
Design of Digital Circuits

Lecture 14: Pipelining Issues

Prof. Onur Mutlu

ETH Zurich

Spring 2019

5 April 2019

Required Readings

 This week

 Pipelining

 H&H, Chapter 7.5

 Pipelining Issues

 H&H, Chapter 7.8.1-7.8.3

 Next week

 Out-of-order execution

 H&H, Chapter 7.8-7.9

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

2

Agenda for Today & Next Few Lectures

 Last week

 Single-cycle Microarchitectures

 Multi-cycle Microarchitectures

 This week

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Next week

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

3

Example: Execution of Four Independent ADDs

 Multi-cycle: 4 cycles per instruction

 Pipelined: 4 cycles per 4 instructions (steady state)

4

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Is life always this beautiful?

Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

 Handling dependences

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls
5

Data Dependence Handling:

Concepts and Implementation

6

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

7

Remember: Data Dependence Types

8

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

RAW Dependence Handling

 Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

9

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Pipeline Stall: Resolving Data Dependence

10

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx _
j: _ rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx _
bubble
j: _ rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx _
bubble
bubble
j: _ rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx _
bubble
bubble
bubble
j: _ rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

Interlocking

 Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

 Software based interlocking

vs.

 Hardware based interlocking

 MIPS acronym?

11

Approaches to Dependence Detection (I)

 Scoreboarding

 Each register in register file has a Valid bit associated with it

 An instruction that is writing to the register resets the Valid bit

 An instruction in Decode stage checks if all its source and
destination registers are Valid

 Yes: No need to stall… No dependence

 No: Stall the instruction

 Advantage:

 Simple. 1 bit per register

 Disadvantage:

 Need to stall for all types of dependences, not only flow dep.

12

Approaches to Dependence Detection (II)

 Combinational dependence check logic

 Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

 Yes: stall the instruction/pipeline

 No: no need to stall… no flow dependence

 Advantage:

 No need to stall on anti and output dependences

 Disadvantage:

 Logic is more complex than a scoreboard

 Logic becomes more complex as we make the pipeline deeper
and wider (flash-forward: think superscalar execution)

13

Once You Detect the Dependence in Hardware

 What do you do afterwards?

 Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

 Option 1: Stall the dependent instruction right away

 Option 2: Stall the dependent instruction only when
necessary data forwarding/bypassing

 Option 3: …

14

Data Forwarding/Bypassing

 Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

 Goal: We do not want to stall the pipeline unnecessarily

 Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

 Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

 Benefit: Consumer can move in the pipeline until the point
the value can be supplied less stalling

15

How to Implement Stalling

 Stall
 disable PC and IF/ID latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one
(called “bubbles”)

16

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RAW Data Dependence Example

 One instruction writes a register ($s0) and next instructions
read this register => read after write (RAW) dependence.

 add writes into $s0 in the first half of cycle 5

 and reads $s0 on cycle 3, obtaining the wrong value

 or reads $s0 on cycle 4, again obtaining the wrong value.

 sub reads $s0 in the second half of cycle 5, obtaining the
correct value

 subsequent instructions read the correct value of $s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Compile-Time Detection and Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

|
DM

RF $s5

$s0

RF
$t2

-
DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

nop

nop

RF RFDMnop
IM

RF RFDMnop
IM

9 10

 Insert enough NOPs for the required result to be ready

 Or (if you can) move independent useful instructions up

Data Forwarding

 Also called Data Bypassing

 We have already seen the basic idea before

 Forward the result value to the dependent instruction
as soon as the value is available

 Remember dataflow?

 Data value supplied to dependent instruction as soon as it is
available

 Instruction executes when all its operands are available

 Data forwarding brings a pipeline closer to data flow
execution principles

Data Forwarding

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Data Forwarding

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

20:16
RtE

RsD

RdD

RtD

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM

Data Forwarding

 Forward to Execute stage from either:

 Memory stage or

 Writeback stage

 When should we forward from one either Memory or
Writeback stage?

 If that stage will write a destination register and the
destination register matches the source register.

 If both the Memory and Writeback stages contain matching
destination registers, the Memory stage should have priority,
because it contains the more recently executed instruction.

Data Forwarding

 Forward to Execute stage from either:

 Memory stage or

 Writeback stage

 Forwarding logic for ForwardAE (pseudo code):

if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10 # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01 # forward from Writeback stage

else

ForwardAE = 00 # no forwarding

 Forwarding logic for ForwardBE same, but replace rsE with
rtE

Stalling

 Forwarding is sufficient to resolve RAW data dependences

 but …There are cases when forwarding is not possible due to pipeline
design and instruction latencies

 The lw instruction does not finish reading data until the end of the

Memory stage,

 Therefore its result cannot be forwarded to the Execute stage of the
next instruction.

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

9

RF $s1

$s0

IM
or

Stall

Stalling Hardware

 Stalls are supported by:

 adding enable inputs (EN) to the Fetch and Decode pipeline
registers

 and a synchronous reset/clear (CLR) input to the Execute
pipeline register

 or an INV bit associated with each pipeline register

 When a lw stall occurs

 StallD and StallF are asserted to force the Decode and Fetch
stage pipeline registers to hold their old values.

 FlushE is also asserted to clear the contents of the Execute
stage pipeline register, introducing a bubble

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

27

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

28

Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

29

Multithreaded Pipeline Example

30Slide credit: Joel Emer

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
31

Modern GPUs Are FGMT Machines

32

NVIDIA GeForce GTX 285 “core”

33

…

= instruction stream decode= data-parallel (SIMD) func. unit,

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

34

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

35

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

A Special Case of Data Dependence

 Control dependence

 Data dependence on the Instruction Pointer / Program Counter

36

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

37

Carnegie Mellon

38

Control Dependences

 Special case of data dependence: dependence on PC

 beq:

 branch is not determined until the fourth stage of the pipeline

 Instructions after the branch are fetched before branch is resolved

 Always predict that the next sequential instruction is fetched

 Called “Always not taken” prediction

 These instructions must be flushed if the branch is taken

 Branch misprediction penalty

 number of instructions flushed when branch is taken

 May be reduced by determining branch earlier

Carnegie Mellon

39

Control Dependence: Original Pipeline

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

S
ta

llF

S
ta

llD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

20:16
RtE

RsD

RdD

RtD

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

M
e
m

to
R

e
g
E

Hazard Unit

F
lu

s
h
E

PCPlus4E

BranchE BranchM

ZeroM

E
N

E
N

C
L
R

Carnegie Mellon

40

Control Dependence

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DM

RF $s0

$s4

RF| DM

RF $s5

$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

20

24

28

2C

30

...

...

9

Flush

these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3s

l
t

DMIM
slt

Carnegie Mellon

41

Early Branch Resolution

EqualD

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

=

SignImmD

S
ta

llF

S
ta

llD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

20:16
RtE

RsD

RdE

RtD

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

M
e
m

to
R

e
g
E

Hazard Unit

F
lu

s
h
E

E
N

E
N

C
L
R

C
L
R

Introduces another data dependency in Decode stage..

Carnegie Mellon

42

Early Branch Resolution

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and
IM

IM
lw

20

24

28

2C

30

...

...

9

Flush

this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3s

l
t

DMIM
slt

Carnegie Mellon

43

Early Branch Resolution: Good Idea?

 Advantages

 Reduced branch misprediction penalty

 Reduced CPI (cycles per instruction)

 Disadvantages

 Potential increase in clock cycle time?

 Higher Tclock?

 Additional hardware cost

 Specialized and likely not used by other instructions

Carnegie Mellon

44

Data Forwarding for Early Branch Resolution

EqualD

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0

1

0

1

=

SignImmD

S
ta

llF

S
ta

llD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

F
o
rw

a
rd

A
D

F
o
rw

a
rd

B
D

20:16
RtE

RsD

RdD

RtD

R
e
g
W

ri
te

E

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

M
e
m

to
R

e
g
E

B
ra

n
c
h
D

Hazard Unit

F
lu

s
h
E

E
N

E
N

C
L
R

C
L
R

Data forwarding for early branch resolution.

Carnegie Mellon

45

Control Forwarding and Stalling Hardware

// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;

Carnegie Mellon

46

Doing Better: Smarter Branch Prediction

 Guess whether branch will be taken

 Backward branches are usually taken (loops)

 Consider history of whether branch was previously taken to
improve the guess

 Good prediction reduces the fraction of branches
requiring a flush

Questions to Ponder

 What is the role of the hardware vs. the software in data
dependence handling?

 Software based interlocking

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline
slots?

 What are the advantages/disadvantages of each?

 Think of the performance equation as well

47

Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling static scheduling

 Hardware based instruction scheduling dynamic scheduling

 How does each impact different metrics?

 Performance (and parts of the performance equation)

 Complexity

 Power consumption

 Reliability

 …

48

More on Software vs. Hardware
 Software based scheduling of instructions static scheduling

 Compiler orders the instructions, hardware executes them in
that order

 Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

 How can the compiler alleviate this (i.e., estimate the
unknown)?

 Answer: Profiling
49

Carnegie Mellon

50

Pipelined Performance Example

 SPECINT2006 benchmark:

 25% loads

 10% stores

 11% branches

 2% jumps

 52% R-type

 Suppose:

 40% of loads used by next instruction

 25% of branches mispredicted

 All jumps flush next instruction

 What is the average CPI?

Carnegie Mellon

51

Pipelined Performance Example Solution

 Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.
Thus:

 CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load

 CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

 And

 Average CPI =

Carnegie Mellon

52

Pipelined Performance Example Solution

 Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.
Thus:

 CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load

 CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

 And

 Average CPI = (0.25)(1.4) + load
(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15

Carnegie Mellon

53

Pipelined Performance

 There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch

2(tRFread + tmux + teq + tAND + tmux + tsetup) decode

tpcq + tmux + tmux + tALU + tsetup execute

tpcq + tmemwrite + tsetup memory

2(tpcq + tmux + tRFwrite) writeback

}

 The operation speed depends on the slowest operation

 Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them

Carnegie Mellon

54

Pipelined Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps

Carnegie Mellon

55

Pipelined Performance Example

 For a program with 100 billion instructions executing on a
pipelined MIPS processor:

 CPI = 1.15

 Tc = 550 ps

 Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(1.15)(550 × 10-12)
= 63 seconds

Carnegie Mellon

56

Performance Summary for MIPS arch.

Processor

Execution Time

(seconds)

Speedup

(single-cycle is baseline)

Single-cycle 95 1

Multicycle 133 0.71

Pipelined 63 1.51

 Fastest of the three MIPS architectures is Pipelined.

 However, even though we have 5 fold pipelining, it is not
5 times faster than single cycle.

Pipelining and Precise Exceptions:

Preserving Sequential Semantics

Multi-Cycle Execution

 Not all instructions take the same amount of time for
“execution”

 Idea: Have multiple different functional units that take
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions start execution on a different
functional unit before a previous long-latency instruction
finishes execution

58

F D

E

?

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in EXECUTE
stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture in a Von Neumann architecture?

 Sequential semantics of the ISA NOT preserved!

 What if FMUL incurs an exception?

59

F D E W

F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 R5, R6

ADD R7 R5, R6

F D E WE E E E E E E

Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check (error)

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
60

Precise Exceptions/Interrupts

 The architectural state should be consistent (precise)
when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

61

Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

 Ensures architectural state is precise (register file, PC, memory)

 Flushes all younger instructions in the pipeline

 Saves PC and registers (as specified by the ISA)

 Redirects the fetch engine to the appropriate exception
handling routine

62

Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. Dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented
opcodes)

63

Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 Worst-case instruction latency determines all instructions’ latency

 What about memory operations?

 Each functional unit takes worst-case number of cycles?

64

F D E W

F D E WE E E E E E E

F D E W

F D E W

F D E W

F D E W

F D E W

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

FMUL R3 R1, R2

ADD R4 R1, R2

Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Suggested reading

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

65

We will not cover these

Design of Digital Circuits

Lecture 14: Pipelining Issues

Prof. Onur Mutlu

ETH Zurich

Spring 2019

5 April 2019

We did not cover the following slides.

They are for your preparation for the

next lecture.

67

Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

 When instruction is decoded it reserves the next-sequential
entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

68

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer

Instruction

Cache

What’s in a ROB Entry?

 Everything required to:

 correctly reorder instructions back into the program order

 update the architectural state with the instruction’s result(s), if
instruction can retire without any issues

 handle an exception/interrupt precisely, if an
exception/interrupt needs to be handled before retiring the
instruction

 Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

69

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data

+ control bits
Exception?

Reorder Buffer: Independent Operations

 Result first written to ROB on instruction completion

 Result written to register file at commit time

 What if a later operation needs a value in the reorder
buffer?

 Read reorder buffer in parallel with the register file. How?

70

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

71

Register

File

Func Unit

Func Unit

Func UnitReorder

Buffer

Instruction

Cache

bypass paths

Content

Addressable

Memory

(searched with

register ID,

which is part of the content of an entry)

Random Access Memory

(indexed with Register ID,

which is the address of an entry)

Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first (check if the register is valid)

 If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

 Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

 Access reorder buffer next

 Now, reorder buffer does not need to be content addressable

72

Reorder Buffer in Intel Pentium III

73

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID ROB entry ID

 Architectural register ID Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti and output dependencies

 Gives the illusion that there are a large number of registers
74

In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

76

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependences

 Disadvantages

 Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

 CAM or indirection increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing

77

We will not cover these

Backup Slides

78

Carnegie Mellon

79

Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

9

RF $s1

$s0

IM
or

Stall

Carnegie Mellon

80

Stalling Hardware

 Stalls are supported by:

 adding enable inputs (EN) to the Fetch and Decode pipeline
registers

 and a synchronous reset/clear (CLR) input to the Execute pipeline
register

 or an INV bit associated with each pipeline register

 When a lw stall occurs

 StallD and StallF are asserted to force the Decode and Fetch stage
pipeline registers to hold their old values.

 FlushE is also asserted to clear the contents of the Execute stage
pipeline register, introducing a bubble

Carnegie Mellon

81

Stalling Hardware

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM
4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW
4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE
4:0

00
01
10

00
01
10

SignImmD

S
ta

llF

S
ta

llD

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

20:16
RtE

RsD

RdD

RtD

R
e
g
W

ri
te

M

R
e
g
W

ri
te

W

M
e
m

to
R

e
g
E

Hazard Unit

F
lu

s
h
E

PCPlus4E

BranchE BranchM

ZeroM

E
N

E
N

C
L
R

Fine-Grained Multithreading

82

Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can have only 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

83

Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages 800 ns to

complete an
instruction

 assuming no memory
access

 No control and data
dependency checking

84

Sun Niagara Multithreaded Pipeline

85

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

