
Design of Digital Circuits

Lecture 13: Pipelining

Prof. Onur Mutlu

ETH Zurich

Spring 2019

4 April 2019

Required Readings

◼ This week

❑ Pipelining

◼ H&H, Chapter 7.5

❑ Pipelining Issues

◼ H&H, Chapter 7.8.1-7.8.3

◼ Next week

❑ Out-of-order execution

❑ H&H, Chapter 7.8-7.9

❑ Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

◼ More advanced pipelining

◼ Interrupt and exception handling

◼ Out-of-order and superscalar execution concepts

2

Agenda for Today & Next Few Lectures

◼ Last week

❑ Single-cycle Microarchitectures

❑ Multi-cycle Microarchitectures

◼ This week

❑ Pipelining

❑ Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

◼ Next week

❑ Out-of-Order Execution

❑ Issues in OoO Execution: Load-Store Handling, …

3

Can We Do Better?

4

Can We Do Better?

◼ What limitations do you see with the multi-cycle design?

◼ Limited concurrency

❑ Some hardware resources are idle during different phases of
instruction processing cycle

❑ “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

❑ Most of the datapath is idle when a memory access is
happening

5

Can We Use the Idle Hardware to Improve Concurrency?

◼ Goal: More concurrency → Higher instruction throughput

(i.e., more “work” completed in one cycle)

◼ Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

❑ E.g., when an instruction is being decoded, fetch the next
instruction

❑ E.g., when an instruction is being executed, decode another
instruction

❑ E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

❑ E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

6

Pipelining

7

Pipelining: Basic Idea

◼ More systematically:

❑ Pipeline the execution of multiple instructions

❑ Analogy: “Assembly line processing” of instructions

◼ Idea:

❑ Divide the instruction processing cycle into distinct “stages” of
processing

❑ Ensure there are enough hardware resources to process one
instruction in each stage

❑ Process a different instruction in each stage

◼ Instructions consecutive in program order are processed in
consecutive stages

◼ Benefit: Increases instruction processing throughput (1/CPI)

◼ Downside: Start thinking about this…
8

Example: Execution of Four Independent ADDs

◼ Multi-cycle: 4 cycles per instruction

◼ Pipelined: 4 cycles per 4 instructions (steady state)

9

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Is life always this beautiful?

The Laundry Analogy

◼ “place one dirty load of clothes in the washer”

◼ “when the washer is finished, place the wet load in the dryer”

◼ “when the dryer is finished, take out the dry load and fold”

◼ “when folding is finished, ask your roommate (??) to put the clothes
away”

10

- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

11

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

12

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

13

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

A

B

A

B

throughput restored (2 loads per hour) using 2 dryers

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

◼ Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

◼ Repetition of identical operations

❑ The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

◼ Repetition of independent operations

❑ No dependencies between repeated operations

◼ Uniformly partitionable suboperations

❑ Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

◼ Fitting examples: automobile assembly line, doing laundry

❑ What about the instruction processing “cycle”?
14

Ideal Pipelining

15

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

More Realistic Pipeline: Throughput

◼ Nonpipelined version with delay T

BW = 1/(T+S) where S = latch delay

◼ k-stage pipelined version

BWk-stage = 1 / (T/k +S)

BWmax = 1 / (1 gate delay + S)

16

T ps

T/k
ps

T/k
ps

Latch delay reduces throughput

(switching overhead b/w stages)

More Realistic Pipeline: Cost

◼ Nonpipelined version with combinational cost G

Cost = G+L where L = latch cost

◼ k-stage pipelined version

Costk-stage = G + Lk

17

G gates

G/k G/k

Latches increase hardware cost

Pipelining Instruction Processing

18

Remember: The Instruction Processing Cycle

❑ Fetch

❑ Decode

❑ Evaluate Address

❑ Fetch Operands

❑ Execute

❑ Store Result

19

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Remember the Single-Cycle Uarch

20

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)

Dividing Into Stages

21

200ps

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

100ps 200ps 200ps 100ps

RF
write

ignore
for now

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

22

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program

execution

order

(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

200ps200ps200ps200ps200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

Enabling Pipelined Processing: Pipeline Registers

23
T

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Data

memory

Address

No resource is used by more than 1 stage!

IR
D

P
C

F

P
C

D
+4

P
C

E+
4

n
P

C
M

A
E

B
E

Im
m

E

A
o

u
t M

B
M

M
D

R
W

A
o

u
t W

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

T/k
ps

T/k
ps

Pipelined Operation Example

24

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Execution

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path
and timing through the pipeline stages.

Any performance impact?

Pipelined Operation Example

25

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is life always this beautiful?

Illustrating Pipeline Operation: Operation View

26

MEM

EX

ID

IFInst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EXIF ID

IF ID

Inst0 ID

IFInst1

EX

ID

IFInst2

MEM

EX

ID

IFInst3

WB

WBMEM

EX

WB

steady state

(full pipeline)

Illustrating Pipeline Operation: Resource View

27

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

Control Points in a Pipeline

28

PC

Instruction
memory

Address

In
s
tr

u
c
ti
o
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU

control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU

result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

Identical set of control points as the single-cycle datapath!!

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Control Signals in a Pipeline

◼ For a given instruction

❑ same control signals as single-cycle, but

❑ control signals required at different cycles, depending on stage

 Option 1: decode once using the same logic as single-cycle and
buffer signals until consumed

 Option 2: carry relevant “instruction word/field” down the pipeline
and decode locally within each or in a previous stage

Which one is better?

29

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Control Signals

30

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Carnegie Mellon

31

Another Example: Single-Cycle and Pipelined

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

A
L
U

WriteRegE
4:0

CLK

CLK

CLK

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

Zero

CLK

A
L
U

Fetch Decode Execute Memory Writeback

Carnegie Mellon

32

Another Example: Correct Pipelined Datapath

 WriteReg must arrive at the same time as Result

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0

A
L
U

WriteRegE4:0

CLK

CLK

CLK

Fetch Decode Execute Memory Writeback

Carnegie Mellon

33

Another Example: Pipelined Control

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM
4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW
4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE
4:0

 Same control unit as single-cycle processor
Control delayed to proper pipeline stage

Remember: An Ideal Pipeline

◼ Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

◼ Repetition of identical operations

❑ The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

◼ Repetition of independent operations

❑ No dependencies between repeated operations

◼ Uniformly partitionable suboperations

❑ Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

◼ Fitting examples: automobile assembly line, doing laundry

❑ What about the instruction processing “cycle”?
34

Instruction Pipeline: Not An Ideal Pipeline

◼ Identical operations ... NOT!

 different instructions → not all need the same stages
Forcing different instructions to go through the same pipe stages

→ external fragmentation (some pipe stages idle for some instructions)

◼ Uniform suboperations ... NOT!

 different pipeline stages → not the same latency
Need to force each stage to be controlled by the same clock

→ internal fragmentation (some pipe stages are too fast but all take

the same clock cycle time)

◼ Independent operations ... NOT!
 instructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure
the pipeline provides correct results
→ pipeline stalls (pipeline is not always moving)

35

Issues in Pipeline Design

◼ Balancing work in pipeline stages

❑ How many stages and what is done in each stage

◼ Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

❑ Handling dependences

◼ Data

◼ Control

❑ Handling resource contention

❑ Handling long-latency (multi-cycle) operations

◼ Handling exceptions, interrupts

◼ Advanced: Improving pipeline throughput

❑ Minimizing stalls
36

Causes of Pipeline Stalls

◼ Stall: A condition when the pipeline stops moving

◼ Resource contention

◼ Dependences (between instructions)

❑ Data

❑ Control

◼ Long-latency (multi-cycle) operations

37

Dependences and Their Types

◼ Also called “dependency” or less desirably “hazard”

◼ Dependences dictate ordering requirements between
instructions

◼ Two types

❑ Data dependence

❑ Control dependence

◼ Resource contention is sometimes called resource
dependence

❑ However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

38

Handling Resource Contention

◼ Happens when instructions in two pipeline stages need the
same resource

◼ Solution 1: Eliminate the cause of contention

❑ Duplicate the resource or increase its throughput

◼ E.g., use separate instruction and data memories (caches)

◼ E.g., use multiple ports for memory structures

◼ Solution 2: Detect the resource contention and stall one of
the contending stages

❑ Which stage do you stall?

❑ Example: What if you had a single read and write port for the
register file?

39

Carnegie Mellon

40

Example Resource Dependence: RegFile

 The register file can be read and written in the same cycle:

▪ write takes place during the 1st half of the cycle

▪ read takes place during the 2nd half of the cycle => no problem!!!

▪ However operations that involve register file have only half a clock
cycle to complete the operation!!

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Data Dependences

◼ Types of data dependences

❑ Flow dependence (true data dependence – read after write)

❑ Output dependence (write after write)

❑ Anti dependence (write after read)

◼ Which ones cause stalls in a pipelined machine?

❑ For all of them, we need to ensure semantics of the program
is correct

❑ Flow dependences always need to be obeyed because they
constitute true dependence on a value

❑ Anti and output dependences exist due to limited number of
architectural registers

◼ They are dependence on a name, not a value

◼ We will later see what we can do about them

41

Data Dependence Types

42

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

Pipelined Operation Example

43

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What if the SUB were dependent on LW?

Data Dependence Handling

44

Reading for Next Few Lectures

◼ H&H, Chapter 7.5-7.9

◼ Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

❑ More advanced pipelining

❑ Interrupt and exception handling

❑ Out-of-order and superscalar execution concepts

45

How to Handle Data Dependences

◼ Anti and output dependences are easier to handle

❑ write to the destination in one stage and in program order

◼ Flow dependences are more interesting

◼ Five fundamental ways of handling flow dependences

❑ Detect and wait until value is available in register file

❑ Detect and forward/bypass data to dependent instruction

❑ Detect and eliminate the dependence at the software level

◼ No need for the hardware to detect dependence

❑ Predict the needed value(s), execute “speculatively”, and verify

❑ Do something else (fine-grained multithreading)

◼ No need to detect

46

Design of Digital Circuits

Lecture 13: Pipelining

Prof. Onur Mutlu

ETH Zurich

Spring 2019

4 April 2019

We did not cover the following slides.

They are for your preparation for the

next lecture.

48

Interlocking

◼ Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

◼ Software based interlocking

vs.

◼ Hardware based interlocking

◼ MIPS acronym?

49

Approaches to Dependence Detection (I)

◼ Scoreboarding

❑ Each register in register file has a Valid bit associated with it

❑ An instruction that is writing to the register resets the Valid bit

❑ An instruction in Decode stage checks if all its source and
destination registers are Valid

◼ Yes: No need to stall… No dependence

◼ No: Stall the instruction

◼ Advantage:

❑ Simple. 1 bit per register

◼ Disadvantage:

❑ Need to stall for all types of dependences, not only flow dep.

50

Not Stalling on Anti and Output Dependences

◼ What changes would you make to the scoreboard to enable
this?

51

Approaches to Dependence Detection (II)

◼ Combinational dependence check logic

❑ Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

❑ Yes: stall the instruction/pipeline

❑ No: no need to stall… no flow dependence

◼ Advantage:

❑ No need to stall on anti and output dependences

◼ Disadvantage:

❑ Logic is more complex than a scoreboard

❑ Logic becomes more complex as we make the pipeline deeper
and wider (flash-forward: think superscalar execution)

52

Once You Detect the Dependence in Hardware

◼ What do you do afterwards?

◼ Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

◼ Option 1: Stall the dependent instruction right away

◼ Option 2: Stall the dependent instruction only when
necessary → data forwarding/bypassing

◼ Option 3: …

53

Data Forwarding/Bypassing

◼ Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

◼ Goal: We do not want to stall the pipeline unnecessarily

◼ Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

◼ Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

◼ Benefit: Consumer can move in the pipeline until the point
the value can be supplied → less stalling

54

A Special Case of Data Dependence

◼ Control dependence

❑ Data dependence on the Instruction Pointer / Program Counter

55

Control Dependence

◼ Question: What should the fetch PC be in the next cycle?

◼ Answer: The address of the next instruction

❑ All instructions are control dependent on previous ones. Why?

◼ If the fetched instruction is a non-control-flow instruction:

❑ Next Fetch PC is the address of the next-sequential instruction

❑ Easy to determine if we know the size of the fetched instruction

◼ If the instruction that is fetched is a control-flow instruction:

❑ How do we determine the next Fetch PC?

◼ In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

56

Data Dependence Handling:

Concepts and Implementation

57

Remember: Data Dependence Types

58

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

RAW Dependence Handling

◼ Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

59

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Pipeline Stall: Resolving Data Dependence

60

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx _
j: _ rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx _
bubble
j: _ rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx _
bubble
bubble
j: _ rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx _
bubble
bubble
bubble
j: _ rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

How to Implement Stalling

◼ Stall
❑ disable PC and IF/ID latching; ensure stalled instruction stays in its stage

❑ Insert “invalid” instructions/nops into the stage following the stalled one
(called “bubbles”)

61

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Carnegie Mellon

62

RAW Data Dependence Example

 One instruction writes a register ($s0) and next instructions
read this register => read after write (RAW) dependence.

▪ add writes into $s0 in the first half of cycle 5

▪ and reads $s0 on cycle 3, obtaining the wrong value

▪ or reads $s0 on cycle 4, again obtaining the wrong value.

▪ sub reads $s0 in the second half of cycle 5, obtaining the correct value

▪ subsequent instructions read the correct value of $s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Only if the pipeline handles data dependences wrong!

Carnegie Mellon

63

Compile-Time Detection and Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

|
DM

RF $s5

$s0

RF
$t2

-
DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

nop

nop

RF RFDMnop
IM

RF RFDMnop
IM

9 10

 Insert enough NOPs for the required result to be ready

 Or (if you can) move independent useful instructions up

Carnegie Mellon

64

Data Forwarding

 Also called Data Bypassing

 We have already seen the basic idea before

 Forward the result value to the dependent instruction
as soon as the value is available

 Remember dataflow?

▪ Data value supplied to dependent instruction as soon as it is available

▪ Instruction executes when all its operands are available

 Data forwarding brings a pipeline closer to data flow execution
principles

Carnegie Mellon

65

Data Forwarding

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Carnegie Mellon

66

Data Forwarding

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

20:16
RtE

RsD

RdD

RtD

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM

Carnegie Mellon

67

Data Forwarding

 Forward to Execute stage from either:

▪ Memory stage or

▪ Writeback stage

 When should we forward from one either Memory or
Writeback stage?

▪ If that stage will write a destination register and the destination register
matches the source register.

▪ If both the Memory and Writeback stages contain matching destination
registers, the Memory stage should have priority, because it contains the
more recently executed instruction.

Carnegie Mellon

68

Data Forwarding

 Forward to Execute stage from either:

▪ Memory stage or

▪ Writeback stage

 Forwarding logic for ForwardAE (pseudo code):

if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10 # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01 # forward from Writeback stage

else

ForwardAE = 00 # no forwarding

 Forwarding logic for ForwardBE same, but replace rsE with rtE

Carnegie Mellon

69

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

 Forwarding is sufficient to resolve RAW data dependences

 but …

 There are cases when forwarding is not possible due to
pipeline design and instruction latencies

Carnegie Mellon

70

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

The lw instruction does not finish reading data until the end of the
Memory stage, so its result cannot be forwarded to the Execute stage of
the next instruction.

Carnegie Mellon

71

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

The lw instruction has a two-cycle latency, therefore a dependent
instruction cannot use its result until two cycles later.

The lw instruction receives data from memory at the end of cycle 4. But
the and instruction needs that data as a source operand at the beginning
of cycle 4. There is no way to supply the data with forwarding.

Carnegie Mellon

72

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

9

RF $s1

$s0

IM
or

Stall

Carnegie Mellon

73

Stalling Hardware

 Stalls are supported by:

▪ adding enable inputs (EN) to the Fetch and Decode pipeline
registers

▪ and a synchronous reset/clear (CLR) input to the Execute pipeline
register

▪ or an INV bit associated with each pipeline register

 When a lw stall occurs

▪ StallD and StallF are asserted to force the Decode and Fetch stage
pipeline registers to hold their old values.

▪ FlushE is also asserted to clear the contents of the Execute stage
pipeline register, introducing a bubble

Fine-Grained Multithreading

74

How to Handle Data Dependences

◼ Anti and output dependences are easier to handle

❑ write to the destination in one stage and in program order

◼ Flow dependences are more interesting

◼ Five fundamental ways of handling flow dependences

❑ Detect and wait until value is available in register file

❑ Detect and forward/bypass data to dependent instruction

❑ Detect and eliminate the dependence at the software level

◼ No need for the hardware to detect dependence

❑ Predict the needed value(s), execute “speculatively”, and verify

❑ Do something else (fine-grained multithreading)

◼ No need to detect

75

Fine-Grained Multithreading

◼ Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

76

Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

77

Fine-Grained Multithreading: History

◼ CDC 6600’s peripheral processing unit is fine-grained
multithreaded

❑ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

❑ Processor executes a different I/O thread every cycle

❑ An operation from the same thread is executed every 10 cycles

◼ Denelcor HEP (Heterogeneous Element Processor)
❑ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

❑ 120 threads/processor

❑ available queue vs. unavailable (waiting) queue for threads

❑ each thread can have only 1 instruction in the processor pipeline; each thread
independent

❑ to each thread, processor looks like a non-pipelined machine

❑ system throughput vs. single thread performance tradeoff

78

Fine-Grained Multithreading in HEP

◼ Cycle time: 100ns

◼ 8 stages → 800 ns to

complete an
instruction

❑ assuming no memory
access

◼ No control and data
dependency checking

79

Multithreaded Pipeline Example

80Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

81

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
82

Modern GPUs Are FGMT Machines

83

NVIDIA GeForce GTX 285 “core”

84

…

= instruction stream decode= data-parallel (SIMD) func. unit,

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

85

…
64 KB of storage

for thread contexts

(registers)

◼ Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

◼ Up to 32 warps are interleaved in an FGMT manner

◼ Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

86

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

End of

Fine-Grained Multithreading

87

