter 7.8.1-7.8.3

◼ Next week

❑ Out-of-order execution

❑ H&H, Chapter 7.8-7.9

❑ Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

◼ More advanced pipelining

◼ Interrupt and exception handling

◼ Out-of-order and superscalar execution concepts

2



Agenda for Today & Next Few Lectures

◼ Last week

❑ Single-cycle Microarchitectures

❑ Multi-cycle Microarchitectures

◼ This week

❑ Pipelining

❑ Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

◼ Next week

❑ Out-of-Order Execution

❑ Issues in OoO Execution: Load-Store Handling, …
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Can We Do Better?
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Can We Do Better?

◼ What limitations do you see with the multi-cycle design?

◼ Limited concurrency

❑ Some hardware resources are idle during different phases of 
instruction processing cycle

❑ “Fetch” logic is idle when an instruction is being “decoded” or 
“executed”

❑ Most of the datapath is idle when a memory access is 
happening
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Can We Use the Idle Hardware to Improve Concurrency?

◼ Goal: More concurrency → Higher instruction throughput 

(i.e., more “work” completed in one cycle)

◼ Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction

❑ E.g., when an instruction is being decoded, fetch the next 
instruction

❑ E.g., when an instruction is being executed, decode another 
instruction

❑ E.g., when an instruction is accessing data memory (ld/st), 
execute the next instruction

❑ E.g., when an instruction is writing its result into the register 
file, access data memory for the next instruction
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Pipelining
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Pipelining: Basic Idea

◼ More systematically:

❑ Pipeline the execution of multiple instructions

❑ Analogy: “Assembly line processing” of instructions

◼ Idea:

❑ Divide the instruction processing cycle into distinct “stages” of 
processing

❑ Ensure there are enough hardware resources to process one 
instruction in each stage

❑ Process a different instruction in each stage

◼ Instructions consecutive in program order are processed in 
consecutive stages

◼ Benefit: Increases instruction processing throughput (1/CPI)

◼ Downside: Start thinking about this…
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Example: Execution of Four Independent ADDs

◼ Multi-cycle: 4 cycles per instruction

◼ Pipelined: 4 cycles per 4 instructions (steady state)
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The Laundry Analogy 

◼ “place one dirty load of clothes in the washer”

◼ “when the washer is finished, place the wet load in the dryer”

◼ “when the dryer is finished, take out the dry load and fold”

◼ “when folding is finished, ask your roommate (??) to put the clothes 
away”

10

- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry
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- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice

12

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task 

order

Task 

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task 

order

Task 

order

the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice
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An Ideal Pipeline

◼ Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing)

◼ Repetition of identical operations

❑ The same operation is repeated on a large number of different 
inputs (e.g., all laundry loads go through the same steps)

◼ Repetition of independent operations

❑ No dependencies between repeated operations

◼ Uniformly partitionable suboperations

❑ Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources)

◼ Fitting examples: automobile assembly line, doing laundry

❑ What about the instruction processing “cycle”?
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Ideal Pipelining
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More Realistic Pipeline: Throughput

◼ Nonpipelined version with delay T 

BW = 1/(T+S) where S = latch delay

◼ k-stage pipelined version

BWk-stage = 1 / (T/k +S )

BWmax = 1 / (1 gate delay + S )
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T ps

T/k
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Latch delay reduces throughput

(switching overhead b/w stages)



More Realistic Pipeline: Cost

◼ Nonpipelined version with combinational cost G 

Cost = G+L where L = latch cost

◼ k-stage pipelined version

Costk-stage = G + Lk 
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G gates

G/k G/k

Latches increase hardware cost



Pipelining Instruction Processing
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Remember: The Instruction Processing Cycle

❑ Fetch

❑ Decode

❑ Evaluate Address

❑ Fetch Operands

❑ Execute

❑ Store Result
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1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Remember the Single-Cycle Uarch
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Dividing Into Stages
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Instruction Pipeline Throughput
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Enabling Pipelined Processing: Pipeline Registers
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Pipelined Operation Example
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All instruction classes must follow the same path
and timing through the pipeline stages. 

Any performance impact?



Pipelined Operation Example
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is life always this beautiful?



Illustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Control Points in a Pipeline
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Identical set of control points as the single-cycle datapath!!

Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
RESERVED.]



Control Signals in a Pipeline

◼ For a given instruction

❑ same control signals as single-cycle, but

❑ control signals required at different cycles, depending on stage

 Option 1: decode once using the same logic as single-cycle and 
buffer signals until consumed

 Option 2: carry relevant “instruction word/field” down the pipeline 
and decode locally within each or in a previous stage

Which one is better?
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Pipelined Control Signals
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Another Example: Single-Cycle and Pipelined

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

A
L
U

WriteRegE
4:0

CLK

CLK

CLK

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

Zero

CLK

A
L
U

Fetch Decode Execute Memory Writeback



Carnegie Mellon

32

Another Example: Correct Pipelined Datapath

 WriteReg must arrive at the same time as Result
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Another Example: Pipelined Control
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Remember: An Ideal Pipeline

◼ Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing)

◼ Repetition of identical operations

❑ The same operation is repeated on a large number of different 
inputs (e.g., all laundry loads go through the same steps)

◼ Repetition of independent operations

❑ No dependencies between repeated operations

◼ Uniformly partitionable suboperations

❑ Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources)

◼ Fitting examples: automobile assembly line, doing laundry

❑ What about the instruction processing “cycle”?
34



Instruction Pipeline: Not An Ideal Pipeline

◼ Identical operations ... NOT! 

 different instructions → not all need the same stages
Forcing different instructions to go through the same pipe stages

→ external fragmentation (some pipe stages idle for some instructions)

◼ Uniform suboperations ...  NOT! 

 different pipeline stages → not the same latency
Need to force each stage to be controlled by the same clock

→ internal fragmentation (some pipe stages are too fast but all take 

the same clock cycle time)

◼ Independent operations ... NOT!
 instructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure 
the pipeline provides correct results
→ pipeline stalls (pipeline is not always moving)
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Issues in Pipeline Design

◼ Balancing work in pipeline stages

❑ How many stages and what is done in each stage

◼ Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow

❑ Handling dependences 

◼ Data

◼ Control

❑ Handling resource contention

❑ Handling long-latency (multi-cycle) operations

◼ Handling exceptions, interrupts

◼ Advanced: Improving pipeline throughput

❑ Minimizing stalls
36



Causes of Pipeline Stalls

◼ Stall: A condition when the pipeline stops moving

◼ Resource contention

◼ Dependences (between instructions)

❑ Data

❑ Control

◼ Long-latency (multi-cycle) operations

37



Dependences and Their Types

◼ Also called “dependency” or less desirably “hazard”

◼ Dependences dictate ordering requirements between 
instructions

◼ Two types

❑ Data dependence

❑ Control dependence

◼ Resource contention is sometimes called resource 
dependence

❑ However, this is not fundamental to (dictated by) program 
semantics, so we will treat it separately
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Handling Resource Contention

◼ Happens when instructions in two pipeline stages need the 
same resource

◼ Solution 1: Eliminate the cause of contention

❑ Duplicate the resource or increase its throughput

◼ E.g., use separate instruction and data memories (caches)

◼ E.g., use multiple ports for memory structures

◼ Solution 2: Detect the resource contention and stall one of 
the contending stages

❑ Which stage do you stall?

❑ Example: What if you had a single read and write port for the 
register file?

39
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Example Resource Dependence: RegFile

 The register file can be read and written in the same cycle: 

▪ write takes place during the 1st half of the cycle

▪ read takes place during the 2nd half of the cycle => no problem!!!

▪ However operations that involve register file have only half a clock 
cycle to complete the operation!!
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Data Dependences

◼ Types of data dependences

❑ Flow dependence (true data dependence – read after write)

❑ Output dependence (write after write)

❑ Anti dependence (write after read)

◼ Which ones cause stalls in a pipelined machine?

❑ For all of them, we need to ensure semantics of the program 
is correct

❑ Flow dependences always need to be obeyed because they 
constitute true dependence on a value

❑ Anti and output dependences exist due to limited number of 
architectural registers 

◼ They are dependence on a name, not a value

◼ We will later see what we can do about them
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Data Dependence Types
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Flow dependence
r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)

Anti dependence
r3  r1 op  r2 Write-after-Read
r1  r4 op  r5 (WAR)

Output-dependence
r3  r1 op  r2 Write-after-Write
r5  r3 op  r4 (WAW)
r3  r6 op  r7



Pipelined Operation Example
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What if the SUB were dependent on LW?



Data Dependence Handling
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Reading for Next Few Lectures

◼ H&H, Chapter 7.5-7.9

◼ Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

❑ More advanced pipelining

❑ Interrupt and exception handling

❑ Out-of-order and superscalar execution concepts
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How to Handle Data Dependences

◼ Anti and output dependences are easier to handle 

❑ write to the destination in one stage and in program order

◼ Flow dependences are more interesting

◼ Five fundamental ways of handling flow dependences

❑ Detect and wait until value is available in register file

❑ Detect and forward/bypass data to dependent instruction

❑ Detect and eliminate the dependence at the software level

◼ No need for the hardware to detect dependence

❑ Predict the needed value(s), execute “speculatively”, and verify

❑ Do something else (fine-grained multithreading)

◼ No need to detect
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We did not cover the following slides. 

They are for your preparation for the 

next lecture.
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Interlocking

◼ Detection of dependence between instructions in a 
pipelined processor to guarantee correct execution

◼ Software based interlocking

vs. 

◼ Hardware based interlocking

◼ MIPS acronym?
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Approaches to Dependence Detection (I)

◼ Scoreboarding

❑ Each register in register file has a Valid bit associated with it

❑ An instruction that is writing to the register resets the Valid bit

❑ An instruction in Decode stage checks if all its source and 
destination registers are Valid

◼ Yes: No need to stall… No dependence

◼ No: Stall the instruction

◼ Advantage:

❑ Simple. 1 bit per register

◼ Disadvantage:

❑ Need to stall for all types of dependences, not only flow dep.
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Not Stalling on Anti and Output Dependences

◼ What changes would you make to the scoreboard to enable 
this?
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Approaches to Dependence Detection (II)

◼ Combinational dependence check logic 

❑ Special logic that checks if any instruction in later stages is 
supposed to write to any source register of the instruction that 
is being decoded

❑ Yes: stall the instruction/pipeline

❑ No: no need to stall… no flow dependence

◼ Advantage:

❑ No need to stall on anti and output dependences

◼ Disadvantage:

❑ Logic is more complex than a scoreboard

❑ Logic becomes more complex as we make the pipeline deeper 
and wider (flash-forward: think superscalar execution)
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Once You Detect the Dependence in Hardware

◼ What do you do afterwards?

◼ Observation: Dependence between two instructions is 
detected before the communicated data value becomes 
available

◼ Option 1: Stall the dependent instruction right away

◼ Option 2: Stall the dependent instruction only when 
necessary → data forwarding/bypassing

◼ Option 3: …
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Data Forwarding/Bypassing

◼ Problem: A consumer (dependent) instruction has to wait in 
decode stage until the producer instruction writes its value 
in the register file

◼ Goal: We do not want to stall the pipeline unnecessarily

◼ Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file)

◼ Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available

◼ Benefit: Consumer can move in the pipeline until the point 
the value can be supplied → less stalling
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A Special Case of Data Dependence

◼ Control dependence

❑ Data dependence on the Instruction Pointer / Program Counter
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Control Dependence

◼ Question: What should the fetch PC be in the next cycle?

◼ Answer: The address of the next instruction

❑ All instructions are control dependent on previous ones. Why?

◼ If the fetched instruction is a non-control-flow instruction:

❑ Next Fetch PC is the address of the next-sequential instruction

❑ Easy to determine if we know the size of the fetched instruction

◼ If the instruction that is fetched is a control-flow instruction:

❑ How do we determine the next Fetch PC?

◼ In fact, how do we know whether or not the fetched 
instruction is a control-flow instruction?
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Data Dependence Handling: 

Concepts and Implementation
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Remember: Data Dependence Types
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Flow dependence
r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)

Anti dependence
r3  r1 op  r2 Write-after-Read
r1  r4 op  r5 (WAR)

Output-dependence
r3  r1 op  r2 Write-after-Write
r5  r3 op  r4 (WAW)
r3  r6 op  r7



RAW Dependence Handling

◼ Which one of the following flow dependences lead to 
conflicts in the 5-stage pipeline?
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MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi  r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi  r- ra -

addi  r- ra -

addi  r- ra -

addi  r- ra -

?



Pipeline Stall: Resolving Data Dependence
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IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx  _
bubble
bubble
bubble
j: _  rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction 
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages



How to Implement Stalling

◼ Stall
❑ disable PC and IF/ID latching; ensure stalled instruction stays in its stage

❑ Insert “invalid” instructions/nops into the stage following the stalled one 
(called “bubbles”)
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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RAW Data Dependence Example

 One instruction writes a register ($s0) and next instructions 
read this register => read after write (RAW) dependence. 

▪ add writes into $s0 in the first half of cycle 5

▪ and reads $s0 on cycle 3, obtaining the wrong value

▪ or reads $s0 on cycle 4, again obtaining the wrong value.

▪ sub reads $s0 in the second half of cycle 5, obtaining the correct value

▪ subsequent instructions read the correct value of $s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Only if the pipeline handles data dependences wrong!
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Compile-Time Detection and Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

|
DM

RF $s5

$s0

RF
$t2

-
DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

nop

nop

RF RFDMnop
IM

RF RFDMnop
IM

9 10

 Insert enough NOPs for the required result to be ready

 Or (if you can) move independent useful instructions up
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Data Forwarding

 Also called Data Bypassing

 We have already seen the basic idea before

 Forward the result value to the dependent instruction                 
as soon as the value is available

 Remember dataflow?

▪ Data value supplied to dependent instruction as soon as it is available

▪ Instruction executes when all its operands are available

 Data forwarding brings a pipeline closer to data flow execution 
principles
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Data Forwarding

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub
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Data Forwarding

SignImmE
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A RD

Instruction

Memory

+
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+
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Data Forwarding

 Forward to Execute stage from either:

▪ Memory stage or

▪ Writeback stage

 When should we forward from one either Memory or 
Writeback stage?

▪ If that stage will write a destination register and the destination register 
matches the source register. 

▪ If both the Memory and Writeback stages contain matching destination 
registers, the Memory stage should have priority, because it contains the 
more recently executed instruction.
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Data Forwarding

 Forward to Execute stage from either:

▪ Memory stage or

▪ Writeback stage

 Forwarding logic for ForwardAE (pseudo code):

if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10  # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01  # forward from Writeback stage

else

ForwardAE = 00  # no forwarding

 Forwarding logic for ForwardBE same, but replace rsE with rtE
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

 Forwarding is sufficient to resolve RAW data dependences

 but …

 There are cases when forwarding is not possible due to 
pipeline design and instruction latencies
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

The lw instruction does not finish reading data until the end of the 
Memory stage, so its result cannot be forwarded to the Execute stage of 
the next instruction. 
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

The lw instruction has a two-cycle latency, therefore a dependent 
instruction cannot use its result until two cycles later. 

The lw instruction receives data from memory at the end of cycle 4. But 
the and instruction needs that data as a source operand at the beginning 
of cycle 4. There is no way to supply the data with forwarding.
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

9

RF $s1

$s0

IM
or

Stall
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Stalling Hardware

 Stalls are supported by:

▪ adding enable inputs (EN) to the Fetch and Decode pipeline 
registers 

▪ and a synchronous reset/clear (CLR) input to the Execute pipeline 
register 

▪ or an INV bit associated with each pipeline register

 When a lw stall occurs

▪ StallD and StallF are asserted to force the Decode and Fetch stage 
pipeline registers to hold their old values. 

▪ FlushE is also asserted to clear the contents of the Execute stage 
pipeline register, introducing a bubble



Fine-Grained Multithreading
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How to Handle Data Dependences

◼ Anti and output dependences are easier to handle 

❑ write to the destination in one stage and in program order

◼ Flow dependences are more interesting

◼ Five fundamental ways of handling flow dependences

❑ Detect and wait until value is available in register file

❑ Detect and forward/bypass data to dependent instruction

❑ Detect and eliminate the dependence at the software level

◼ No need for the hardware to detect dependence

❑ Predict the needed value(s), execute “speculatively”, and verify

❑ Do something else (fine-grained multithreading)

◼ No need to detect
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Fine-Grained Multithreading

◼ Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution 
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple 
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History

◼ CDC 6600’s peripheral processing unit is fine-grained 
multithreaded

❑ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

❑ Processor executes a different I/O thread every cycle

❑ An operation from the same thread is executed every 10 cycles

◼ Denelcor HEP (Heterogeneous Element Processor)
❑ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

❑ 120 threads/processor 

❑ available queue vs. unavailable (waiting) queue for threads 

❑ each thread can have only 1 instruction in the processor pipeline; each thread 
independent 

❑ to each thread, processor looks like a non-pipelined machine

❑ system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP

◼ Cycle time: 100ns

◼ 8 stages → 800 ns to 

complete an 
instruction

❑ assuming no memory 
access

◼ No control and data 
dependency checking
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Multithreaded Pipeline Example

80Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
82



Modern GPUs Are FGMT Machines

83



NVIDIA GeForce GTX 285 “core”

84

…

= instruction stream decode= data-parallel (SIMD) func. unit, 

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

◼ Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

◼ Up to 32 warps are interleaved in an FGMT manner

◼ Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



End of

Fine-Grained Multithreading
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