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Required Readings
n This week

q Pipelining
n H&H, Chapter 7.5

q Pipelining Issues
n H&H, Chapter 7.8.1-7.8.3

n Next week
q Out-of-order execution

q H&H, Chapter 7.8-7.9
q Smith and Sohi, “The Microarchitecture of Superscalar 

Processors,” Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts
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Agenda for Today & Next Few Lectures
n Last week

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n This week
q Pipelining
q Issues in Pipelining: Control & Data Dependence Handling, 

State Maintenance and Recovery, …

n Next week
q Out-of-Order Execution
q Issues in OoO Execution: Load-Store Handling, …
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Review: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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Stalling Hardware
¢ Stalls are supported by:

§ adding enable inputs (EN) to the Fetch and Decode pipeline 
registers 

§ and a synchronous reset/clear (CLR) input to the Execute pipeline 
register 
§ or an INV bit associated with each pipeline register

¢ When a lw stall occurs
§ StallD and StallF are asserted to force the Decode and Fetch stage 

pipeline registers to hold their old values. 
§ FlushE is also asserted to clear the contents of the Execute stage 

pipeline register, introducing a bubble
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Stalling Hardware
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Control Dependences
¢ Special case of data dependence: dependence on PC

¢ beq: 
§ branch is not determined until the fourth stage of the pipeline
§ Instructions after the branch are fetched before branch is resolved

§ Always predict that the next sequential instruction is fetched
§ Called “Always not taken” prediction

§ These instructions must be flushed if the branch is taken

¢ Branch misprediction penalty
§ number of instructions flushed when branch is taken
§ May be reduced by determining branch earlier
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Control Dependence: Original Pipeline
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Control Dependence
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Early Branch Resolution
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Introduces another data dependency in Decode stage..  
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Early Branch Resolution
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Early Branch Resolution: Good Idea?
¢ Advantages

§ Reduced branch misprediction penalty 
à Reduced CPI (cycles per instruction)

¢ Disadvantages
§ Potential increase in clock cycle time?

à Higher Tclock?
§ Additional hardware cost

à Specialized and likely not used by other instructions



Carnegie Mellon

14

Data Forwarding for Early Branch Resolution
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Data forwarding for early branch resolution.
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Control Forwarding and Stalling Hardware
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall; 
assign FLushE = lwstall | branchstall;
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Doing Better: Smarter Branch Prediction
¢ Guess whether branch will be taken

§ Backward branches are usually taken (loops)
§ Consider history of whether branch was previously taken to 

improve the guess

¢ Good prediction reduces the fraction of branches 
requiring a flush 
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Pipelined Performance Example
¢ SPECINT2006 benchmark: 

§ 25% loads
§ 10% stores 
§ 11% branches
§ 2% jumps
§ 52% R-type

¢ Suppose:
§ 40% of loads used by next instruction
§ 25% of branches mispredicted

¢ All jumps flush next instruction

¢ What is the average CPI?



Carnegie Mellon

18

Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And 
§ Average CPI     =
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Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And 
§ Average CPI = (0.25)(1.4) + load

(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15
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Pipelined Performance
¢ There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch
2(tRFread + tmux + teq + tAND + tmux + tsetup ) decode
tpcq + tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq + tmux + tRFwrite) writeback
}

¢ The operation speed depends on the slowest operation

¢ Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them
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Pipelined Performance Example
Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup )
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps
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Pipelined Performance Example

¢ For a program with 100 billion instructions executing on a 

pipelined MIPS processor:

§ CPI = 1.15
§ Tc = 550 ps

¢ Execution Time = (# instructions) � CPI � Tc

= (100 � 109)(1.15)(550  � 10-12)

= 63 seconds
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Performance Summary for MIPS arch.

Processor
Execution Time
(seconds)

Speedup
(single-cycle is baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Fastest of the three MIPS architectures is Pipelined.

¢ However, even though we have 5 fold pipelining, it is not 
5 times faster than single cycle.



Questions to Ponder
n What is the role of the hardware vs. the software in data 

dependence handling?
q Software based interlocking 
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline 

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well
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Questions to Ponder
n What is the role of the hardware vs. the software in the 

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q …
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More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Compiler orders the instructions, hardware executes them in 
that order

q Contrast this with dynamic scheduling (in which hardware can 
execute instructions out of the compiler-specified order)

q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes 
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory addr, branch direction 

n How can the compiler alleviate this (i.e., estimate the 
unknown)?
q Answer: Profiling
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Pipelining and Precise Exceptions: 
Preserving Sequential Semantics



Multi-Cycle Execution
n Not all instructions take the same amount of time for 

“execution”

n Idea: Have multiple different functional units that take 
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different 

functional unit before a previous long-latency instruction 
finishes execution
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Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE 

stage
q Integer ADD versus FP MULtiply

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if FMUL incurs an exception?
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Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
30



Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)    

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception 
handling routine
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Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented 
opcodes)
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Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency
q What about memory operations?
q Each functional unit takes worst-case number of cycles?
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Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, �Implementing Precise Interrupts in Pipelined 

Processors,� IEEE Trans on Computers 1988 and ISCA 1985.
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Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them 

before making results visible to architectural state
n When instruction is decoded it reserves the next-sequential 

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed 

without exceptions, its result moved to reg. file or memory
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What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if 

instruction can retire without any issues
q handle an exception/interrupt precisely, if an 

exception/interrupt needs to be handled before retiring the 
instruction

n Need valid bits to keep track of readiness of the result(s) 
and find out if the instruction has completed execution
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Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later operation needs a value in the reorder 
buffer?
q Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer, 

(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder 

buffer entry that contains (or will contain) the value of the 
register

q Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
40



Reorder Buffer in Intel Pentium III

41

Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001.



Important: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to 

do with each other
q They exist due to lack of register ID’s (i.e. names) in 

the ISA

n The register ID is renamed to the reorder buffer entry that 
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers
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Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that 
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction 
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12 
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In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if 

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline and start from 
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing
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Out-of-Order Execution
(Dynamic Instruction Scheduling)



An In-order Pipeline

n Dispatch: Act of sending an instruction to a functional unit
n Renaming with ROB eliminates stalls due to false dependencies
n Problem: A true data dependency stalls dispatch of younger 

instructions into functional (execution) units
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Can We Do Better?
n What do the following two pieces of code have in common 

(with respect to execution in the previous design)?

n Answer: First ADD stalls the whole pipeline!
q ADD cannot dispatch because its source registers unavailable
q Later independent instructions cannot get executed

n How are the above code portions different?
q Answer: Load latency is variable (unknown until runtime)
q What does this affect? Think compiler vs. microarchitecture
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IMUL  R3 ß R1, R2
ADD   R3 ß R3, R1
ADD   R4 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9

LD      R3 ß R1 (0)
ADD   R3 ß R3, R1
ADD   R4 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9



Preventing Dispatch Stalls
n Problem: in-order dispatch (scheduling, or execution)

n Solution: out-of-order dispatch (scheduling, or execution)

n Actually, we have seen the basic idea before:
q Dataflow: fetch and �fire� an instruction only when its inputs 

are ready
q We will use similar principles, but not expose it in the ISA

n Aside: Any other way to prevent dispatch stalls?
1. Compile-time instruction scheduling/reordering
2. Value prediction
3. Fine-grained multithreading
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Out-of-order Execution (Dynamic Scheduling)

n Idea: Move the dependent instructions out of the way of 
independent ones (s.t. independent ones can execute)
q Rest areas for dependent instructions: Reservation stations 

n Monitor the source �values� of each instruction in the 
resting area

n When all source �values� of an instruction are available, 
�fire� (i.e. dispatch) the instruction
q Instructions dispatched in dataflow (not control-flow) order 

n Benefit:
q Latency tolerance: Allows independent instructions to execute 

and complete in the presence of a long-latency operation
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In-order vs. Out-of-order Dispatch
n In order dispatch + precise exceptions:

n Out-of-order dispatch + precise exceptions:

n 16 vs. 12 cycles
52

F D WE E E E R
F D E R W

F

IMUL  R3 ß R1, R2
ADD   R3 ß R3, R1
ADD   R1 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R3, R5

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W



Enabling OoO Execution
1. Need to link the consumer of a value to the producer

q Register renaming: Associate a �tag� with each data value 
2. Need to buffer instructions until they are ready to execute

q Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

q Broadcast the �tag� when the value is produced
q Instructions compare their �source tags� to the broadcast tag 

à if match, source value becomes ready
4. When all source values of an instruction are ready, need to 

dispatch the instruction to its functional unit (FU)
q Instruction wakes up if all sources are ready
q If multiple instructions are awake, need to select one per FU
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