
Design of Digital Circuits
Lecture 14: Pipelining Issues

Prof. Onur Mutlu
ETH Zurich
Spring 2019
5 April 2019

Required Readings
n This week

q Pipelining
n H&H, Chapter 7.5

q Pipelining Issues
n H&H, Chapter 7.8.1-7.8.3

n Next week
q Out-of-order execution

q H&H, Chapter 7.8-7.9
q Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

2

Agenda for Today & Next Few Lectures
n Last week

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n This week
q Pipelining
q Issues in Pipelining: Control & Data Dependence Handling,

State Maintenance and Recovery, …

n Next week
q Out-of-Order Execution
q Issues in OoO Execution: Load-Store Handling, …

3

Review: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
4

Carnegie Mellon

5

Stalling

Time (cycles)

lw $s0, 40($0) RF 40
$0

RF
$s0

+ DM

RF $s1
$s0

RF
$t0

& DM

RF $s0
$s4

RF
$t1

| DM

RF $s5
$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1
$s0

IM or

Stall

Carnegie Mellon

6

Stalling Hardware
¢ Stalls are supported by:

§ adding enable inputs (EN) to the Fetch and Decode pipeline
registers

§ and a synchronous reset/clear (CLR) input to the Execute pipeline
register
§ or an INV bit associated with each pipeline register

¢ When a lw stall occurs
§ StallD and StallF are asserted to force the Decode and Fetch stage

pipeline registers to hold their old values.
§ FlushE is also asserted to clear the contents of the Execute stage

pipeline register, introducing a bubble

Carnegie Mellon

7

Stalling Hardware

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN C
LR

Carnegie Mellon

8

Control Dependences
¢ Special case of data dependence: dependence on PC

¢ beq:
§ branch is not determined until the fourth stage of the pipeline
§ Instructions after the branch are fetched before branch is resolved

§ Always predict that the next sequential instruction is fetched
§ Called “Always not taken” prediction

§ These instructions must be flushed if the branch is taken

¢ Branch misprediction penalty
§ number of instructions flushed when branch is taken
§ May be reduced by determining branch earlier

Carnegie Mellon

9

Control Dependence: Original Pipeline

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

Carnegie Mellon

10

Control Dependence

Time (cycles)

beq $t1, $t2, 40 RF $t2
$t1

RF- DM

RF $s1
$s0

RF& DM

RF $s0
$s4

RF| DM

RF $s5
$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3
$s2

RF
$t3slt DMIM slt

Carnegie Mellon

11

Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdE

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Introduces another data dependency in Decode stage..

Carnegie Mellon

12

Early Branch Resolution

Time (cycles)

beq $t1, $t2, 40 RF $t2
$t1

RF- DM

RF $s1
$s0

RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3
$s2

RF
$t3slt DMIM slt

Carnegie Mellon

13

Early Branch Resolution: Good Idea?
¢ Advantages

§ Reduced branch misprediction penalty
à Reduced CPI (cycles per instruction)

¢ Disadvantages
§ Potential increase in clock cycle time?

à Higher Tclock?
§ Additional hardware cost

à Specialized and likely not used by other instructions

Carnegie Mellon

14

Data Forwarding for Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1
0
1

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

Fo
rw
ar
dA
D

Fo
rw
ar
dB
D

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eE

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Br
an
ch
D

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Data forwarding for early branch resolution.

Carnegie Mellon

15

Control Forwarding and Stalling Hardware
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;

Carnegie Mellon

16

Doing Better: Smarter Branch Prediction
¢ Guess whether branch will be taken

§ Backward branches are usually taken (loops)
§ Consider history of whether branch was previously taken to

improve the guess

¢ Good prediction reduces the fraction of branches
requiring a flush

Carnegie Mellon

17

Pipelined Performance Example
¢ SPECINT2006 benchmark:

§ 25% loads
§ 10% stores
§ 11% branches
§ 2% jumps
§ 52% R-type

¢ Suppose:
§ 40% of loads used by next instruction
§ 25% of branches mispredicted

¢ All jumps flush next instruction

¢ What is the average CPI?

Carnegie Mellon

18

Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI =

Carnegie Mellon

19

Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI = (0.25)(1.4) + load

(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15

Carnegie Mellon

20

Pipelined Performance
¢ There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch
2(tRFread + tmux + teq + tAND + tmux + tsetup) decode
tpcq + tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq + tmux + tRFwrite) writeback
}

¢ The operation speed depends on the slowest operation

¢ Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them

Carnegie Mellon

21

Pipelined Performance Example
Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps

Carnegie Mellon

22

Pipelined Performance Example

¢ For a program with 100 billion instructions executing on a

pipelined MIPS processor:

§ CPI = 1.15
§ Tc = 550 ps

¢ Execution Time = (# instructions) � CPI � Tc

= (100 � 109)(1.15)(550 � 10-12)

= 63 seconds

Carnegie Mellon

23

Performance Summary for MIPS arch.

Processor
Execution Time
(seconds)

Speedup
(single-cycle is baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Fastest of the three MIPS architectures is Pipelined.

¢ However, even though we have 5 fold pipelining, it is not
5 times faster than single cycle.

Questions to Ponder
n What is the role of the hardware vs. the software in data

dependence handling?
q Software based interlocking
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well

24

Questions to Ponder
n What is the role of the hardware vs. the software in the

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q …

25

More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Compiler orders the instructions, hardware executes them in
that order

q Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory addr, branch direction

n How can the compiler alleviate this (i.e., estimate the
unknown)?
q Answer: Profiling

26

Pipelining and Precise Exceptions:
Preserving Sequential Semantics

Multi-Cycle Execution
n Not all instructions take the same amount of time for

“execution”

n Idea: Have multiple different functional units that take
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different

functional unit before a previous long-latency instruction
finishes execution

28

F D

E

?
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE

stage
q Integer ADD versus FP MULtiply

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if FMUL incurs an exception?

29

F D E W
F D E WE E E E E E EFMUL R4 ß R1, R2

ADD R3 ß R1, R2

F D E W
F D E W

F D E W
F D E W

FMUL R2 ß R5, R6
ADD R7 ß R5, R6

F D E WE E E E E E E

Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
30

Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

31

Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception
handling routine

32

Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented
opcodes)

33

Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency
q What about memory operations?
q Each functional unit takes worst-case number of cycles?

34

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

FMUL R3 ß R1, R2
ADD R4 ß R1, R2

Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, �Implementing Precise Interrupts in Pipelined

Processors,� IEEE Trans on Computers 1988 and ISCA 1985.

35

We will not cover these

Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them

before making results visible to architectural state
n When instruction is decoded it reserves the next-sequential

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed

without exceptions, its result moved to reg. file or memory

36

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if

instruction can retire without any issues
q handle an exception/interrupt precisely, if an

exception/interrupt needs to be handled before retiring the
instruction

n Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

37

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data
+ control bits Exception?

Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later operation needs a value in the reorder
buffer?
q Read reorder buffer in parallel with the register file. How?

38

F D E W
F D E RE E E E E E E

F D E W
F D E R

F D E R
F D E R

F D E RE E E E E E E

W
R

R
W

W
W

W

Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer,

(or bypass/forwarding paths)

39

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass paths

Content
Addressable
Memory
(searched with
register ID,
which is part of the content of an entry)

Random Access Memory
(indexed with Register ID,
which is the address of an entry)

Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder

buffer entry that contains (or will contain) the value of the
register

q Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
40

Reorder Buffer in Intel Pentium III

41

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to

do with each other
q They exist due to lack of register ID’s (i.e. names) in

the ISA

n The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers

42

Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12

43

In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline and start from
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

44

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

45

We will not cover these

Design of Digital Circuits
Lecture 14: Pipelining Issues

Prof. Onur Mutlu
ETH Zurich
Spring 2019
5 April 2019

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

n Dispatch: Act of sending an instruction to a functional unit
n Renaming with ROB eliminates stalls due to false dependencies
n Problem: A true data dependency stalls dispatch of younger

instructions into functional (execution) units

48

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
n What do the following two pieces of code have in common

(with respect to execution in the previous design)?

n Answer: First ADD stalls the whole pipeline!
q ADD cannot dispatch because its source registers unavailable
q Later independent instructions cannot get executed

n How are the above code portions different?
q Answer: Load latency is variable (unknown until runtime)
q What does this affect? Think compiler vs. microarchitecture

49

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R4 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

LD R3 ß R1 (0)
ADD R3 ß R3, R1
ADD R4 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

Preventing Dispatch Stalls
n Problem: in-order dispatch (scheduling, or execution)

n Solution: out-of-order dispatch (scheduling, or execution)

n Actually, we have seen the basic idea before:
q Dataflow: fetch and �fire� an instruction only when its inputs

are ready
q We will use similar principles, but not expose it in the ISA

n Aside: Any other way to prevent dispatch stalls?
1. Compile-time instruction scheduling/reordering
2. Value prediction
3. Fine-grained multithreading

50

Out-of-order Execution (Dynamic Scheduling)

n Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)
q Rest areas for dependent instructions: Reservation stations

n Monitor the source �values� of each instruction in the
resting area

n When all source �values� of an instruction are available,
�fire� (i.e. dispatch) the instruction
q Instructions dispatched in dataflow (not control-flow) order

n Benefit:
q Latency tolerance: Allows independent instructions to execute

and complete in the presence of a long-latency operation

51

In-order vs. Out-of-order Dispatch
n In order dispatch + precise exceptions:

n Out-of-order dispatch + precise exceptions:

n 16 vs. 12 cycles
52

F D WE E E E R
F D E R W

F

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R3, R5

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

q Register renaming: Associate a �tag� with each data value
2. Need to buffer instructions until they are ready to execute

q Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

q Broadcast the �tag� when the value is produced
q Instructions compare their �source tags� to the broadcast tag

à if match, source value becomes ready
4. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
q Instruction wakes up if all sources are ready
q If multiple instructions are awake, need to select one per FU

53

