
Design of Digital Circuits
Lecture 15a: Reorder Buffer

Prof. Onur Mutlu
ETH Zurich
Spring 2019
11 April 2019

Required Readings
n This week

q Out-of-order execution
q H&H, Chapter 7.8-7.9

q Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

n Optional
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

n Next Week
q McFarling, “Combining Branch Predictors,” DEC WRL Technical

Report, 1993.
2

Recall: Multi-Cycle Execution
n Not all instructions take the same amount of time for

“execution”

n Idea: Have multiple different functional units that take
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different

functional unit before a previous long-latency instruction
finishes execution

3

F D

E

?
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Recall: Programmer Visible (Architectural) State

4

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers
- given special names in the ISA

(as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Recall: Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)

when an exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

5

Recall: Why Do We Want Precise Exceptions?

n Semantics of the von Neumann model ISA specifies it
q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented
opcodes)

6

Recall: Ensuring Precise Exceptions in Pipelining

n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency
q What about memory operations?
q Each functional unit takes worst-case number of cycles?

7

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

FMUL R3 ß R1, R2
ADD R4 ß R1, R2

Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, �Implementing Precise Interrupts in Pipelined

Processors,� IEEE Trans on Computers 1988 and ISCA 1985.

8

We will not cover these

Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them

before making results visible to architectural state
n When instruction is decoded it reserves the next-sequential

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed

without exceptions, its result moved to reg. file or memory

9

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

Reorder Buffer

n Buffers information about all instructions that are decoded
but not yet retired/committed

10

What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if

instruction can retire without any issues
q handle an exception/interrupt precisely, if an

exception/interrupt needs to be handled before retiring the
instruction

n Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

11

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data
+ control bits Exception?

Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later operation needs a value in the reorder
buffer?
q Read reorder buffer in parallel with the register file. How?

12

F D E W
F D E RE E E E E E E

F D E W
F D E R

F D E R
F D E R

F D E RE E E E E E E

W
R

R
W

W
W

W

Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer,

(or bypass/forwarding paths)

13

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass paths

Content
Addressable
Memory
(searched with
register ID,
which is part of the content of an entry)

Random Access Memory
(indexed with Register ID,
which is the address of an entry)

Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder

buffer entry that contains (or will contain) the value of the
register

q Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
14

Reorder Buffer in Intel Pentium III

15

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to

do with each other
q They exist due to lack of register ID’s (i.e. names) in

the ISA

n The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers

16

Recall: Data Dependence Types

17

True (flow) dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW) -- True

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR) -- Anti

Output-dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW) -- Output
r3 ¬ r6 op r7

In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline and start from
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

19

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

20

We will not cover these

Design of Digital Circuits
Lecture 15a: Reorder Buffer

Prof. Onur Mutlu
ETH Zurich
Spring 2019
11 April 2019

Recall: Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception
handling routine

22

