
Design of Digital Circuits
Lecture 23a: More Caches

Prof. Onur Mutlu
ETH Zurich
Spring 2019
17 May 2019

Readings
n Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

2

Recall: Cache Structure

3

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

n Addresses 0 and 8 always conflict in direct mapped cache
n Instead of having one column of 8, have 2 columns of 4 blocks

Recall: Set Associativity

4

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

What’s In A Tag Store Entry?
n Valid bit
n Tag
n Replacement policy bits

n Dirty bit?
q Write back vs. write through caches

5

Handling Writes (I)
n When do we write the modified data in a cache to the next level?

n Write through: At the time the write happens
n Write back: When the block is evicted

q Write-back
+ Can combine multiple writes to the same block before eviction

q Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

q Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence

because no need to check close-to-processor caches’ tag stores for
presence

-- More bandwidth intensive; no combining of writes
6

Handling Writes (II)
n Do we allocate a cache block on a write miss?

q Allocate on write miss: Yes
q No-allocate on write miss: No

n Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires transfer of the whole cache block

n No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)
7

Handling Writes (III)
n What if the processor writes to an entire block over a small

amount of time?

n Is there any need to bring the block into the cache from
memory in the first place?

n Why do we not simply write to only a portion of the block,
i.e., subblock
q E.g., 4 bytes out of 64 bytes
q Problem: Valid and dirty bits are associated with the entire 64

bytes, not with each individual 4 bytes

8

Subblocked (Sectored) Caches
n Idea: Divide a block into subblocks (or sectors)

q Have separate valid and dirty bits for each subblock (sector)
q Allocate only a subblock (or a subset of subblocks) on a request

++ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully

9

tagsubblockvsubblockv subblockvd d d

Instruction vs. Data Caches
n Separate or Unified?

n Pros and Cons of Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., separate I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

n First level caches are almost always split
q Mainly for the last reason above

n Higher level caches are almost always unified
10

Multi-level Caching in a Pipelined Design
n First-level caches (instruction and data)

q Decisions very much affected by cycle time
q Small, lower associativity; latency is critical
q Tag store and data store accessed in parallel

n Second-level caches
q Decisions need to balance hit rate and access latency
q Usually large and highly associative; latency not as important
q Tag store and data store accessed serially

n Serial vs. Parallel access of levels
q Serial: Second level cache accessed only if first-level misses
q Second level does not see the same accesses as the first

n First level acts as a filter (filters some temporal and spatial locality)
n Management policies are therefore different

11

Cache Performance

Cache Parameters vs. Miss/Hit Rate
n Cache size

n Block size

n Associativity

n Replacement policy
n Insertion/Placement policy

13

Cache Size
n Cache size: total data (not including tag) capacity

q bigger can exploit temporal locality better
q not ALWAYS better

n Too large a cache adversely affects hit and miss latency
q smaller is faster => bigger is slower
q access time may degrade critical path

n Too small a cache
q doesn’t exploit temporal locality well
q useful data replaced often

n Working set: the whole set of data
the executing application references
q Within a time interval

14

hit rate

cache size

“working set”
size

Block Size
n Block size is the data that is associated with an address tag

q not necessarily the unit of transfer between hierarchies
n Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

n Too small blocks
q don’t exploit spatial locality well
q have larger tag overhead

n Too large blocks
q too few total # of blocks à less

temporal locality exploitation
q waste of cache space and bandwidth/energy

if spatial locality is not high
15

hit rate

block
size

Large Blocks: Critical-Word and Subblocking
n Large cache blocks can take a long time to fill into the cache

q fill cache line critical word first
q restart cache access before complete fill

n Large cache blocks can waste bus bandwidth
q divide a block into subblocks
q associate separate valid and dirty bits for each subblock
q Recall: When is this useful?

16

tagsubblockvsubblockv subblockvd d d

Associativity
n How many blocks can be present in the same index (i.e., set)?

n Larger associativity
q lower miss rate (reduced conflicts)
q higher hit latency and area cost (plus diminishing returns)

n Smaller associativity
q lower cost
q lower hit latency

n Especially important for L1 caches

n Is power of 2 associativity required?
17

associativity

hit rate

Classification of Cache Misses
n Compulsory miss

q first reference to an address (block) always results in a miss
q subsequent references should hit unless the cache block is

displaced for the reasons below

n Capacity miss
q cache is too small to hold everything needed
q defined as the misses that would occur even in a fully-

associative cache (with optimal replacement) of the same
capacity

n Conflict miss
q defined as any miss that is neither a compulsory nor a

capacity miss
18

How to Reduce Each Miss Type
n Compulsory

q Caching cannot help
q Prefetching can: Anticipate which blocks will be needed soon

n Conflict
q More associativity
q Other ways to get more associativity without making the

cache associative
n Victim cache
n Better, randomized indexing
n Software hints?

n Capacity
q Utilize cache space better: keep blocks that will be referenced
q Software management: divide working set and computation

such that each “computation phase” fits in cache
19

How to Improve Cache Performance
n Three fundamental goals

n Reducing miss rate
q Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

n Reducing miss latency or miss cost

n Reducing hit latency or hit cost

n The above three together affect performance

20

Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches

21

Software Approaches for Higher Hit Rate
n Restructuring data access patterns
n Restructuring data layout

n Loop interchange
n Data structure separation/merging
n Blocking
n …

22

Restructuring Data Access Patterns (I)
n Idea: Restructure data layout or data access patterns
n Example: If column-major

q x[i+1,j] follows x[i,j] in memory
q x[i,j+1] is far away from x[i,j]

n This is called loop interchange
n Other optimizations can also increase hit rate

q Loop fusion, array merging, …
23

Poor code
for i = 1, rows

for j = 1, columns
sum = sum + x[i,j]

Better code
for j = 1, columns

for i = 1, rows
sum = sum + x[i,j]

Restructuring Data Access Patterns (II)

n Blocking
q Divide loops operating on arrays into computation chunks so

that each chunk can hold its data in the cache
q Avoids cache conflicts between different chunks of

computation
q Essentially: Divide the working set so that each piece fits in

the cache

n Also called Tiling

24

Restructuring Data Layout (I)
n Pointer based traversal

(e.g., of a linked list)
n Assume a huge linked

list (1B nodes) and
unique keys

n Why does the code on
the left have poor cache
hit rate?
q “Other fields” occupy

most of the cache line
even though rarely
accessed!

25

struct Node {
struct Node* next;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access other fields of node
}
node = nodeànext;

}

Restructuring Data Layout (II)
n Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

n Who should do this?
q Programmer
q Compiler

n Profiling vs. dynamic
q Hardware?
q Who can determine what

is frequently used?

26

struct Node {
struct Node* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access nodeànode-data
}
node = nodeànext;

}

Multi-Core Issues in Caching

Caches in a Multi-Core System

28

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Caches in Multi-Core Systems
n Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q Memory bandwidth is at premium
q Cache space is a limited resource across cores/threads

n How do we design the caches in a multi-core system?

n Many decisions
q Shared vs. private caches
q How to maximize performance of the entire system?
q How to provide QoS to different threads in a shared cache?
q Should cache management algorithms be aware of threads?
q How should space be allocated to threads in a shared cache?

29

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

30

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Resource Sharing Concept and Advantages
n Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses,

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model

31

Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
32

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

33

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
n If one core does not utilize some space, another core can

q Easier to maintain coherence (a cache block is in a single location)

n Disadvantages
q Slower access (cache not tightly coupled with the core)
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

34

Cache Coherence

Cache Coherence
n Basic question: If multiple processors cache the same

block, how do they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

Design of Digital Circuits
Lecture 23a: More Caches

Prof. Onur Mutlu
ETH Zurich
Spring 2019
17 May 2019

Cache Examples:
For You to Study

Cache Terminology
n Capacity (C):

q the number of data bytes a cache stores
n Block size (b):

q bytes of data brought into cache at once
n Number of blocks (B = C/b):

q number of blocks in cache: B = C/b
n Degree of associativity (N):

q number of blocks in a set
n Number of sets (S = B/N):

q each memory address maps to exactly one cache set

43

How is data found?
n Cache organized into S sets

n Each memory address maps to exactly one set

n Caches categorized by number of blocks in a set:
q Direct mapped: 1 block per set
q N-way set associative: N blocks per set
q Fully associative: all cache blocks are in a single set

n Examine each organization for a cache with:
q Capacity (C = 8 words)
q Block size (b = 1 word)
q So, number of blocks (B = 8)

44

Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)

45

Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

46

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =

47

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
=

20%
Temporal Locality
Compulsory Misses

48

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =

49

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

50

N-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

51

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =

52

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10
= 20%

Associativity reduces
conflict misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

53

Fully Associative Cache

n No conflict misses

n Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

54

Spatial Locality?
n Increase block size:

q Block size, b = 4 words
q C = 8 words
q Direct mapped (1 block per set)
q Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

55

Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =

56

Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15
= 6.67%

Larger blocks reduce
compulsory misses through
spatial locality

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

57

Cache Organization Recap
n Main Parameters

q Capacity: C
q Block size: b
q Number of blocks in cache: B = C/b
q Number of blocks in a set: N
q Number of Sets: S = B/N

Organization
Number of Ways

(N)
Number of Sets

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

58

Capacity Misses
n Cache is too small to hold all data of interest at one time

q If the cache is full and program tries to access data X that is
not in cache, cache must evict data Y to make room for X

q Capacity miss occurs if program then tries to access Y again
q X will be placed in a particular set based on its address

n In a direct mapped cache, there is only one place to put X

n In an associative cache, there are multiple ways where X
could go in the set.

n How to choose Y to minimize chance of needing it again?
q Least recently used (LRU) replacement: the least recently

used block in a set is evicted when the cache is full.

59

Types of Misses
n Compulsory: first time data is accessed

n Capacity: cache too small to hold all data of interest

n Conflict: data of interest maps to same location in cache

n Miss penalty: time it takes to retrieve a block from lower
level of hierarchy

60

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

61

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

62

