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Required Readings
n This week

q Out-of-order execution
q H&H, Chapter 7.8-7.9

q Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

n Optional
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 

n Next Week
q McFarling, “Combining Branch Predictors,” DEC WRL Technical 

Report, 1993.
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Recall: Multi-Cycle Execution
n Not all instructions take the same amount of time for 

“execution”

n Idea: Have multiple different functional units that take 
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different 

functional unit before a previous long-latency instruction 
finishes execution

3

F D

E

?
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store



Recall: Programmer Visible (Architectural) State
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M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers
- given special names in the ISA

(as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



Recall: Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)    

when an exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Recall: Why Do We Want Precise Exceptions?

n Semantics of the von Neumann model ISA specifies it
q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented 
opcodes)
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Recall: Ensuring Precise Exceptions in Pipelining

n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency
q What about memory operations?
q Each functional unit takes worst-case number of cycles?
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Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, �Implementing Precise Interrupts in Pipelined 

Processors,� IEEE Trans on Computers 1988 and ISCA 1985.
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We will not cover these



Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them 

before making results visible to architectural state
n When instruction is decoded it reserves the next-sequential 

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed 

without exceptions, its result moved to reg. file or memory
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Reorder Buffer

n Buffers information about all instructions that are decoded 
but not yet retired/committed
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What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if 

instruction can retire without any issues
q handle an exception/interrupt precisely, if an 

exception/interrupt needs to be handled before retiring the 
instruction

n Need valid bits to keep track of readiness of the result(s) 
and find out if the instruction has completed execution
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Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later operation needs a value in the reorder 
buffer?
q Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer, 

(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder 

buffer entry that contains (or will contain) the value of the 
register

q Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
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Reorder Buffer in Intel Pentium III
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Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001.



Important: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to 

do with each other
q They exist due to lack of register ID’s (i.e. names) in 

the ISA

n The register ID is renamed to the reorder buffer entry that 
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers
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Recall: Data Dependence Types
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True (flow) dependence
r3 ¬ r1 op  r2 Read-after-Write
r5 ¬ r3 op  r4 (RAW) -- True

Anti dependence
r3 ¬ r1 op  r2 Write-after-Read
r1 ¬ r4 op  r5 (WAR) -- Anti

Output-dependence
r3 ¬ r1 op  r2 Write-after-Write
r5 ¬ r3 op  r4 (WAW) -- Output
r3 ¬ r6 op  r7



In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if 

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline and start from 
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

20

We will not cover these



Design of Digital Circuits
Lecture 15a: Reorder Buffer

Prof. Onur Mutlu
ETH Zurich
Spring 2019
11 April 2019



Recall: Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception 
handling routine
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