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Readings

Caches

Required
o H&H Chapters 8.1-8.3
o Refresh: P&P Chapter 3.5

Recommended

o An early cache paper by Maurice Wilkes

Wilkes, “"Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.



Recall: Cache Structure
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Cache Performance




Recall: Cache Parameters vs. Miss/Hit Rate

Cache size
Block size
Associativity

Replacement policy
Insertion/Placement policy



Recall: How to Improve Cache Performance

Three fundamental goals

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency or miss cost

Reducing hit latency or hit cost

The above three together affect performance



Recall: Improving Basic Cache Performance

= Reducing miss rate
o More associativity
o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity
o Better replacement/insertion policies
o Software approaches

= Reducing miss latency/cost
o Multi-level caches
Critical word first
Subblocking/sectoring
Better replacement/insertion policies
Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle
Software approaches
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Recall: Sottware Approaches for Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking



Recall: Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

a X[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from x[i,j]

Poor code Better code
fori=1, rows forj =1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + X[i,j]

This is called loop interchange

Other optimizations can also increase hit rate
o Loop fusion, array merging, ...



Recall: Restructuring Data Access Patterns (11)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

Also called Tiling
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Restructuring Data Layout (1)

struct Node {

struct Node* next;

int key;
char [256] name;
char [256] school;

}

while (node) {

}

if (node—>key == input-ke
/] access other fields of node
}

node = node—2>next;

Pointer based traversal
(e.qg., of a linked list)

Assume a huge linked
list (1B nodes) and
unique keys

Why does the code on
the left have poor cache
hit rate?

o “Other fields” occupy
most of the cache line
even though rarely
accessed!
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Restructuring Data Layout (11)

struct Node {
struct Node™* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] schooal;

}

while (node) {
if (node—>key == input-key) {
/| access node—~>node-data
}

node = node—>next;

= Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

= Who should do this?
o Programmer

o Compiler
= Profiling vs. dynamic
o Hardware?

o Who can determine what
is frequently used?

12



Multi-Core Issues in Caching




Caches 1n a Multi-Core System
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Caches in Multi-Core Systems

Cache efficiency becomes even more important in a multi-
core/multi-threaded system

o Memory bandwidth is at premium
o Cache space is a limited resource across cores/threads

How do we design the caches in a multi-core system?

Many decisions

o Shared vs. private caches

o How to maximize performance of the entire system?

o How to provide QoS to different threads in a shared cache?
o Should cache management algorithms be aware of threads?
o How should space be allocated to threads in a shared cache?
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
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\ DRAM MEMORY CONTROLLER /
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Resource Sharing Concept and Advantages

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model
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Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’ s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2
ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER

\ DRAM MEMORY CONTROLLER /
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Shared Caches Between Cores

Advantages:
o High effective capacity
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
If one core does not utilize some space, another core can
o Easier to maintain coherence (a cache block is in a single location)

Disadvantages
o Slower access (cache not tightly coupled with the core)
o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rates of other cores

o Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)
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Example: Problem with Shared Caches

[Processor Core 1 }—“ Processor Core 2

i ! L }

L1 $

L |

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.
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Example: Problem with Shared Caches

Processor Core 1 t2— [Processor Core 2 J

L } i !

L1 $

L } i !

L2 $

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.
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Example: Problem with Shared Caches

i ! i !

[t2’s throughput can be significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.
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Memory System: A Shared Resource View
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Most of the system is a shared resource, storing and moving data
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Cache Coherence




Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[ Interconnection Network ]
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Main Memory




The Cache Coherence Problem

Id r2, x
|
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The Cache Coherence Problem

Id r2, x

Id r2, x
|

Main Memory

1000 | 1000
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The Cache Coherence Problem

Id r2, X
addr1,r2, r4
st x, r1

Id r2, x
|

Main Memory

2000 | _1000_
Interconnection Network ]
1000
X_




The Cache Coherence Problem

d r2, X
|

Id r2, x 2000 1000 Should NOT
add r1,r2, r4 load 1000
st x, r1 Id r5, x
[ Interconnection Network ]
1000
X —

Main Memory




Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?
o What if the ISA provided a cache flush instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’ s local cache.

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

Hardware
o Simplifies software’s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
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A Very Simple Coherence Scheme (VI)

Caches “snoop” (observe) each other’s write/read
operations via a shared bus. If a processor writes to a
block, all others invalidate the block.

A simple protocol:

PrRd/-- PrWr / BusWr Wr_ite-through, no-
write-allocate

cache
@ Actions of the local

BusWr processor on the
PrRd / BusRd cache block: PrRd,

PrWr,
Actions that are
broadcast on the
PrWr / BusWr bus for the block:
BusRd, BusWr
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(Non-)Solutions to Cache Coherence

No hardware based coherence
o Keeping caches coherent is software’s responsibility
+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software (e.g., page
protection and page-based software coherence)

All caches are shared between all processors
+ No need for coherence
-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way
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Maintaining Coherence

Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

Writes to location A by PO should be seen by P1
(eventually), and all writes to A should appear in some
order

Coherence needs to provide:
o Write propagation: guarantee that updates will propagate

o Write serialization: provide a consistent order seen by all
processors for the same memory location

Need a global point of serialization for this store ordering
34



Hardware Cache Coherence

Basic idea:

o A processor/cache broadcasts its write/update to a memory
location to all other processors

o Another cache that has the location either updates or
invalidates its local copy

Two major approaches
o Snoopy bus (all operations are broadcast on a shared bus)
o Directory based (a mediator gives permission to each request)

To learn more, take the Graduate Comp Arch class
o https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
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Cache Examples:
For You to Study




Cache Terminology

Capacity (0):

o the number of data bytes a cache stores
Block size (b):

o bytes of data brought into cache at once

Number of blocks (B = ¢/D):
o number of blocks in cache: B= (b

Degree of associativity (N):
o number of blocks in a set

Number of sets (5 = B/N):
o each memory address maps to exactly one cache set
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How is data found?

Cache organized into Ssets
Each memory address maps to exactly one set

Caches categorized by number of blocks in a set:
o Direct mapped: 1 block per set

o N-way set associative: N blocks per set

o Fully associative: all cache blocks are in a single set

Examine each organization for a cache with:
a Capacity (C= 8 words)

a Block size (6 = 1 word)

o So, number of blocks (5 = 8)
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Direct Mapped Cache

11...
11...
11...
11...
11...
11...
11...
11...

00...
00...
00...
00...
00...
00...
00...
00...
00...
00...

Address
11111100

11111000
11110100
11110000
11101100
11101000
11100100
11100000

00100100
00100000
00011100
00011000
00010100
00010000
00001100
00001000
00000100
00000000

mem[OxFF...FC]
mem[OxFF...F8]
mem[OxFF...F4]

mem[OxFF...EC]
mem[OxFF...E8]

oo anemfQxEE D E4]

mem[0x00..20]
mem[0x00..1C]
mem[0x00...18]
mem[0x00...14]

mem[0x00...0C]
mem[0x00...08]

...................... \)

mem[0x00...00]
230 Word Main Memory

23 Word Cache

Set Number
7 (111)
6 (110)
5(101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)
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Direct Mapped Cache Hardware

Memory
Address

Byte
Tag Set Offset
00
27 3
V Tag Data
8-entry x
(1+27+32)-bit
SRAM
| 27 32
Hit Data
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Direct Mapped Cache Pertormance

Tag

Byte

Set Offset

Memory 5545

001]00

Address

3

V Tag

Data

0

00...00

mem[0x00...0C]

00...00

mem([0x00...08]

00...00

mem[0x00...04]

O|l=_ [~ |~ |O|O|O

# MIPS assembly code

addi $to, $e, 5
beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $te, -1
Jj loop

loop:

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache Pertormance

Byte
Tag Set Offset

Memory

Address 00...00 201 00

V Tag Data
0 Set7 (111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
1| 00..00 | mem[0x00...0C] [ Set 3 (011)
1| 00..00 | mem[0x00...08] [ Set 2 (010)

11| 00..00 | mem[0x00...04] | Set 1 (001)
0 Set 0 (000)

# MIPS assembly code . _
addi $t0, $0, 5 Miss Rate 3/15

loop: beq $te, $0, done —
Iw  $tl1, ox4($0) 0
lw  $t2, OxC($0) 20%
lw  $t3, ox8($0) i
addi $to, $to, -1 Temporal Locality

j  loop Compulsory Misses

done:




Direct Mapped Cache: Conflict

Byte
Tag Set Offset
Memory 1 50...01 [001]00
Address -
V Tag Data
0
0
0
0
0
0
{1 | 00..00 | MEMIOXVY...04
0

# MIPS assembly code
addi $to, %0, 5

loop:  beq $t@, $0, done
v $t1, x4($0)
v $t2, ox24($0)
addi $to, $to, -1
J loop

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache: Conflict

Tag

Memory 5557

Address

# MIPS assembly code
addi $to, $e, 5

loop: beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, ox24(%$9)
addi $to, $te, -1
Jj loop

done:

Byte
Set Offset
001]00
3
V Tag Data
0 Set7(111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
0 Set 3 (011)
0 Set 2 (010)
{1 | 00..00 | MEMIXIV.-L21 | Set 1 (001)
0 Set 0 (000)
Miss Rate = 10/10
= 100%
Conflict Misses
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N-Way Set Associative Cache

Byte
Mem ory Tag Set Offset
00
Address Way 1 Way 0
28 2 X
V Tag Data V Tag Data
.>
28 32 28 32
| I
u u 1 -
Hit, Hit,
Jrz
Hit Data

Hit
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N-way Set Associative Performance

# MIPS assembly code M/:S'S Rate —
addi $te, %o, 5
loop: beq $to, $0, done
lw  $t1, ox4($9)
lw $t2, ox24(%$0)
addi $te, $teo, -1
j loop
done:
Way 1 Way 0
I | |
V Tag Data V Tag Data
0 0
0 0
1| 00...10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04]
0 0

Set 3
Set 2
Set 1
Set 0
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N-way Set Associative Performance

# MIPS assembly code Miss Rate = 2/]0

addi $to, ¢eo, 5 —_ o
loop: beq $to, $0, done 20%

Iw  $t1, ex4($e)

Iw  $t2. 6x24(30) Associativity reduces

addi $te, $te, -1 conflict misses

j loop
done:

Way 1 Way 0

| | | |
V Tag Data V Tag Data
0 0 Set3
0 0 Set 2
1| 00...10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04] Set 1
0 0 Set 0




Fully Associative Cache

No conflict misses

Expensive to build

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
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Spatial Locality?

Increase block size:

o Block size, b = 4 words

o C= 8 words

o Direct mapped (1 block per set)

o Number of blocks, 8= (Jb=8/4 = 2

Block Byte
Tag Set Offset Offset
ooy T T 100,
ress - 5
V Tag Data
> Set 1

Set0

o7 {32 132 132 A32
Q\ =

32

Hit Data



Direct Mapped Cache Pertormance

addi $to, $0, 5 : _
loop:  beq $to, $o, done Miss Rate

lw  $t1, ox4($0)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $to, -1
j loop

done:

Block Byte
Tag Set Offset Offset

Memory
Address !oo...zgo\ 0] 112 [00]
V Tag Data
>0 Set 1
1| 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
L o7 32 132 32 132
= > 2 S
32
Hit Data
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Direct Mapped Cache Performance

addi $to, %0, 5 . —
loop: beq $te. $0. done Miss Rate = 1/15
lw  $t1, ox4($0) = 6.67%

lw  $t2, oxC($0)
1 ,
i tee, o) Larger blocks reduce
j  loop compulsory misses through

spatial locality

done:

Block Byte
Memo Tag Set Offset Offset
"Y100...00[0[ 11 [00]
Address - .
Vv _Tag Data
o Set 1
1] 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
T oz N2 J32 T2 Toz
o 3 S S
g 32
it Data
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Cache Organization Recap

= Main Parameters
o Capacity: C
Block size: b

o O O O

Organization
Direct Mapped

N-Way Set Associative

Fully Associative

Number of blocks in cache: B= (/b
Number of blocks in a set: N
Number of Sets: §= B/N

Number of Ways

(N)
1

1<N<B

B

Number of Sets
(S = B/N)
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Capacity Misses

Cache is too small to hold all data of interest at one time

o If the cache is full and program tries to access data X that is
not in cache, cache must evict data Y to make room for X

o Capacity miss occurs if program then tries to access Y again
o X will be placed in a particular set based on its address

In a direct mapped cache, there is only one place to put X

In an associative cache, there are multiple ways where X
could go in the set.

How to choose Y to minimize chance of needing it again?

o Least recently used (LRU) replacement: the least recently
used block in a set is evicted when the cache is full.
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Types of Misses

Compulsory: first time data is accessed
Capacity: cache too small to hold all data of interest
Conflict: data of interest maps to same location in cache

Miss penalty: time it takes to retrieve a block from lower
level of hierarchy
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LLRU Replacement

# MIPS assembly

1w $t0, Ox04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

V U Tag Data

V Tag

Data

V U Tag Data

V Tag

Data

Set Number
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LLRU Replacement

# MIPS assembly

1w $t0, 0x04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

Way 1 Way 0
[ 1 |
V U Tag Data V Tag Data
0]0 0 Set 3 (11)
0]0 0 Set 2 (10)
1] 0 00..010| mem[0x00...24] | 1| 00...000| mem[0x00...04] | Set 1 (01)
0/0 0 Set 0 (00)
(a)
Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
0[0 0 Set 3 (11)
0[0 0 Set 2 (10)
1] 1]00..010 | mem[0x00...24] | 1| 00...101| mem[0x00...54] | Set 1 (01)
0|0 0 Set 0 (00)

(b)



