
Design of Digital Circuits
Lecture 24b: Virtual Memory

Prof. Onur Mutlu
ETH Zurich
Spring 2019
23 May 2019

Readings
n Virtual Memory

n Required
q H&H Chapter 8.4

2

Memory (Programmer’s View)

3

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

4

Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what

the programmer assumes
n The system (system software + hardware, cooperatively)

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
5

Benefits of Automatic Management of Memory

n Programmer does not deal with physical addresses
n Each process has its own mapping from virtualàphysical

addresses

n Enables
q Code and data to be located anywhere in physical memory

(relocation)
q Isolation/separation of code and data of different processes in

physical memory
(protection and isolation)

q Code and data sharing between multiple processes
(sharing)

6

7

A System with Physical Memory Only

n Examples:
q most Cray machines
q early PCs
q nearly all embedded systems

CPU’s load or store addresses used
directly to access memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

The Problem
n Physical memory is of limited size (cost)

q What if you need more?
q Should the programmer be concerned about the size of

code/data blocks fitting physical memory?
q Should the programmer manage data movement from disk to

physical memory?
q Should the programmer ensure two processes (different

programs) do not use the same physical memory?

n Also, ISA can have an address space greater than the
physical memory size
q E.g., a 64-bit address space with byte addressability
q What if you do not have enough physical memory?

8

Difficulties of Direct Physical Addressing

n Programmer needs to manage physical memory space
q Inconvenient & hard
q Harder when you have multiple processes

n Difficult to support code and data relocation
q Addresses are directly specified in the program

n Difficult to support multiple processes
q Protection and isolation between multiple processes
q Sharing of physical memory space

n Difficult to support data/code sharing across processes

9

Virtual Memory
n Idea: Give the programmer the illusion of a large address

space while having a small physical memory
q So that the programmer does not worry about managing

physical memory

n Programmer can assume he/she has “infinite” amount of
physical memory

n Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion
q Illusion is maintained for each independent process

10

Basic Mechanism
n Indirection (in addressing)

n Address generated by each instruction in a program is a
“virtual address”
q i.e., it is not the physical address used to address main

memory
q called “linear address” in x86

n An “address translation” mechanism maps this address to a
“physical address”
q called “real address” in x86
q Address translation mechanism can be implemented in

hardware and software together

11

12

A System with Virtual Memory (Page based)

n Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Virtual Pages, Physical Frames
n Virtual address space divided into pages
n Physical address space divided into frames

n A virtual page is mapped to
q A physical frame, if the page is in physical memory
q A location in disk, otherwise

n If an accessed virtual page is not in memory, but on disk
q Virtual memory system brings the page into a physical frame

and adjusts the mapping à this is called demand paging

n Page table is the table that stores the mapping of virtual
pages to physical frames

13

Physical Memory as a Cache
n In other words…

n Physical memory is a cache for pages stored on disk
q In fact, it is a fully associative cache in modern systems (a

virtual page can potentially be mapped to any physical frame)

n Similar caching issues exist as we have covered earlier:
q Placement: where and how to place/find a page in cache?
q Replacement: what page to remove to make room in cache?
q Granularity of management: large, small, uniform pages?
q Write policy: what do we do about writes? Write back?

14

Cache/Virtual Memory Analogues

Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

15

Virtual Memory Definitions
n Page size: amount of memory transferred from hard disk to

DRAM at once

n Address translation: determining the physical address from
the virtual address

n Page table: lookup table used to translate virtual addresses to
physical addresses (and find where the associated data is)

16

Virtual and Physical Addresses

n Most accesses hit in physical memory
n But programs see the large capacity of virtual memory

17

Address Translation

18

Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

19

Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

n Organization:
q Virtual address: 31 bits
q Physical address: 27 bits
q Page offset: 12 bits
q # Virtual pages = 231/212 = 219 (VPN = 19 bits)
q # Physical pages = 227/212 = 215 (PPN = 15 bits)

20

Virtual Memory Example

21

How Do We Translate Addresses?
n Page table

q Has entry for each virtual page

n Each page table entry has:

q Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

q Physical page number: where the virtual page is located in
physical memory

q (Replacement policy, dirty bits)

22

Page Table Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x7FFF 47C

23

Page Table Example 1

n What is the physical
address of virtual address
0x5F20?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

24

Page Table Example 1

n What is the physical
address of virtual address
0x5F20?
q VPN = 5
q Entry 5 in page table

indicates VPN 5 is in
physical page 1

q Physical address is
0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x0001 F20

25

Page Table Example 2

n What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

26

Page Table Example 2

n What is the physical
address of virtual address
0x73E0?
q VPN = 7
q Entry 7 in page table is

invalid, so the page is
not in physical memory

q The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

27

Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page
table?

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!

28

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Page Table Challenges

n Page table is large
q at least part of it needs to be located in physical memory

n Each load/store requires at least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service a load/store greatly
degrades load/store execution time
q Unless we are clever…

29

Translation Lookaside Buffer (TLB)

n Idea: Cache the page table entries (PTEs) in a hardware
structure in the processor

n Translation lookaside buffer (TLB)

q Small cache of most recently used translations (PTEs)

q Reduces number of memory accesses required for most
loads/stores to only one

30

Translation Lookaside Buffer (TLB)
n Page table accesses have a lot of temporal locality

q Data accesses have temporal and spatial locality
q Large page size (say 4KB, 8KB, or even 1-2GB), so

consecutive loads/stores likely to access same page

n TLB
q Small: accessed in < 1 cycle
q Typically 16 - 512 entries
q High associativity
q > 95-99 % hit rates typical (depends on workload)
q Reduces # of memory accesses for most loads and stores to

only 1

31

Example Two-Entry TLB

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

32

Memory Protection
n Multiple programs (processes) run at once

q Each process has its own page table
q Each process can use entire virtual address space without

worrying about where other programs are

n A process can only access physical pages mapped in its
page table – cannot overwrite memory of another process
q Provides protection and isolation between processes
q Enables access control mechanisms per page

33

Page Table is Per Process
n Each process has its own virtual address space

q Full address space for each program
q Simplifies memory allocation, sharing, linking and loading.

34

Virtual
Address
Space for
Process 1:

Physical Address
Space (DRAM)VP 1

VP 2
PP 2Address

Translation
0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

Virtual Memory Summary

n Virtual memory gives the illusion of “infinite” capacity

n A subset of virtual pages are located in physical memory

n A page table maps virtual pages to physical pages – this is
called address translation

n A TLB speeds up address translation

n Using different page tables for different programs provides
memory protection

35

Design of Digital Circuits
Lecture 24b: Virtual Memory

Prof. Onur Mutlu
ETH Zurich
Spring 2019
23 May 2019

We did not cover the following slides in lecture.
These are for your benefit.

Supporting Virtual Memory
n Virtual memory requires both HW+SW support

q Page Table is in memory
q Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory
management unit)
q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to leverage the MMU to
q Populate page tables, decide what to replace in physical memory
q Change the Page Table Register on context switch (to use the

running thread’s page table)
q Handle page faults and ensure correct mapping

38

Some System Software Jobs for VM
n Keeping track of which physical frames are free

n Allocating free physical frames to virtual pages

n Page replacement policy
q When no physical frame is free, what should be swapped out?

n Sharing pages between processes

n Copy-on-write optimization

n Page-flip optimization
39

Page Fault (“A Miss in Physical Memory”)

n If a page is not in physical memory but disk
q Page table entry indicates virtual page not in memory
q Access to such a page triggers a page fault exception
q OS trap handler invoked to move data from disk into memory

n Other processes can continue executing
n OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

40

Disk

41

Servicing a Page Fault

n (1) Processor signals controller
q Read block of length P starting

at disk address X and store
starting at memory address Y

n (2) Read occurs
q Direct Memory Access (DMA)
q Under control of I/O controller

n (3) Controller signals completion
q Interrupt processor
q OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

Address Translation
n How to obtain the physical address from a virtual address?

n Page size specified by the ISA
q VAX: 512 bytes
q Today: 4KB, 8KB, 2GB, … (small and large pages mixed

together)
q Trade-offs? (remember cache lectures)

n Page Table contains an entry for each virtual page
q Called Page Table Entry (PTE)
q What is in a PTE?

42

Address Translation (II)

43

44

Address Translation (III)
n Parameters

q P = 2p = page size (bytes).
q N = 2n = Virtual-address limit
q M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

45

Address Translation (IV)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset
physical address

0p–1pm–1

n–1
0

p–1p
page table

base register
(per process)

if valid=0
then page
not in memory
(page fault)

valid physical frame number (PFN)

VPN acts as
table index

n Separate (set of) page table(s) per process
n VPN forms index into page table (points to a page table entry)
n Page Table Entry (PTE) provides information about page

access

46

Address Translation: Page Hit

47

Address Translation: Page Fault

What Is in a Page Table Entry (PTE)?

48

n Page table is the “tag store” for the physical memory data store
q A mapping table between virtual memory and physical memory

n PTE is the “tag store entry” for a virtual page in memory
q Need a valid bit à to indicate validity/presence in physical memory
q Need tag bits (PFN) à to support translation
q Need bits to support replacement
q Need a dirty bit to support “write back caching”
q Need protection bits to enable access control and protection

Cache versus Page Replacement
n Physical memory (DRAM) is a cache for disk

q Usually managed by system software via the virtual memory
subsystem

n Page replacement is similar to cache replacement
n Page table is the “tag store” for physical memory data store

n What is the difference?
q Required speed of access to cache vs. physical memory
q Number of blocks in a cache vs. physical memory
q “Tolerable” amount of time to find a replacement candidate

(disk versus memory access latency)
q Role of hardware versus software

49

Page Replacement Algorithms
n If physical memory is full (i.e., list of free physical pages is

empty), which physical frame to replace on a page fault?

n Is True LRU feasible?
q 4GB memory, 4KB pages, how many possibilities of ordering?

n Modern systems use approximations of LRU
q E.g., the CLOCK algorithm

n And, more sophisticated algorithms to take into account
“frequency” of use
q E.g., the ARC algorithm
q Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead

Replacement Cache,” FAST 2003.
50

CLOCK Page Replacement Algorithm
n Keep a circular list of physical frames in memory
n Keep a pointer (hand) to the last-examined frame in the list
n When a page is accessed, set the R bit in the PTE
n When a frame needs to be replaced, replace the first frame

that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise
q During traversal, clear the R bits of examined frames
q Set the hand pointer to the next frame in the list

51

