Design of Digital Circuits
Lecture 12: Microarchitecture 11

Prof. Onur Mutlu
ETH Zurich
Spring 2018

29 March 2019

Talk Announcement — Monday, 1 April

= Monday, 1 April 2019, 10:30-11:30, CAB H52

= Towards Secure Integrated Circuit (IC) Fabrication: A Foundational
Perspective on Hardware Security

= Prof. Siddharth Garg, New York University
o https://safari.ethz.ch/siddharth-garg/

= Most semiconductor companies outsource IC fabrication to advanced external IC
foundries. This is referred to as the “fabless” model. The fabless model comes at the
expense of trust: Untrusted third-party foundries might overbuild and sell chips in the
black market, or worse, maliciously modify the chip by inserting a “hardware Trojan”.
How can a designer protect from the twin threats of IP piracy and hardware Trojans?

= I will begin the talk by demonstrating the perils of heuristic security solutions by
describing a powerful class of attacks (that we call SAT attacks) against state-of-the-art
IP piracy defenses. I will then describe a well-founded approach to defending against SAT
attacks using tools from cryptographic obfuscation. The second part of the talk will
discuss provably secure defenses against hardware Trojans, this time by appealing
foundational work in cryptography literature on verifiable computation.

= Full abstract and bio: https://safari.ethz.ch/siddharth-garg/ ~ Optional Review

2

https://safari.ethz.ch/siddharth-garg/
https://safari.ethz.ch/siddharth-garg/

Readings

This week
o Introduction to microarchitecture and single-cycle
microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Next week
o Pipelining
H&H, Chapter 7.5
= Pipelining Issues
H&H, Chapter 7.8.1-7.8.3

Agenda for Today & Next Few Lectures

= Instruction Set Architectures (ISA): LC-3 and MIPS
s Assembly programming: LC-3 and MIPS

= Microarchitecture (principles & single-cycle uarch)
= Multi-cycle microarchitecture

= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution

Recall: Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ [shift |\ Jump address [31-0]
c\left2 [}
26 Uzs 5 L.
PC+4 [31-28] M M
u u
\ X X
i ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20—- 16] Read data 1
) l register 2 bcond
Instruction :
[31-0] 0 ~ Registers Read 5 >ALU ALU read
) M Write data 2 result Address ead (1
Instruction u register M data M
memory Instruction [15—-11] lX Write ;j Data u
data 1 X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

N lextend | Y ALU operation

Instruction [5—0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitteé

Single-Cycle Control Logic

Recall: Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31 2% 25 21 20 16 15 11 10 6 5 0
0 rs rt rd shamt | funct R-Type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 2% 25 21 20 16 15 0
opcode | rs rt immediate I-Type
6 bits 5 bits 5 bits 16 bits
31 2% 2 0
opcode immediate J—Type
6 bits 26 bits
Consider

Q

Q
Q
a

All R-type and I-type ALU instructions

lw and sw
beq, bne, blez, bgtz

Recall: Single-Bit Control Signals (1)

When De-asserted When asserted Equation
GPR write select GPR write select opcode==
accordingto rt, i.e., accordingto rd, i.e.,
inst[20:16] inst[15:11]

2" ALU input from 2" | 2" ALU input from sign- | (opcode!=0) &&
GPR read port extended 16-bit (opcode!=BEQ) &&
immediate

(opcode!=BNE)

Steer ALU result to GPR | steer memory load to opcode==LW
write port GPR write port

GPR write disabled GPR write enabled (opcode!=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg optiohs

Single-Bit Control Signals (I1)

When De-asserted When asserted Equation
Memory read disabled Memory read port opcode==LW
return load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==)) ||

bit immediate jump
target

(opcode==JAL)

next PC=PC+4

next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&
“bcondis satisfied”

JR and JALR require additional PCSrc optiohs

ALU Control

case opcode

‘0" = select operation according to funct

‘ALUI" = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
__=don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.

o bcond on equal, not equal, LE zero, GT zero, etc.

10

Let’s Control The Single-Cycle MIPS Datapath

PCSrc,=Jump
Instruction [25-0] \ [shift |\ Jump address [31-0]
c\left2 [}
26 Uzs 5 L.
PC+4 [31-28] M M
u u
\ X X
i ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20—- 16] Read data 1
) l register 2 bcond
Instruction :
[31-0] 0 ~ Registers Read 5 >ALU ALU read
) M Write data 2 result Address ead (1
Instruction u register M data M
memory Instruction [15—-11] lX Write ;j Data u
data 1 X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

N lextend | Y ALU operation

Instruction [5—0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittéla

R-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]

\ \
26 @28

PC+4 [31~28]

7
/

ALU
>Add result

Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read -
Read register 1 O
pC address _ g Read
Instruction [20—16] Read data 1
: register 2 bcond
|ns“'[l§<itloo“] I— ~ Registers Read >A|-U ALU
) Write data 2 result Address Readl
Instruction register data
memory Instruction [15—11] ‘ Write Dat
data — mer‘;sry d
Write
data
Instruction [15-0] 1\6 Sign ?{2
N Tlextend | M ALU operation O

unct

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALLRIGHTS RESERVED.]

—_—-

[-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]

\ \
26 @28

PC+4 [31~28]

7
/

> Add ALU

result
Add
> PCSrc,=Br Taken
Jump

4 —

Instruction [31-26]

> Control

Instruction [25—-21] Read =

Read register 1 0
PC address _ g Read
Instruction [20—16] Read data 1
: register 2 bcond
'nStr[g‘itloo'} Registers Read 5 >ALU ALU Read
) Write data 2 result Address eadl__,
Instruction u register M data
memory Instruction [15—11] X Write p
1 data Data
) memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend | M

U operation O

code

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

—_—-

LW

PC

/

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Jump

ft 2 [

\
=)

28

PC+4 [31-28]

Add

N

Read
address

Instruction
[31-0]
Instruction
memory

./

ALU
>Add result

\d

o

bcond
ALU ALu

N

PCSrc,=Br Taken

result

\

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read -
register 1 Read
Instruction [20—16] Read data 1
register 2
Registers Read
Write data 2
u register
Instruction [15— 11] X Write
1 data
Instruction [15-0] 1\6 Sign ?{
N Clextend [M

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Read
Address data
Data
memo
Write v
data

I"Add ALU operation 1

—_—-

SW

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]

\ \
26 @28

PC+4 [31~28]

7
/

> Add ALU

result
Add
> PCSrc,=Br Taken
Jump

4 —

Instruction [31-26]

> Control

Instruction [25-21] Read el

Read register 1 1
PC address) 9 Read
Instruction [20—16] Read data 1
: register 2 bcond
Ins“ig?l%} l— ~ Registers Read 5 >ALU ALU Read
) Write data 2 result Address eadl
Instruction register M data
memory Instruction [15—-11] } { Write p
1 data Data
. memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

Y lextend | ¥ I"Add ALU operation O

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

—_—-

Branch (Not Taken)

Some control signals are dependent
on the processing of data

PC

/

Instruction [25—0] | @\

Jump address [31-0]

\ \
26 @28

PC+4 [31~28]

N

Add

Instruction [31-26]

Read
address

Instruction
[31-0]
Instruction
memory

Instruction [25-21]

Jump

> Control

0

Read

Instruction [20—- 16]

register 1

Read

L.

c

Instruction [15—11]

register 2

Write
register

Write

Instruction [15-0]

data

Registers Read

N

16 K\BZ
\ Sign |\

/

> Add ALU

result

\d

bcond

ALU ALu

result

\

I_,

Instruction [5—- 0]

\@\

¢ond

Read
Address data
Data
) memory
Write
data

0

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

—_—-
(@)

Branch (Taken)

Some control signals are dependent
on the processing of data

Instruction [25—0] | @\

Jump address [31-0]

\@\

Instruction [5—- 0]

cond 0

\ \
26 @28 D L
PC+4 [31-28] ’\J'
\ ;
ALU
>Add result
>Add
Jump
4 —
Instruction [31-26] Control
» Contro
Instruction [25-21] Read el
Read register 1 O
PC address) 9 Read
Instruction [20—16] Read data 1
: l register 2 bcond
InStEgitlo& ~ Registers Read >ALU ALU
. Write data 2 result Address Readl
Instruction register data
memory Instruction [15—-11] } ‘ Write
a data Data
) memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALLRIGHTS RESERVED.]

—_—-

Jump

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]
\ \
26 @28 L.
PC+4 [31-28] = ’\lf
\ X
ALU
>Add result 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read el
Read register 1 0
pC address _ g Read
Instruction [20—16] Read data 1
: l register 2 bcond
Ins“ig?l%} ~ Registers Read >ALU ALU
) Write data 2 0 result Address Readl
Instruction register M data
memory Instruction [15— 11] }A‘ Write A bat
ata
data > _ memory
Write
data
Instruction [15-0] 1\6 Sign ?{2
Y lextend | ¥ ALU operation O

X

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

—_—-

What 1s in That Control Box?

Combinational Logic = Hardwired Control

o Idea: Control signals generated combinationally based on
instruction

o Necessary in a single-cycle microarchitecture

Sequential Logic - Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store

19

Review: Complete Single-Cycle Processor

PCSrc,=Jump
Instruction [25-0] \ [shift |\ Jump address [31-0]
c\left2 [}
26 Uzs 5 L.
PC+4 [31-28] M M
u u
\ X X
i ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20—- 16] Read data 1
) l register 2 bcond
Instruction :
[31-0] 0 ~ Registers Read 5 >ALU ALU read
) M Write data 2 result Address ead (1
Instruction u register M data M
memory Instruction [15—-11] lX Write ;j Data u
data 1 X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

N lextend | Y ALU operation

Instruction [5—0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittgg

Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:
H&H, Chapter 7.1-7.3, 7.6

Another Complete Single-Cycle Processor

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.

Example: Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $s&$# read memory word 1 into $s3

op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

25:21
dnstr >

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signlmm
Sign Extend }

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIz:O
010

SrcA Zero
ALUResult

=

o
SrcB <

Signlmm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite

1
CLK

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs It Imm

6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CLK
\
pc, V' PC

)
PCPlus4
4

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Similarly, We Need to Design the Control Unit

= Control signals generated by the decoder in control unit

R-type
lw

SW
beq

addi

000000

100011 1 0 1
101011 0 X 1
000100 0 X 0
001000 1 0 1
000010 0 X X

00

00

01

00

XX

Single-cycle processor. Harris and Harris, Chapter 7.3.

29

Another Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

30

Your Assignment

Please read the Lecture Slides and the Backup Slides

Please do your readings from the H&H Book
o H&H, Chapter 7.1-7.3, 7.6

31

Single-Cycle Uarch I (We Developed in Lectures)

PCSrc,=Jump
Instruction [25-0] \ [shift |\ Jump address [31-0]
c\left2 [}
26 Uzs 5 L.
PC+4 [31-28] M M
u u
\ X X
i ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20—- 16] Read data 1
) l register 2 bcond
Instruction :
[31-0] 0 ~ Registers Read 5 >ALU ALU read
) M Write data 2 result Address ead (1
Instruction u register M data M
memory Instruction [15—-11] lX Write ;j Data u
data 1 X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

N lextend | Y ALU operation

Instruction [5—0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitté&

Single-Cycle Uarch II (In Your Readings)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op |ALUSIC
Funct |RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WES3 SrcA [~

2521 Zero WE
-ro pc™M]ec Instr 2l Al RD1
1

0
ALUResult ReadData 1

Instruction 20:16 - <
Memory ata
A3) -|1 I , Memory
Register WriteData

WwD3 File WD

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

A RD

U/

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

Evaluating the Single-Cycle
Microarchitecture

A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

35

Pertormance Analysis Basics

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
= |nstructions are realized on the hardware
= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware

= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

= The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program executes in
N x CPI x (1/f) =

N x CPI x T seconds

Pertformance Analysis Basics

= Execution time of an instruction

o {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

42

Pertormance Analysis of

Our Single-Cycle Design

A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
o CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Critical path of the design is determined by the processing
time of the slowest instruction

44

What is the Slowest Instruction to Process?

= Let's go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

0 Fetch 1. Instruction fetch (IF)

o Decode 2. Instruction decode and

o Evaluate Address register operand fetch (ID/RF)

o Fetch Operands 3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)

2 Execute 5. Store/writeback result (WB)

o Store Result

= Do each of the above phases take the same time (latency)
for all instructions?

45

Let’s Find the Critical Path

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]
~\left2 [Y
26 UZS 0 I_, 1
PC+4 [31-28] M M
> u u
\ X X
ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 ——
Instruction [31-26]
> Control
Read Instruction [25-21] Read
ister 1
PC address _ register dRead
Instruction [20—16] Read ata 1 peond]
. register 2 con
InStr[g‘itlo& l— 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read| _
Instruction u register M data v
memory Instruction [15-11) | * Write X oat u
data 1 ala X
" memo
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

N Tlextend | N

Instruction [5—- 0] r

ALU operation

[Based on originalfigure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Example Single-Cycle Datapath Analysis

Assume (for the design in the previous slide)

o memory units (read or write): 200 ps
o ALU and adders: 100 ps

o register file (read or write): 50 ps

Q

other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200

Let’s Find the Critical Path

PCSrc,=Jump
Instruction [25-0] \ [shift \\ Jump address [31-0]
~\left2 [Y
26 UZS 0 I_, 1
PC+4 [31-28] M M
> u u
\ X X
ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 ——
Instruction [31-26]
> Control
Read Instruction [25-21] Read
ister 1
PC address _ register dRead
Instruction [20—16] Read ata 1 peond]
. register 2 con
InStr[g‘itlo& l— 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read| _
Instruction u register M data v
memory Instruction [15-11) | * Write X oat u
data 1 ala X
" memo
Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2

Y lextend | ¥ ALU operation

Instruction [5—- 0] r

[Based on originalfigure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

PCSrc,=Jum
Instruction [25-0] \ [shift \\ Jump address [31-0]
\ \
26 @28 L.
PC+4 [31-28] . l\dl l\ljl
X X
ALU
d result -
Add
PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25—-21] Read
Read register 1 Read
2() 3 lgstruction [20—16 data 1 [
I { S bcond
: o 0 ~ Registers ALU LU
) M Write data 2 Address Readl (7
Instruction u data
memory Instruction [15—11] X Write 400 S "
! data 1 3 5 S Data 4
" memo
p' Write v 0
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [N ALU operati

Instruction [5—- 0] r

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

LW

PCSrc,=Jum
Instruction [25-0] \ [shift |\ Jump address [31-0]
\ \
26 @28 L.
PC+4 [31-28] . v "lf
X X
ALU
>Add result L
Add
PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read
Read register 1 Read
2() 3 lgstruction [20—16 data 1 L
I (S bcond
n on 0 Registers ALU ALU
) M Write data 2 It Addres
Instruction u
memory Instruction [15-11] | X X u
1 ! 3 5 ‘5 Data X
> memo
p' Write Y 0
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [V ALU operation

Instruction [5—- 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Instruction [25—0] | @\

Jump address [31-0]

PCSrc{=Jump

ft 2 [

\
=)

28

PC+4 [31~28]

Instruction [31-26] R

ALU
>Add result

PCSrc,=Br Taken

Control
100ps
Instruction [25-21] Read
register 1 Read
2 () 3 ¢ lgstruction [20—16 Don] data 1
In ion ’ 0 Registers
9 Read
M Write data 2 Addre eadl
Instruction u register o — S data |1v|
memory Instruction [15—-11] f Write . "
data | p C
(
'DWrit5 5 @p S 2
data
Instruction [15-0] 1\6 Sign .
N |extend ALU operation

Instruction [5—- 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Branch Taken

PCSrc,=Ju
Instruction [25-0] \ [shift \\ Jump address [31-0]
\ \
26 @28 D L
PC+4 [31-28] > 2 u ’\lf
100ps :
p Add g
Add .
Shift PCSrc,=Br Taken
Jump left 2
4 —
Instruction [31-26]
» Control
Instruction [25-21] Read 3 p S
Read register 1 Read
2() 3 lgstruction [20—16 data 1 [
I i S bcond
n e 0 ~ Registers ALU LU
' M Write data 2 Address Read| _
Instruction u register data v
memory Instruction [15—11] f Write X Data ;
data —|1 memory 0
Instruction [15-0] 1\6 Sign ?{
N lextend [V ALU operation

Instruction [5—- 0]

-

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Instruction -

PC+4 [31~28]

/

ALU
>Add result

\d

PCSrc,=Br Taken

Instruction [5—- 0]

-

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Write
data

Read
data

Data
memory

OXCZH

. Instruction [25-21] Read
register 1 Read
W \/gstruction [20—16] Read data 1
y (et l register 2 bcond
: 0 ~ Registers Read 5 >ALU ALU
. M Write data 2 result Address
Instruction u register M
memory Instruction [15—11] X Write)lj
1 data >l 1
Instruction [15-0] 1\ Sign ?{2 :
N lextend [N ALU operation

What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?
o Historical example:

CDC 5600: control store access too long...

54

What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?

55

Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient

o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

Not easy to optimize/improve performance
o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
56

(Micro)architecture Design Principles

Critical path design
a Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

o Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do

2 Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work

57

Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?

58

Aside: System Design Principles

When designing computer systems/architectures, it is
important to follow good principles

Remember: “principled design” from our first lecture

o Frank Lloyd Wright: “architecture [...] based upon principle,
and not upon precedent”

59

Aside: From Lecture 1

= “architecture[...] based upon principle, and not upon
precedent’

Aside: System Design Principles

We will continue to cover key principles in this course
Here are some references where you can learn more

Yale Patt, "Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn's Bottleneck - Balanced design)

Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law - Common-case design)

Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf

61

http://research.microsoft.com/pubs/68221/acrobat.pdf

A Key System Design Principle

= Keep it simple

= "Everything should be made as simple as possible,
but no simpler.” = s

o Albert Einstein

= And, keep it low cost: "An engineer is a person who can
do for a dime what any fool can do for a dollar.”

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf

62

http://research.microsoft.com/pubs/68221/acrobat.pdf

Multi-Cycle Microarchitectures

63

Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

o Determine clock cycle time independently of instruction
processing time

a Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

64

Remember: The “Process instruction” Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS - AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 > AS+MS2 - AS+MS3 > AS’ (take multiple

clock cycles to transform AS to ASY) -

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

&

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

066

Benefits of Multi-Cycle Design

Critical path design

o Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design
o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X's to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

67

Downsides of Multi-Cycle Design

Need to store the intermediate results at the end of each
clock cycle
o Hardware overhead for registers

o Register setup/hold overhead paid multiple times for an
instruction

068

Remember: Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program

o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single cycle microarchitecture performance
2 CPI =1 Not easy to optimize design
o Clock cycle time = long

= Multi-cycle microarchitecture performance

o CPI = different for each instruction We have
= Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently

69

A Multi-Cycle Microarchitecture
A Closer Look

How Do We Implement This?

Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

THE BEST WAY TO DESIGN AN AUTOMATIC
CALCULATING MACHINE

By M. V. Wilkes, M.A., Ph.D., F.R.A.S,

- 4

An elegant implementation:
o The concept of microcoded/microprogrammed machines

71

Multi-Cycle uArch

Key Idea for Realization

a One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it

o Control signals for the next state are determined in
current state

72

The Instruction Processing Cycle

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o o 0o o o O

73

A Basic Multi-Cycle Microarchitecture

Instruction processing cycle divided into “states”
A stage in the instruction processing cycle can take multiple states

A multi-cycle microarchitecture sequences from state to
state to process an instruction

The behavior of the machine in a state is completely determined by
control signals in that state

The behavior of the entire processor is specified fully by a
finite state machine

In a state (clock cycle), control signals control two things:
How the datapath should process the data
How to generate the control signals for the (next) clock cycle

74

One Example Multi-Cycle
Microarchitecture

Remember: Single-Cycle MIPS Processor

Jump

MemtoReg

PC'

0

0
1

1

PCJump

27:0 | 31:28

CLK

PC

A RD Instr

31:26

Control MemWrite

Unit
Branch

ALUControl,.,

Op ALUSrc

Funct

25:21

RegDst

RegWrite
—

CLK
|

WE3

Al RD1

Instruction
Memory

20:16

A2 RD2

A3

WD3 Register

~ + PCPlus4

20:16

File

SrcA

Zero

SrcB

a7
\ v
ALU

ALUResult

PCSrc

CLK
|

WriteData

15:11

WriteReg,.,

[0
1

m

Signimm

<<?2

PCBranch
+

WE

A RD

Data
Memory

WD

0
ReadData Result

Multi-cycle MIPS Processor

m Single-cycle microarchitecture:

- cycle time limited by longest instruction (1w) = low clock frequency
- three adders/ALUs and two memories = high hardware cost

m Multi-cycle microarchitecture:
+ higher clock frequency
+ simpler instructions run faster
+ reuse expensive hardware across multiple cycles
- sequencing overhead paid many times
- hardware overhead for storing intermediate results

m Same design steps: datapath & control

What Do We Want To Optimize

m Single Cycle Architecture uses two memories
= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

What Do We Want To Optimize

m Single Cycle Architecture uses two memories
= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

m Single Cycle Architecture needs three adders
= ALU, PC, Branch address calculation

= We want to use the ALU for all operations (smaller size)

What Do We Want To Optimize

m Single Cycle Architecture uses two memories
= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

m Single Cycle Architecture needs three adders
= ALU, PC, Branch address calculation

= We want to use the ALU for all operations (smaller size)

m In Single Cycle Architecture all instructions take one cycle
= The most complex operation slows down everything!
= Divide all instructions into multiple steps

= Simpler instructions can take fewer cycles (average case may be
faster)

Consider the Iw instruction

m Foraninstruction such as: 1w $t0, 0x20(%$t1)

m We need to:
= Read the instruction from memory
= Then read $t1 from register array
= Addthe immediate value (0x20) to calculate the memory address
= Read the content of this address
= Write to the register $t0 this content

Multi-cycle Datapath: instruction fetch

m First consider executing lw
= STEP 1: Fetch instruction

IRWrite

CLK

PC] Instr
_L) EN

read from the memory location [rs]+imm to location [rt]

I-Type
op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w register read

I-Type
op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w immediate

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w address

ALUControl,,,

Signimm

I-Type
op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w memory read

Adr
ALUOut
1

CLK

I-Type
op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w write register

RegWrite

I-Type
op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: increment PC

PCWrite ALUSrcA ALUSrcB,,,

s

Multi-cycle Datapath: sw

m Write data in rt to memory

rite
i CLK
20:16

Multi-cycle Datapath: R-type Instructions

m Read from rs and rt
= Write ALUResult to register file
= Write to rd (instead of rt)

RegDst MemtoReg

Multi-cycle Datapath: beq

m Determine whether values in rs and rt are equal

= (Calculate branch target address:
BTA = (sign-extended immediate << 2) + (PC+4)

PCEnN

Branch PCSrc

Zero

PC}
*

g

Complete Multi-cycle Processor

CLK
m‘ PCWrite
Branch PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,.,
IRWrite ALUSIcB,
31:26 op ALUSICcA
50 | Funct RegWrite
_ Y,
35
CLK 2 |3 cK CLK
| CLK 5 15
WE : # S WE3 Zero CLK
RD Instr == =1 A1 RD1 A 5
Ad A EN 2016 A2 RD2 B aturesuit | [M]arvout
Instr / Data 20:16 B\I
Memory A3
15:11 1 .
WD CLK J Regllster
0 File
Data 1 WD3
<<?2
Signimm

15:.0

__—

1 Sign Extend

Control Unit

--

:' Control e ™~

; : —— MemtoReg
v Unit

—— RegDst
—— lorD

| —— PCSrc

i Main =1 Al uUsreB,
: Controller '
:OpcodeS:O— (FSM) — ALUSIcA

: — IRWTrite

: — MemWrite
— PCWrite
—— Branch

L) RegWrite
ALUOp,,,

Funct,; DeA(;Lo;IJer ALUControl,,

o m M M O W M M W W MM MWW EEEEEmEmmmmmm?

Main Controller FSM: Fetch

S0: Fetch

Reset

<<2

15:.0

|/ Sighimm

1 Sign Extend

CLK
: PCWrite
Branch PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,.,
IRWrite ALUSIcB, ,
31:26 op ALUSIrcA
50 | Funct RegWrite
(T e | [T B Eax [a1l
CLK CLK
| [|0 CLK i) % ‘ 0 1 R
WE IO L WE3 1 CLK
! RE Instr 22 == NI RD1 A I3
- EN 2018 A2 RD2 B Luout,
X
Instr / Data 1 20116 ‘0~|
Memory A3
15:11 1 .
WD CLK J X Reg'lster
0 File
Data 1 WD3

Main Controller FSM: Fetch

S0: Fetch

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc =0
IRWrite
PCWrite

Reset

15:.0

CLK
: PCWrite
Branch PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,.,
IRWrite ALUSIcB, ,
31:26 op ALUSr(?A
50 | Funct RegWrite
F'--------------;-E-----------
! CLK |, & |3 ck CLK 0
| \ CLK o (5 0 po————
WE IO L WE3 A 1 CLK
. . Instr {24 = RD1 L
- EN 2018 A2 RD2 B Luout,
X
Instr / Data 1 20116 ‘0~|
Memory) A3
WD CLK o y X Register
0 File
Data 1 WD3
<<?2
Signimm

Main Controller FSM: Decode

S1: Decode

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc =0
IRWrite
PCWrite

Reset

—_—

CLK
PCWrite 0
Branch 0 PCEn
lorD| Control |PCSrc
MemWrite| Unit |ALUControl,
IRWrite ALUSICB,
31:26 op ALUSIrcA
59 | Funct RegWrite
bl =
CLK 2 3 CLK CLK X
CLK L0 CLK o |5 0 X
X WE UV L WE3 A Zero CLK
rc [V]ecl s . Insty JA&- S Ad === RDL- >
N ° Adr] N 016 - AP = = == = RDPH B ALUResult Luoud |
0 Instr / Data 0 20:16 \O\I
Memory 1511 y A3 .
WD CLK X Register
0 File
Data 1 WD3
<<2
J_/ Signimm
50 sigh EXtEnd

Main Controller FSM: Address Calculation

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

S2: MemAdr CLK
PCWrite 0
Branch 0 PCEn
lorD| Control |PCSrc
MemwWrite| Unit |ALUControl,
IRWrite ALUSIcB,
31:26 op ALUSr(-:A
59 | Funct RegWrite
S J
3|5
CLK 2 |53 cK CLK 1
CLK [0 CLK a |2 0
I bs) 0 SrcA 010
[\ X WE 521 | S WES3 A CLK X
PC' PCl s RD Instr = Al RD1 ? >
EN . Adr A EN 20:16 v A2 RD2 B ALUResult LUOu j
Instr / Data 0 2016 [4 —
0 O\I
Memory 1511 y A3 _
WD CLK X Reg_|ster
0 File
Data 1 wD3
<<?2
15:0 SI

1 gn Extend

Main Controller FSM: Address Calculation

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

S2: MemAdr CLK
PCWrite 0
Branch 0 PCEn
ALUSrcA=1 lorD| Control |PCSrc
ALUSrcB = 10 MemwWrite| Unit |ALUControl,
ALUOp =00 IRWrite ALUSIcB,
31:26 op ALUSr(-:A
50 | Funct RegWrite
. J
by <
CLK CLK |, 2 § CLK 0 CLK 1
I bs) 0 SrcA 010
[\ X WE 521 | S WES3 A ¢ CLK X
PC'| PC 0 Ad RD Instr = Al RD1 > S
EN LA EN 2010 A2 RD2 ALUResult Luoud
X
0 Instr / Data 0 20:16 \0\1 4 —
Memory 1511 A3)
WD CLK - y X Register
0 File
Data 1 wD3
<<?2
/ Signimm
15:0 S

1 ign Extend

Main Controller FSM: 1w

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSICcA = 1
ALUSICB = 10
ALUOp = 00

S4: Mem
Writeback

RegDst=0

MemtoReg = 1
RegWrite

Main Controller FSM: sw

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSrcA=1
ALUSrcB =10
ALUOp =00

Op =sw

S5: MemWrite

lorD=1
MemWrite

RegDst=0
MemtoReg = 1

RegWrite

Main Controller FSM: R-Type

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

Op=1w
or
Op =sw
ALUSIcA=1 ALUSrcA =1
ALUSrcB =10 ALUSrcB =00
ALUOp = 00 ALUOp =10
Op = sw
Op=1w S7: ALU

Writeback

RegDst =1

lorD = 1 MemtoReg = 0

MemWrite RegWrite

RegDst=0
MemtoReg = 1
RegWrite

Main Controller FSM: beq

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSrcA =1
ALUSrcB =10

ALUOp = 00

Op =sw
Op=1w

lorD=1

MemWrite

RegDst=0

ALUSrcA=0
ALUSrcB =11
ALUOp =00
Op = BEQ
Op = R-type
S8: Branc
ALUSrcA=1
ALUSrcA=1 ALUSrcB =00
ALUSrcB = 00 ALUOp =01
ALUOp =10 PCSrc=1

Branch

RegDst =1

MemtoReg = 0
RegWrite

MemtoReg = 1
RegWrite

Complete Multi-cycle Controller FSM

S1: Decode

ALUSrcA=0
ALUSrcB =11
ALUOp =00

Op = BEQ
Op = R-type
S6: Executg
S8: Branc

ALUSrcA=1

ALUSrcA=1 ALUSrcB =00

ALUSrcB = 00 ALUOp =01

ALUOp =10 PCSrc=1
Branch

S7: ALU
Writeback

RegDst =1
MemtoReg = 0

RegWrite

SO0: Fetch
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite
Op=1w
or
S2: MemAdr Op=su

ALUSrcA=1

ALUSrcB =10

ALUOp =00
Qp = swW

Op=1w .
S5: MemWrite
S3: MemRead
lorD=1
MemWrite
S4: Mem
Writeback
RegDst=0
MemtoReg = 1

RegWrite

Main Controller FSM: addi

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSrcA =1
ALUSICcB = 10
ALUOp = 00

Qp = sw
Op=1w

lorD=1

MemWrite

RegDst=0

ALUSIcA=0
ALUSrcB =11

ALUOp = 00

Op = R-type

ALUSICA = 1
ALUSICB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCSrc=1
Branch

MemtoReg = 1
RegWrite

Main Controller FSM: addi

lorD=0
AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSIcA =0
ALUSrcB =11

ALUOp = 00

O = BE Op = ADDI
Op = Lw P =BEQ
or Op = R-type
Op =sw
ALUSrcA=1
ALUSrcA=1 ALUSrcA =1 ALUSrcB =00 ALUSrcA=1
ALUSrcB =10 ALUSrcB =00 ALUOp =01 ALUSrcB =10
ALUOp =00 ALUOp =10 PCSrc=1 ALUOp =00
Branch
Qp = swW
Op=1w
lorD = 1 RegDst =1 RegDst =0
MemV\?rite MemtoReg = 0 MemtoReg = 0
RegWrite RegWrite
RegDst=0
MemtoReg = 1

RegWrite

Extended Functionality: j

PC

PCJump

PCSrc,,

00

10

Control FSM: j

Reset

ALUSrcA =1
ALUSICcB = 10
ALUOp = 00

Op=1w

RegDst=0
MemtoReg = 1
RegWrite

lorD=0
AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc =00
IRWrite

Qp = SW

lorD=1

MemWrite

ALUSIcA=0
ALUSrcB =11

ALUOp = 00

Op = R-type

ALUSICA = 1
ALUSICB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op =ADDI
Op = BEQ

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCSrc =01
Branch

ALUSrcA =1
ALUSICB = 10
ALUOp = 00

RegDst =0
MemtoReg = 0
RegWrite

Control FSM: j

Reset

ALUSrcA=1
ALUSrcB =10

ALUOp =00

Op=1w

RegDst =0
MemtoReg = 1
RegWrite

AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc =00

lorD=0

IRWrite

Qp = SW

lorD=1

MemWrite

ALUSrcA=0
ALUSrcB =11

ALUOp =00

Op = R-type

ALUSrcA=1
ALUSrcB = 00
ALUOp =10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDT
Op = BEQ

ALUSrcA=1
ALUSrcB =00
ALUOp =01
PCSrc =01
Branch

PCSrc =10
PCWrite

ALUSrcA=1
ALUSrcB =10
ALUOp =00

RegDst =0
MemtoReg = 0
RegWrite

Review: Single-Cycle MIPS Processor

27:.0

Jump

CLK

PC

A RD Instr

PCJump

31:28

31:26

MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,,.,

Op

ALUSrc

Funct

25:21

RegDst

—
CI‘_K

RegWrite

Al

Instruction
Memory

20:16

A2

A3

wD3

~ + PCPlus4

20:16

WES3

Register

RD1

SrcA

Zero

RD2

File

ALUResult

PCSrc

CLK
|

WE

A RD

'3 SrcB
1

\Lalu

WriteData

Data
Memory

WD

15:11

WriteReg,,.,

1o Sign Extend

Signimm

PCBranch

0
ReadData Result

109

Review: Multi-Cycle MIPS Processor

15:.0

I

25:0 (Addr)

| Sign Extend

CLK
/—%PCWrite
Branch PCEN
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,.,
IRWrite ALUSICcB,
31:26 op ALUSIcA
50 | Funct RegWrite
. J
by <
& |2
«Q
CLK CLK CLK
| CLK |
WE) WE3 31:28 Zero CLK |
0 RD Instr 2= Al RD1 A m
:|1|Adr A N 2016 A2 RD2 B ALUResult |$|ALu0ut o1
Instr / Data 20:16 B\I |_| 10
Memory 15:11 y A3 . PCJum
WD CLK Reg_lster P
0 File
Data WD3
1
; <<2 \ 27:0
ImmExt

110

Review: Multi-Cycle M.

lorD=0

Reset AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc =00
IRWrite
Op=1w
or
Op =sw

ALUSrcA=1
ALUSrcB =10

ALUOp = 00

Qp = SwW
Op=1Lw

lorD=1

MemWrite

RegDst=0

ALUSIcA=0
ALUSrcB =11

ALUOp = 00

Op = R-type

ALUSICA = 1
ALUSICB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCSrc =01
Branch

PCSrc =10
PCWrite

ALUSIcA=1
ALUSrcB =10

ALUOp = 00

RegDst =0
MemtoReg = 0
RegWrite

MemtoReg = 1
RegWrite

What is the
shortcoming of
this design?

What does

this design
assume

about memory?

111

What It Memory Takes > One Cycle?

Stay in the same "memory access” state until memory
returns the data

“Memory Ready?” bit is an input to the control logic that
determines the next state

112

More on Performance Analysis

Single-Cycle Pertormance

Tc is limited by the critical path (1w)

———\MemtoReg
Control .
Unit MemWrite
Branch 0 0
ALUControl, 1 J—Pesre
31:26 -
Op |ALUSKC
20 1 Funct RegDst
RegWrite
—
CLK CLK
1 0
il l WE3 |\OlOZero l WE 1
. SrcA —~—
-rO pcl™lec] 4 - - _gp Lnstr [REHALm - === RB1- S
1 ALUResult A RB ReadData | .
Instruction 2016 p RD2 TR
Memory Data
A3 i WriteData Memory
»| wD3 Reg.lster WD
File 0
20:16 0
15:11 1
o WriteReg,.,
~ + PCPlus4 -
Signlmm
4 = 150 Slgn Extend PCBranch
+
Result

114

Single-Cycle Performance

Single-cycle critical path:
d Tc = tpcq_PC + I:mem + n‘“:v"x(tRFreadl tsext + tmux) + tALU +

|:mem + |:mux + tRFsetup
In most implementations, limiting paths are:

o memory, ALU, register file.

= Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

MemtoReg
MemWrite

Control
Unit

Branch 0 0
ALUControl,, PCSre

31:26
—10p ALUSrc
=2 Funct |RegDst
RegWrite
—
CI‘_K 1 CI‘_K 0
WE3 s 910 ero WE 1
. ICA
Instr R&]=Al- - = = = -RB1- . 5
) ReadData | .
ion e

M ALUResult

fr = =RDB 1

20160 pp RD2 [sre Data
A3 i 1 WriteData Memory
WD3 Regi||seter WD

A 4

0
0
- 1
WriteReg, .

15:11
Signimm
' <<2
+

Result 1 1 5

Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q
Register setup
Multiplexer

ALU

Memory read
Register file read

Register file setup

Tc=

tpcq_PC
tsetup
tmux
tALU
tmem
tRFread

tRFsetup

30
20
25
200
250
150

20

116

Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q
Register setup

Multiplexer

ALU

Memory read

Register file read
Register file setup

T

C

= pcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

tpcq_PC
tsetup
tmux
tALU
tmem
tRFread

tRFsetup

30
20
25
200
250
150

20

= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

117

Single-Cycle Performance Example

Example:

For a program with 100 billion instructions executing on a
single-cycle MIPS processor:

118

Single-Cycle Performance Example

Example:

For a program with 100 billion instructions executing on a
single-cycle MIPS processor:

Execution Time = # instructions x CPI x T,

= (100 x 10°)(1)(925 x 1012 5s)
= 92.5 seconds

119

Multi-Cycle Performance: CPI

Instructions take different number of cycles:
a 3 cycles: beq,]

o 4 cycles: R-Type, sw, addi
Bodes i | Reatistics

CPI is weighted average, e.g. SPECINT2000 benchmark:
0 25% loads

o 10% stores

0 11% branches

o 2% jumps

a0 52% R-type

Average CPI = (0.11 + 0.02) 3 +(0.52 + 0.10) 4 +(0.25) 5
= 4.12

120

Multi-cycle Performance: Cycle Time

Multi-cycle critical path:
T =

C

CLK
(-%ﬂPCWrite
Branch PCEnN
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSICB,
31:26 op ALUSr(?/—\
50| Funct RegWrite
. J
S
CLK CLK 3 3 CLK CLK .
|] g __ 0 sreAa | | oTCTTT !
% rcA 1
WE _ a @ WES3 R Zero CLK 1
. 25:21 1 A1 RD1 '5 ----- : :. 0
K- 2016 A2 RD2 = 3|-A.LLJB§SE'£' Luoud
Instr / Data 206 [4 — <
M
emery 15:11y A3 Register
WD ;
0 File
TH v
1
<<2
I/ Signimm
15:.0

1 Sign Extend

Multi-cycle Performance: Cycle Time

Multi-cycle critical path:

Tc = tpcq + tmux + rnaX(tALU + tmuxr tmem) +1

setup

15.0

<<?2

1 Sign Extend

CLK
—\ PCWrite
Branch PCEnN
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSIcB,
31:26 op ALUSr(?/—\
50 | Funct RegWrite
\. J
3|5
CLK 2 3 CLK CLK
| CLK o) ;Eé | 4
WE . 1?2 WE3
D B M instr 22 =1 A1 RD1 =S
_Détir A : EN 20:16 A2 RD2 B
sy |
15:11 1 .
WD CLK J Reg'lster
0 File
Data 1 WD3

Multi-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q theq pc 30
Register setup et 20
Multiplexer tux 25
ALU Uy 200
Memory read trem 250
Register file read tRFread 150
Register file setup trEsetup 20

T =

Multi-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q theq pc 30
Register setup et 20
Multiplexer tux 25
ALU Uy 200
Memory read trem 250
Register file read tRFread 150
Register file setup trEsetup 20
T. = toeq pc t tmux T max(tay + twe tmem) + Teetup

= [30 + 25 + 250 + 20] ps
=325 ps

Multi-Cycle Performance Example

For a program with 100 billion instructions executing on a
multi-cycle MIPS processor

o CPI =4.12
o T.= 325ps
Execution Time

(# instructions) x CPI x T,
(100 x 10°)(4.12)(325 x 1019
= 133.9 seconds

This is slower than the single-cycle processor (92.5
seconds). Why?

Did we break the stages in a balanced manner?

= Overhead of register setup/hold paid many times

How would the results change with different assumptions
on memory latency and instruction mix?

125

Review: Single-Cycle MIPS Processor

27:.0

Jump

CLK

PC

A RD Instr

PCJump

31:28

31:26

MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,,.,

Op

ALUSrc

Funct

25:21

RegDst

—
CI‘_K

RegWrite

Al

Instruction
Memory

20:16

A2

A3

wD3

~ + PCPlus4

20:16

WES3

Register

RD1

SrcA

Zero

RD2

File

ALUResult

PCSrc

CLK
|

WE

A RD

'3 SrcB
1

\Lalu

WriteData

Data
Memory

WD

15:11

WriteReg,,.,

1o Sign Extend

Signimm

PCBranch

0
ReadData Result

126

Review: Multi-Cycle MIPS Processor

15:.0

I

25:0 (Addr)

| Sign Extend

CLK
/—%PCWrite
Branch PCEN
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,.,
IRWrite ALUSICcB,
31:26 op ALUSIcA
50 | Funct RegWrite
. J
by <
& |2
«Q
CLK CLK CLK
| CLK |
WE) WE3 31:28 Zero CLK |
0 RD Instr 2= Al RD1 A m
:|1|Adr A N 2016 A2 RD2 B ALUResult |$|ALu0ut o1
Instr / Data 20:16 B\I |_| 10
Memory 15:11 y A3 . PCJum
WD CLK Reg_lster P
0 File
Data WD3
1
; <<2 \ 27:0
ImmExt

127

Review: Multi-Cycle M.

lorD=0

Reset AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc =00
IRWrite
Op=1w
or
Op =sw

ALUSrcA=1
ALUSrcB =10

ALUOp = 00

Qp = SwW
Op=1Lw

lorD=1

MemWrite

RegDst=0

ALUSIcA=0
ALUSrcB =11

ALUOp = 00

Op = R-type

ALUSICA = 1
ALUSICB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCSrc =01
Branch

PCSrc =10
PCWrite

ALUSIcA=1
ALUSrcB =10

ALUOp = 00

RegDst =0
MemtoReg = 0
RegWrite

MemtoReg = 1
RegWrite

What is the
shortcoming of
this design?

What does

this design
assume

about memory?

128

What It Memory Takes > One Cycle?

Stay in the same "memory access” state until memory
returns the data

“Memory Ready?” bit is an input to the control logic that
determines the next state

129

Design of Digital Circuits
Lecture 12: Microarchitecture 11

Prof. Onur Mutlu
ETH Zurich
Spring 2018

29 March 2019

Backup Slides on Single-Cycle
Uarch for Your Own Study

Please study these to reinforce the concepts
we covered in lectures.

Please do the readings together with these slides:
H&H, Chapter 7.1-7.3, 7.6

Another Single-Cycle
MIPS Processor (from H&H)

These are slides for your own study.
They are to complement your reading
H&H, Chapter 7.1-7.3, 7.6

What to do with the Program Counter?

m The PC needs to be incremented by 4 during each cycle
(for the time being).

m Initial PC value (after reset) is 9x00400000

reg [31:0] PC_p, PC n; // Present and next state of PC
/][]
assign PC n <= PC p + 4; // Increment by 4;

always @ (posedge clk, negedge rst)

begin
if (rst == ‘9°) PC_p <= 32’°h00400000; // default
else PC_p <= PC_n; // when clk

end

We Need a Register File

m Store 32 registers, each 32-bit
= 2°==132,we need 5 bits to address each

m Every R-type instruction uses 3 register

= Two for reading (RS, RT)
= One for writing (RD)

m We need a special memory with:
= 2 read ports (address x2, data out x2)
= 1 write port (address, data in)

Register File

input [4:0] ars, art, a rd;
input [31:0] di rd;

input we rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs
// Circuit description
assign do rs = R_arr[a_rs]; // Read RS

assign do rt = R_arr[a_rt]; // Read RT

always @ (posedge clk)
if (we rd) R_arr[a_rd] <= di_rd; // write RD

Register File

input [4:0] ars, art, a rd;
input [31:0] di rd;

input we rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0

assign do rs = (a_rs != 5’bo000O)? // is address ©?
R_arr[a_rs] : 0; // Read RS or ©

assign do rt = (a_rt != 5’°b0000O)? // is address ©?
R_arr[a_rt] : 0; // Read RT or ©

always @ (posedge clk)
if (we rd) R_arr[a_rd] <= di_rd; // write RD

Data Memory Example

m Will be used to store the bulk of data

input [15:0] addr; // Only 16 bits in this example
input [31:0] di;
input we;
output [31:0] do;

reg [65535:0] M arr [31:0]; // Array for Memory

// Circuit description
assign do = M _arr[addr]; // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di; // write memory

Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $s&$# read memory word 1 into $s3

op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

25:21
dnstr >

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signlmm
Sign Extend }

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIz:O
010

SrcA Zero
ALUResult

=

o
SrcB <

Signlmm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite

1
CLK

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs It Imm

6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CLK
\
pc, V' PC

)
PCPlus4
4

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: sw

m Write data in rt to memory

MemWrite

il
CITK

N

WriteData

>

sw $t7, 44($0) # write t7 into memory address 44

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: R-type Instructions

m Read from rs and rt, write ALUResult to register file

RegDst ALUSrc MemtoReg
1 0 0

0
ALUResult

— 01SrcB
IR
>
20:16
- 1
WriteReg,,.,
Result
add t, b, ¢ # t =b + c
R-Type
op rs rt rd [shamt| funct
6 bits 5bits 5bits 5bits 5 bits 6 bits

Single-Cycle Datapath: beq

PCSrc

Branch
1

Zero

0] PC
1

Branch

beq $s0, $sl1, target # branch is taken

m Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

Complete Single-Cycle Processor

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op ALUSTrc
Funct |RegDst

RegWrite

)
Control
Unit

31:26

5:0

—
CLK CLK
| |

WE3 SrcA [~

2521 Zero WE
'F pc'|™|PC Instr = Al RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 - <
Memory ata
A3) -|1 I , Memory
Register WriteData

WwD3 File WD

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

Our MIPS Datapath has Several Options

m ALU inputs
= Either RT or Immediate (MUX)

m Write Address of Register File
= Either RD or RT (MUX)

m Write Data In of Register File
= Either ALU out or Data Memory Out (MUX)

m Write enable of Register File
= Not always a register write (MUX)

m Write enable of Memory
= Only when writing to memory (sw) (MUX)

All these options are our control signals

Control Unit

[4

ALUControl,q

I
c
-]
O
—
a

i Control

i Unit }— MemtoReg |

— MemWrite |

EOpcode vain | Branch

! 5:0 ain '

§ Decoder| ALUSre ' ALUOp Meaning
5 — RegDst ' 00 1
—— RegWrite ; a

; : 01 subtract
; ALUOp1. :

E ‘ 10 look at funct field
i i 11 n/a

L4
.

ALU Does the Real Work in a Processor

000 A&B
A B

N AN

\/ 010 A+B
ALU 3 F 011 not used

001 A|B

)(N 100 A & ~B
Y 101 A|~B
110 A-B

111 SLT

ALU Internals

000 A&B
M j - 001 A|B
N 010 A+B
RLJ tj 011 not used
Cout {Y J/ 100 A& ~B
7\ al 101 A|~B
§§ N N N 110 A-B

w N ol o
\ /L? Flo 111 SLT

Control Unit: ALU Decoder

§ Unit — MemtoReg
— MemWrite
— Branch
— ALUSIc
— RegDst

— RegWrite

§Opcode5;o— Main
: Decoder

ALUOpP10

ALU

i FUNClso—hecoder

ALUControlsq

ALUOp, ., Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp,,, |Funct ALUControl,.,
00 X 010 (Add)

X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010(s1t) 111 (SLT)

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add
SW 101011 0 X 1 1 X add

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

More Control Signals

Instruction Ops, RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 %) 0 9 @ funct
lw 100011 1 0 1 0 0 1 add
sw 101011 ¢ X 1 0 1 X add
beq 000100 ¢ X) 1 %) X sub

m New Control Signal

= Branch: Are we jumping or not ?

Control Unit: Main Decoder

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,

R-type 000000 1 1 %) %) 0 0 10
1w 100011 00

Sw 101011 00
beq 900100 01

=
=

®
X X O©

=
) ® O
®© B ©
X X B

Qv
Qv

——\MemtoReg
‘YOI MemWrite
Branch
IALUControl,,,
31:26

——°P [ALUSIc

PCSrc

2 Funct [RegDst
RegWrite
—
CLK CLK
L L
WE3 WE
0
ReadData
A RD 1
2164 A2 RD2 Data
A3 . | Memory
WD3 Reg; er WD

Single-Cycle Datapath Example: or

MemtoReg
MemWrite
Branch 0
ALUControl, , D PCsrc
Op ALUSTIC
Funct [RegDst

RegWrite

SR
Control
Unit

31:26

5.0

—
CLK
|

1

. WE3

i10.]pc o m sRDm LS Vil = =R g
-

Instruction ba16

Memory

CLK

001

Zero] WE 0

1

ALUResult I ReadData 1

A = = mRB2 Data

P A3 Memory

i WriteData
) WD3 Regillséter WD

] 2016 0

15:11
WriteReg,, o
¥ PCPlus4 * ’
! _/ Signimm <<2
4 15:0 ;
Sign Extend N PCBranch

Result

Extended Functionality: addi

Instr

31:26

)
Control

5.0

25:21

MemtoReg

Unit MemWrite

Branch

ALUControl,.,

Op ALUSICc

Funct RegDst

RegWrite
CLK
|

-F rcMlec] » rp
1

Instruction
Memory

20:16

~ + PCPlus4

20:16

WE3

Al RD1

SrcA

Zero

A2
A3
WD3

RD2

Register

File

ALUResult

PCSrc

CLK
|

WE

FC SrcB
1

\Lalu /

WriteData

Data
Memory

WD

15:11

WriteReg,,

[0
1

150 Sign Extend

Signimm

<<?2

PCBranch
+

0
ReadData 1

Result

m No change to datapath

Control Unit: add1i

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,

R-type 000000 1 1 %) %) 90 0 10

1w 100011 1 0 1 %) %) 1 (5]1%)
sw 101011 O X 1 %) 1 X (5]%)
beq 000100 O X %) 1 %) X 01
addi 001000 1 (%) 1 (%) (%) (%) 00

Extended Functionality: j

PCJump

Control Unit: Main Decoder

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,, Jump

R-type 000000 1 1 %) %) 0 %) 10 0

1w 100011 1 © 1 © %) 1 k6 ©
Sw 101011 © X 1 0 1 X k6 ©
beq 000100 0O X © 1 %) X 1 ©
Jj 000100 O X X X (7 X XX 1

Review: Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

164

A Bit More on
Pertormance Analysis

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
= |nstructions are realized on the hardware
= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware

= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

= The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program

o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

169

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program will execute in

N x CPI x (1/f) = N x CPI x T seconds

How can | Make the Program Run Faster?

N x CPI x (1/f)

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

m Use less cycles to perform the instruction

= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

m Use less cycles to perform the instruction
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

m Increase the clock frequency

" Find a ‘newer’ technology to manufacture
= Redesign time critical components
= Adopt pipelining

Single-Cycle Performance

m T.is limited by the critical path (1w)

mMemtoReg
(l)Jr:]irto MemWrite
Branch 0 0
ALUControl,, . 1 »—Pcsre
31:26 -
Op |ALUSIC
20 1 Funct |RegDst
RegWrite
—
CLK CLK
CLK | 1 010 l 0)
i WE3 SrcA ~, Zero WE
0 lec|™|pc A == =RD J10SU s B R RB1- 'T -
1 1 [>“DI ALUResult M- -RD ReadData | .
Instruction 2016 e~ - -l == !
Memory A2 RD2 0]SrcB /< Data
A3 '|1, Memor
Register WriteData y
»| WD3 e WD
0
20:16 0
15:11
O WriteReg,,
~ 4 PCPlus4 40
Signlmm
49 120 Sign Extend pCBranch
+
Result

Single-Cycle Performance

m Single-cycle critical path:

. Tc = tF’cCl_PC + tmem + max(tRFreadl tsext + tmux) + tALU + tmem + tmux + tRFsetup

m In most implementations, limiting paths are:

= memory, ALU, register file.

. Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

MemtoReg
MemWrite
Branch 0 0
ALUControl,, PCSre
31:26

—Op [ALUSIc
=2 Funct |RegDst

RegWrite

CLK ~
& ‘ - 010 | 0
1
- WE3 Zero WE
i A Rp Jinstr 2921 Al = = m RB1- SrcA - y
etruc 1 ~J| ALUResult - -Rp JRE20DaE] .
Instruction " 2 . |

; D
Memory K RD2 0]srcB Data

Control
Unit

A3 i 2 WriteData Memory
»| wp3 Regi||seter WD

0
20:16 0
15:11 1
WriteReg,
Signimm
' <<2
—|15'° Sign Extend PCBranch

+

PCPlus4

Result

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq pe 30
Register setup teetup 20
Multiplexer tux 25

ALU sy 200
Memory read tem 250
Register file read terread 150
Register file setup tREsetup 20

T =

C

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq pe 30
Register setup teetup 20
Multiplexer tux 25

ALU sy 200
Memory read tem 250
Register file read terread 150
Register file setup tREsetup 20

7-c = pcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Execution Time = # instructionsx CPIxTC
= (100 x 10°)(1)(925 x 101?s)
=92.5 seconds

