
Design of Digital Circuits
Lecture 22b: Memory Hierarchy

and Caches

Prof. Onur Mutlu
ETH Zurich
Spring 2019
16 May 2019

Readings for Today
n Memory Hierarchy and Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

2

Recall: SRAM

3

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m diff pairs

2nn

m

1

row select

bi
tli

ne

_b
itl

in
e

n+m

Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines

(entire row is read together)
4. differential sensing and column select

(data is ready)
5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

Recall: DRAM

4

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m

2nn

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of
ms) such that charge is restored

DRAM vs. SRAM
n DRAM

q Slower access (capacitor)
q Higher density (1T 1C cell)
q Lower cost
q Requires refresh (power, performance, circuitry)
q Manufacturing requires putting capacitor and logic together

n SRAM
q Faster access (no capacitor)
q Lower density (6T cell)
q Higher cost
q No need for refresh
q Manufacturing compatible with logic process (no capacitor)

5

The Memory Hierarchy

Memory in a Modern System

7

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

8

The Problem
n Ideal memory’s requirements oppose each other

n Bigger is slower
q Bigger à Takes longer to determine the location

n Faster is more expensive
q Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

n Higher bandwidth is more expensive
q Need more banks, more ports, higher frequency, or faster

technology

9

The Problem
n Bigger is slower

q SRAM, 512 Bytes, sub-nanosec
q SRAM, KByte~MByte, ~nanosec
q DRAM, Gigabyte, ~50 nanosec
q Hard Disk, Terabyte, ~10 millisec

n Faster is more expensive (dollars and chip area)
q SRAM, < 10$ per Megabyte
q DRAM, < 1$ per Megabyte
q Hard Disk < 1$ per Gigabyte
q These sample values (circa ~2011) scale with time

n Other technologies have their place as well
q Flash memory (mature), PC-RAM, MRAM, RRAM (not mature yet)

10

Why Memory Hierarchy?
n We want both fast and large

n But we cannot achieve both with a single level of memory

n Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

11

The Memory Hierarchy

12

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Memory Hierarchy
n Fundamental tradeoff

q Fast memory: small
q Large memory: slow

n Idea: Memory hierarchy

n Latency, cost, size,
bandwidth

13

CPU
Main

Memory
(DRAM)RF

Cache

Hard Disk

Locality
n One’s recent past is a very good predictor of his/her near

future.

n Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon
q since you are here today, there is a good chance you will be

here again and again regularly

n Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)
q every time I find you in this room, you are probably sitting

close to the same people

14

Memory Locality
n A “typical” program has a lot of locality in memory

references
q typical programs are composed of “loops”

n Temporal: A program tends to reference the same memory
location many times and all within a small window of time

n Spatial: A program tends to reference a cluster of memory
locations at a time
q most notable examples:

n 1. instruction memory references
n 2. array/data structure references

15

Caching Basics: Exploit Temporal Locality
n Idea: Store recently accessed data in automatically

managed fast memory (called cache)
n Anticipation: the data will be accessed again soon

n Temporal locality principle
q Recently accessed data will be again accessed in the near

future
q This is what Maurice Wilkes had in mind:

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

n “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

16

Caching Basics: Exploit Spatial Locality
n Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
q Logically divide memory into equal size blocks
q Fetch to cache the accessed block in its entirety

n Anticipation: nearby data will be accessed soon

n Spatial locality principle
q Nearby data in memory will be accessed in the near future

n E.g., sequential instruction access, array traversal
q This is what IBM 360/85 implemented

n 16 Kbyte cache with 64 byte blocks
n Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

17

The Bookshelf Analogy
n Book in your hand
n Desk
n Bookshelf
n Boxes at home
n Boxes in storage

n Recently-used books tend to stay on desk
q Comp Arch books, books for classes you are currently taking
q Until the desk gets full

n Adjacent books in the shelf needed around the same time
q If I have organized/categorized my books well in the shelf

18

Caching in a Pipelined Design
n The cache needs to be tightly integrated into the pipeline

q Ideally, access in 1-cycle so that load-dependent operations
do not stall

n High frequency pipeline à Cannot make the cache large
q But, we want a large cache AND a pipelined design

n Idea: Cache hierarchy

19

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

A Note on Manual vs. Automatic Management

n Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q “core” vs “drum” memory in the 50’s
q still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache) and GPUs (called “shared memory”)

n Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q the average programmer doesn’t need to know about it

n You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

20

Automatic Management in Memory Hierarchy

n Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

21

Historical Aside: Other Cache Papers
n Fotheringham, “Dynamic Storage Allocation in the Atlas

Computer, Including an Automatic Use of a Backing Store,”
CACM 1961.
q http://dl.acm.org/citation.cfm?id=366800

n Bloom, Cohen, Porter, “Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

22

http://dl.acm.org/citation.cfm?id=366800

A Modern Memory Hierarchy

23

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

Hierarchical Latency Analysis
n For a given memory hierarchy level i it has a technology-intrinsic

access time of ti, The perceived access time Ti is longer than ti
n Except for the outer-most hierarchy, when looking for a given

address there is
q a chance (hit-rate hi) you “hit” and access time is ti
q a chance (miss-rate mi) you “miss” and access time ti +Ti+1
q hi + mi = 1

n Thus
Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate and miss-rate
of just the references that missed at Li-1

24

Hierarchy Design Considerations
n Recursive latency equation

Ti = ti + mi ·Ti+1

n The goal: achieve desired T1 within allowed cost
n Ti » ti is desirable

n Keep mi low
q increasing capacity Ci lowers mi, but beware of increasing ti

q lower mi by smarter cache management (replacement::anticipate
what you don’t need, prefetching::anticipate what you will need)

n Keep Ti+1 low
q faster lower hierarchies, but beware of increasing cost
q introduce intermediate hierarchies as a compromise

25

n 90nm P4, 3.6 GHz
n L1 D-cache

q C1 = 16K
q t1 = 4 cyc int / 9 cycle fp

n L2 D-cache
q C2 =1024 KB
q t2 = 18 cyc int / 18 cyc fp

n Main memory
q t3 = ~ 50ns or 180 cyc

n Notice
q best case latency is not 1
q worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache
n Generically, any structure that “memoizes” frequently used

results to avoid repeating the long-latency operations
required to reproduce the results from scratch, e.g. a web
cache

n Most commonly in the processor design context: an
automatically-managed memory structure based on SRAM
q memoize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the DRAM
access latency

28

Caching Basics
n Block (line): Unit of storage in the cache

q Memory is logically divided into cache blocks that map to
locations in the cache

n On a reference:
q HIT: If in cache, use cached data instead of accessing memory
q MISS: If not in cache, bring block into cache

n Maybe have to kick something else out to do it

n Some important cache design decisions
q Placement: where and how to place/find a block in cache?
q Replacement: what data to remove to make room in cache?
q Granularity of management: large or small blocks? Subblocks?
q Write policy: what do we do about writes?
q Instructions/data: do we treat them separately?

29

Cache Abstraction and Metrics

n Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
n Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)
n Aside: Is reducing AMAT always beneficial for performance?

30

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

A Basic Hardware Cache Design
n We will start with a basic hardware cache design

n Then, we will examine a multitude of ideas to make it
better

31

Blocks and Addressing the Cache
n Memory is logically divided into fixed-size blocks

n Each block maps to a location in the cache, determined by
the index bits in the address
q used to index into the tag and data stores

n Cache access:
1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n If a block is in the cache (cache hit), the stored tag should be
valid and match the tag of the block

32

8-bit address

tag index byte in block

3 bits3 bits2b

Direct-Mapped Cache: Placement and Access

n Assume byte-addressable memory:
256 bytes, 8-byte blocks à 32 blocks

n Assume cache: 64 bytes, 8 blocks
q Direct-mapped: A block can go to only one location

q Addresses with same index contend for the same location
n Cause conflict misses

33

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Block: 00000
Block: 00001
Block: 00010
Block: 00011
Block: 00100
Block: 00101
Block: 00110
Block: 00111
Block: 01000
Block: 01001
Block: 01010
Block: 01011
Block: 01100
Block: 01101
Block: 01110
Block: 01111
Block: 10000
Block: 10001
Block: 10010
Block: 10011
Block: 10100
Block: 10101
Block: 10110
Block: 10111
Block: 11000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101
Block: 11110
Block: 11111

Main memory

Direct-Mapped Caches
n Direct-mapped cache: Two blocks in memory that map to

the same index in the cache cannot be present in the cache
at the same time
q One index à one entry

n Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index
q Assume addresses A and B have the same index bits but

different tag bits
q A, B, A, B, A, B, A, B, … à conflict in the cache index
q All accesses are conflict misses

34

n Addresses 0 and 8 always conflict in direct mapped cache
n Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

35

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity
n 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

36

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
n Fully associative cache

q A block can be placed in any cache location

37

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)
n Degree of associativity: How many blocks can map to the

same index (or set)?

n Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

n Diminishing returns from higher
associativity

38
associativity

hit rate

Issues in Set-Associative Caches
n Think of each block in a set having a “priority”

q Indicating how important it is to keep the block in the cache
n Key issue: How do you determine/adjust block priorities?
n There are three key decisions in a set:

q Insertion, promotion, eviction (replacement)

n Insertion: What happens to priorities on a cache fill?
q Where to insert the incoming block, whether or not to insert the block

n Promotion: What happens to priorities on a cache hit?
q Whether and how to change block priority

n Eviction/replacement: What happens to priorities on a cache
miss?
q Which block to evict and how to adjust priorities

39

Eviction/Replacement Policy
n Which block in the set to replace on a cache miss?

q Any invalid block first
q If all are valid, consult the replacement policy

n Random
n FIFO
n Least recently used (how to implement?)
n Not most recently used
n Least frequently used?
n Least costly to re-fetch?

q Why would memory accesses have different cost?
n Hybrid replacement policies
n Optimal replacement policy?

40

Implementing LRU
n Idea: Evict the least recently accessed block
n Problem: Need to keep track of access ordering of blocks

n Question: 2-way set associative cache:
q What do you need to implement LRU perfectly?

n Question: 4-way set associative cache:
q What do you need to implement LRU perfectly?
q How many different orderings possible for the 4 blocks in the

set?
q How many bits needed to encode the LRU order of a block?
q What is the logic needed to determine the LRU victim?

41

Approximations of LRU
n Most modern processors do not implement “true LRU” (also

called “perfect LRU”) in highly-associative caches

n Why?
q True LRU is complex
q LRU is an approximation to predict locality anyway (i.e., not

the best possible cache management policy)

n Examples:
q Not MRU (not most recently used)
q Hierarchical LRU: divide the N-way set into M “groups”, track

the MRU group and the MRU way in each group
q Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
42

Cache Replacement Policy: LRU or Random
n LRU vs. Random: Which one is better?

q Example: 4-way cache, cyclic references to A, B, C, D, E
n 0% hit rate with LRU policy

n Set thrashing: When the “program working set” in a set is
larger than set associativity
q Random replacement policy is better when thrashing occurs

n In practice:
q Depends on workload
q Average hit rate of LRU and Random are similar

n Best of both Worlds: Hybrid of LRU and Random
q How to choose between the two? Set sampling

n See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

43

What Is the Optimal Replacement Policy?
n Belady’s OPT

q Replace the block that is going to be referenced furthest in the
future by the program

q Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

q How do we implement this? Simulate?

n Is this optimal for minimizing miss rate?
n Is this optimal for minimizing execution time?

q No. Cache miss latency/cost varies from block to block!
q Two reasons: Remote vs. local caches and miss overlapping
q Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

44

Reading
n Key observation: Some misses more costly than others as their latency is

exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account MLP of misses.

n Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

45

https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt

Design of Digital Circuits
Lecture 22b: Memory Hierarchy

and Caches

Prof. Onur Mutlu
ETH Zurich
Spring 2019
16 May 2019

