Design of Digital Circuits
Lecture 25a: Virtual Memory 11

Prof. Onur Mutlu
ETH Zurich
Spring 2019
24 May 2019

Readings

= Virtual Memory

= Required
o H&H Chapter 8.4

Recall: Virtual Memory

Idea: Give the programmer the illusion of a large address
space while having a small physical memory

o So that the programmer does not worry about managing
physical memory

Programmer can assume he/she has “infinite” amount of
physical memory

Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion

o Illusion is maintained for each independent process

Recall: A System with Physical Memory Only

= Examples:
o most Cray machines
o early PCs

o many embedded systems Physical
Addresses

Memory

CPU’s load or store addresses used
directly to access memory

A System with Virtual Memory (Page based)

Memory

Page Table

Virtual

Physical
Addresses

Addresses

e
T

= Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

Recall: Virtual Memory Detinitions

Page size: amount of memory transferred from hard disk to
DRAM at once

Address translation: determining the physical address from
the virtual address

Page table: lookup table used to translate virtual addresses to
physical addresses (and find where the associated data is)

Recall: Virtual and Physical Addresses

Virtual Addresses Address Translation

Physical Addresses

\ Physical Memory

Hard Disk

© 2007 Elsevier, Inc. All rights reserved

Most accesses hit in physical memory
But programs see the large capacity of virtual memory

Recall: Address Translation

Virtual Address
302928 ... 141312 11109 .. 210

VPN Page Offset
{19
(Translation) A1
{15 |
PPN Page Offset

26 25 24 ... 1312 11109 ... 210
Physical Address

Recall: Virtual Memory Example

= System:
o Virtual memory size: 2 GB = 23! bytes

o Physical memory size: 128 MB = 227 bytes
o Page size: 4 KB = 212 bytes

Recall: Virtual Memory Example

System:
o Virtual memory size: 2 GB = 23! bytes

o Physical memory size: 128 MB = 227 bytes
o Page size: 4 KB = 212 bytes

Organization:

o Virtual address: 31 bits

Physical address: 27 bits

Page offset: 12 bits

Virtual pages = 231/212 = 219 (VPN = 19 bits)
Physical pages = 2%7/212 = 215 (PPN = 15 bits)

10

Recall: Virtual Memory Mapping Example

Virtual
Page

Virtual Addresses Number

Ox7FFFF000 - OX7FFFFFFF | 7FFFF
0x7FFFE000 - 0X7FFFEFFF | 7FFFE
0x7FFFDO00 - 0x7FFFDFFF | 7FFFD
0x7FFFC000 - 0x7FFFCFFF | 7FFFC
0x7FFFB000 - 0x7FFFBFFF_| 7FFFB
0x7FFFA000 - Ox7FFFAFFF | 7FFFA
0x7FFF9000 - OX7FFFOFFF_| 7FFF9

Physical S .
Page B :
Number Physical Addresses 0x00006000 - 0OX00006FFF | 00006
7FFF | Ox7FFF000 - 0x7FFFFFF 0x00005000 - 0x00005FFF | 00005
7FFE | 0x7FFE000 - Ox7FFEFFF 0x00004000 - 0x00004FFF | 00004
. . 0x00003000 - 0x00003FFF | 00003
o : 0x00002000 - 0x00002FFF | 00002
0001 | 0x0001000 - 0x0001FFF 0x00001000 - 0X00001FFF | 00001
0000 | 0x0000000 - 0OXO000FFF 0x00000000 - 0x00000FFF | 00000

Physical Memory Virtual Memory

© 2007 Elsevier, Inc. All rights reserved

How Do We Translate Addresses?

Page table
o Has entry for each virtual page

Each page table entry has:

o Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

o Physical page number: where the virtual page is located in
physical memory

o (Replacement policy, dirty bits)

12

Page Table Address Translation Example

Virtual

Virtual Page Number

Page
Offset

[0x00002 | 47C |

Address

Page Table is Indexed
with the VPN

Page Table is located
at physical memory
address specified by
the PTBR (Page Table

Base Register)

19

12

Physical

vV Page Number
0
0
1 0x0000
1 OX7FFE
0
0 2
@©
|_
()
0 ®
0 o
1 0x0001
0
0
1 OX7FFF
0
?
Hit 1 12
Page Table Provides ppysical ’ |
Address __OXTFFF | 47C

The PPN

Page offset bits
do not change
during translation

13

Page Table Address Translation Example 1

What is the physical
address of virtual address
Ox5F207?

Physical
Page Number

0x0000
OX7FFE

We first need to find the
page table entry
containing the translation
for the corresponding
VPN

Look up the PTE at the
address

o PTBR + VPN*PTE-size

ellelPP N elell

Page Table

0x0001

Ox7FFF

f1s

OO O0mO|0O

I |

14

Page Table Address Translation Example 1

Virtual
Address

What is the physical
address of virtual address
Ox5F207?

o VPN =5

o Entry 5 in page table
indicates VPN 5 is in
physical page 1

o Physical address is
0x1F20

Virtual
Page Number

Page
Offset

| _0x00005 | F20 |
19 12
Physical
V Page Number
0
0
1 0x0000
1 0x7FFE
0
0 =
@
|_
(D)
&
8 &
1 0x0001
0
0
1 0x7FFF
0
?
Hit 15 12
Physical
Address | 0x0001 | F20 1)5

Page Table Address Translation Example 2

What is the physical
address of virtual address

Physical

OX73 EO? \(_'/) Page Number

0

1 0x0000

1 Ox7FFE

0 (O]

0 re)
@®
l_

0 o

0 o

1 0x0001

0

0

1 Ox7FFF

0

0

R

I

16

Page Table Address Translation Example 2

Virtual Page
. P N ffset
Virtual age Number Offse

| 0x00007 | 3E0 |

What is the physical Address o
address of virtual address L
OX73 EO? \(/) Pageyl\TllJCriber
o VPN =7 0
1 0x0000
o Entry 7 in page table is 11 Ox7FFE
invalid, so the page is 8 o
not in physical memory -
o The virtual page must be —>8 g
swapped into physical 1] 0x0001
memory from disk 0
1 Ox7FFF
0
0

R

I |

17

Issue: Page Table Size

64-bit
'd A N\
VPN Page Offset
4+ 52-bit +12-bit

Page / ;C@ a - PA
table 28-bit U 40-bit

Suppose 64-bit VA and 40-bit PA, how large is the page
table?

252 entries x ~4 bytes ~ 254 bytes
and that is for just one process!

and the process may not be using the entire VM space!
18

Page Table Challenges

Challenge 1: Page table is large
o at least part of it needs to be located in physical memory
o solution: multi-level (hierarchical) page tables

Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:

1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time

a Unless we are clever... > speed up the translation...

19

Translation Lookaside Buffer (TLLB)

= Idea: Cache the page table entries (PTESs) in a hardware
structure in the processor to speed up address translation

= Translation lookaside buffer (TLB)

o Small cache of most recently used translations (PTES)

o Reduces number of memory accesses required for most
loads/stores to only one

20

Translation Lookaside Buftter (TLB)

Page table accesses have a lot of temporal locality
o Data accesses have temporal and spatial locality

o Large page size (say 4KB, 8KB, or even 1-2GB), so
consecutive loads/stores are likely to access same page

TLB

o Small: accessed in ~ 1 cycle

Typically 16 - 512 entries

High associativity

> 95-99 % hit rates typical (depends on workload)

Reduces number of memory accesses for most instruction
fetches and loads/stores to only one

Q
Q
Q
Q

21

Example Two-Entry TLLB

Virtual
Address

Virtual Page
Page Number Offset
0x00002 47C
19 12
Entry 1 Entry O
| |
Virtual Physical Virtual Physical
V Page Number Page Number Vv Page Number Page Number
11 Ox7FFFD | 0x0000 [1] 0x00002 | Ox7FFF | TLB
l 19 15 19 15
— | |
Hit, Hit, C Hit,
y Physical 19 12
it Address L OX7FFF 47C

22

Virtual Memory Support
and Examples

Supporting Virtual Memory

Virtual memory requires both HW+SW support
o Page Table is in memory

o Can be cached in special hardware structures called Translation
Lookaside Buffers (TLBs)

The hardware component is called the MMU (memory
management unit)

o Includes Page Table Base Register(s), TLBs, page walkers

It is the job of the software to leverage the MMU to

o Populate page tables, decide what to replace in physical memory

o Change the Page Table Register on context switch (to use the
running thread’s page table)

o Handle page faults and ensure correct mapping
24

Address Translation

How to obtain the physical address from a virtual address?

Page size specified by the ISA
o VAX: 512 bytes

o Today: 4KB, 8KB, 2GB, ... (small and large pages mixed
together)

o Trade-offs? (remember cache lectures)

Page Table contains an entry for each virtual page
o Called Page Table Entry (PTE)
o Whatis in a PTE?

25

What Is in a Page Table Entry (PTE)?

Page table is the “tag store” for the physical memory data store
o A mapping table between virtual memory and physical memory
PTE is the “tag store entry” for a virtual page in memory

o Need a valid bit - to indicate validity/presence in physical memory

o Need tag bits (PFN) = to support translation

o Need bits to support replacement
o Need a dirty bit to support “write back caching”

o Need protection bits to enable access control and protection
Pheysicel frame 172 poce s sloed N

<« PTE

Proedon or ticcess corpl b [Can s precess occess

| Dordy ol4- /’ T veind
[V[o[r] por. [~ PFN
o |
VVaha b4~
(1s e prge Reforcrte ov occess b’
pecint I pPaysiced (Wos e pege rtfererced

recmﬂ,})

Fue puge.? Wb kol
of occe el)

Address Translation (I)

Parameters

o P = 2P = page size (bytes).
o N = 2" = Virtual-address limit
o M = 2™ = Physical-address limit

n—1

p_ p-1

virtual page number

page offset

\4

<_address translation

m—1 v

p p-1

v

physical frame number

page offset

virtual address

physical address

Page offset bits don’t change as a result of translation

27

Address Translation (1I)

Separate (set of) page table(s) per process
VPN forms index into page table (points to a page table entry)
Page Table Entry (PTE) provides information about page

page table
base register

virtual address
n—1 P p-1

—e Virtual page number (VPN)

(per process)

page offset

. valid access physical frame number (PFN)

VPN acts as "

table index

if valid=0 _

then page
not in memory
(page fault)

m-—1 v p p-—1

physical frame number (PFN)

page offset

physical address

28

Address Translation: Page Hit

L \PTEA |
“TPTE
0, a
Processor VA MMU . @
5 PA
_________________________________ @

1) Processor sends virtual address to MMU

Cache/
memory

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to L1 cache

5) L1 cache sends data word to processor

29

Address Translation: Page Fault

----------------- » Page fault exception handler

CPU.chip . i ®
' PTEA Y
@ < Victim page
' PTE g
: Processor VA > MMU i @ CClChe/ @ DISk
| | memory
E @ . New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim, and if dirty pages it out to disk

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction.

Page Fault (“A Miss in Physical Memory™)

If a page is not in physical memory but disk
o Page table entry indicates virtual page not in memory
a Access to such a page triggers a page fault exception

o OS trap handler invoked to move data from disk into memory

Other processes can continue executing
OS has full control over placement

Before fault After fault

Memory

Memory

Page Table

Page Table

Virtual Physical
Addresses Y

Virtual
Addresses

Physical
Addresses| .

°®
.
.
°®
)
)
®
°

CPU| | =L :

CPU

31

Servicing a Page Fault

(1) Processor signals controller (1) Initiate Block Read

o Read block of length P starting
at disk address X and store
starting at memory address Y

Processor
| Reg |

(2) Read occurs

o Direct Memory Access (DMA)
o Under control of I/O controller

(3) Controller signals completion ‘ Memory I

o Interrupt processor
o OS resumes suspended process

32

Page Replacement Algorithms

If physical memory is full (i.e., list of free physical pages is
empty), which physical frame to replace on a page fault?

Is True LRU feasible?
o 4GB memory, 4KB pages, how many possibilities of ordering?

Modern systems use approximations of LRU

o E.g., the CLOCK algorithm

And, more sophisticated algorithms to take into account

“frequency” of use

o E.g., the ARC algorithm

o Megiddo and Modha, "ARC: A Self-Tuning, Low Overhead
Replacement Cache,” FAST 2003.

33

CLOCK Page Replacement Algorithm

Keep a circular list of physical frames in memory (OS does)
Keep a pointer (hand) to the last-examined frame in the list
When a page is accessed, set the R bit in the PTE

When a frame needs to be replaced, replace the first frame
that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise

o During traversal, clear the R bits of examined frames
o Set the hand pointer to the next frame in the list

Clock Algorithm
o]
0]
Clear bits whife search for a page.
@ ﬁ @ Stop at first clear (zero) bit.
o]
1
g 34

Cache versus Page Replacement

Physical memory (DRAM) is a cache for disk
o Managed by system software via the virtual memory subsystem

Page replacement is similar to cache replacement
Page table is the “tag store” for physical memory data store

What is the difference?
o Required speed of access to cache vs. physical memory
o Number of blocks in a cache vs. physical memory

a "Tolerable” amount of time to find a replacement candidate (disk
Versus memory access latency)

o Role of hardware versus software

35

Memory Protection

Memory Protection

Multiple programs (processes) run at once
o Each process has its own page table

o Each process can use entire virtual address space without
worrying about where other programs are

A process can only access physical pages mapped in its
page table — cannot overwrite memory of another process

o Provides protection and isolation between processes
o Enables access control mechanisms per page

37

Page Table 1s Per Process

Each process has its own virtual address space
o Full address space for each program
o Simplifies memory allocation, sharing, linking and loading.

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

0
VP 1 Address. PP 2
VP 2 Translation
/ PP 7
VP 1
» PP 10

M-1

Physical Address
Space (DRAM)

(e.g., read/only
library code)

38

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)

Not every process is allowed to access every page

o E.g., may need supervisor level privilege to access system
pages

Idea: Store access control information on a page basis in
the process’s page table

Enforce access control at the same time as translation

- Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)
Access control (protection)

40

Two Functions ot Virtual Memory

Merna

e

T powe otpet | A

Troslateony

T

; - . Trnston
[B | 2. Acess

o

e PA

T R SR S R S S e

41

VM as a Tool for Memory Access Protection

Extend Page Table Entries (PTEs) with permission bits

Check bits on each access and during a page fault
o If violated, generate exception (Access Protection exception)

Page Tables Memory
Read? Write? Physical Addr PP O
vP o Yes |[No PP6
. PP 2
Processi: vP1] Yes |[Yes PP 4
VP 2] No No |[XxXxxxxx PP 4
X . . PP 6
Read? Write? Physical Addr PP 8
VP 0] Yes Yes PP 6
. / PP 10
Process j: vp1] Yes |[No PP 9
PP 12
VP 2] No No |[XxXxxxxx

42

Privilege Levels 1n x86

Protection Rings

Operating
System
Kernel

e

Level 1

Operating System
Services

Level 2

Applications

Figure 5-3. Protection Rings

43

Page Level Protection in x36

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type | Privilege Access Type | Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

44

Food for Thought: What If?

Your hardware is unreliable and someone can flip the
access protection bits

o such that a user-level program can gain supervisor-level
access (i.e., access to all data on the system)

o by flipping the access control bit from user to supervisor!

Can this happen?

45

Remember RowHammer?

One can
predictably induce errors
in most DRAM memory chips

SAFARI

46

Remember RowHammer?

DRAM Row Hammer (or, DRAM Disturbance Errors)

How a simple hardware failure mechanism can create a
widespread system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ke FORGET SOFTWARE—NOW
g MACKERS ARE EXPLOITING
PHYSICS

Modern DRAM i1s Prone to Disturbance Etrrors
= Row of Cells = Wordline
= Victim Row —
Hammere: s V rogw
= Victim Row —
= Row [

Repeatedly reading a row enough times (before memory gets

refreshed) induces disturbance errors in adjacent rows
most real DRAM chips you can buy today

N

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 48

Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

A Simple Program Can Induce Many Errors

RAI\/I I\/Iodlule

¢
-M HH HH
lnu. .

loop:

mov (), %Seax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

B RAI\/I I\/Iodlule

° -
e H“ H“ HH !l TR

1. Avoid cache hits X =
— Flush X from cache

2. Avoid row hits to X Y -
— Read Y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAI\/I I\/Iodule

Bos

° —

Sl LIRS “" ““ "“
N ;0 .

loop:

mov (), %Seax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAI\/I I\/Iodule

Bos

° —

Sl LIRS “" ““ "“
N ;0 .

loop:

mov (), %Seax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAI\/I I\/Iodule

¢
-m HH HH
’n°'

loop:

mov (), %Seax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P r'oj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

= One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTESs).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015) >

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

-
guuugnuEnmm. g,
. »
‘ . . 2

B

\

\"

....................

T

Y

: QUL
LR, o

- o LRI Y
. -
e \-: N
A\

R g .

o —

Security Implications

-
e o R
-

"'
b

N N st &
\.,‘ -
b AR

U
o g

It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until |
the vibrations open the door you were after

More Security Implications (1)

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)
58

Source: https://lab.dsst.io/32c3-slides/7197.html

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (1I)

“Can gain control of a smart phone deterministically”

Hammer And Root

Mllllons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS'16 59

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

More Security Implications (111)

Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface

adl'S TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

"GRAND PWNING UNIT" —

Drive-by Rowhammer attack uses GPU to
compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU

Pietro Frigo Cristiano Giuffrida Herbert Bos Kaveh Razavi
Vrije Universiteit Vrije Universiteit Vrije Universiteit Vrije Universiteit
Amsterdam Amsterdam Amsterdam Amsterdam

p.frigo@vu.nl giuffrida@cs.vu.nl herbertb@cs.vu.nl kaveh@cs.vu.nl

More Security Implications (IV)
Rowhammer over RDMA (I)

adl'S TECHNICA BIZ& T TECH SCIENCE POLICY CARS GAMING & CULTURE

THROWHAMMER —

Packets over a LAN are all it takes to
trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar Radhesh Krishnan Elias Athanasopoulos Cristiano Giuffrida
VU Amsterdam VU Amsterdam University of Cyprus VU Amsterdam
Herbert Bos Kaveh Razavi

VU Amsterdam VU Amsterdam

More Security Implications (V)
= Rowhammer over RDMA (II)

(«&The Hacker News’

Security in a serious way

Nethammer—Exploiting DRAM Rowhammer Bug Through
Network Requests

Nethammer:
Inducing Rowhammer Faults through Network Requests

Moritz Lipp Misiker Tadesse Aga Michael Schwarz
Graz University of Technology University of Michigan Graz University of Technology
Daniel Gruss Clémentine Maurice Lukas Raab
Graz University of Technology Univ Rennes, CNRS, IRISA Graz University of Technology
— Lukas Lamster —

Graz University of Technology

More Security Implications?

03

Curious? First RowHammer Paper

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code

and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim'! Ross Daly* Jeremie Kim' Chris Fallin* Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai Onur Mutlu!

!Carnegie Mellon University ~ “Intel Labs

SAFARI 04

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Curious? A RowHammer Retrospective

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Haradware and Embedaed Security, 2019.
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu* Jeremie S. Kim?*3
SETH Ziirich tCarnegie Mellon University

SAFARI 65

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

Takeaway and Food for Thought

If hardware is unreliable, higher-level security and protection
mechanisms (as in virtual memory) may be compromised

The root of security and trust is at the very low levels...
o in the hardware itself
o RowHammer, Spectre, Meltdown are recent key examples...

What should we assume the hardware provides?
How do we keep hardware reliable?
How do we design secure hardware?

How do we design secure hardware with high performance,
high energy efficiency, low cost, convenient programming?

Plenty of exciting and highly-relevant research questions
SAFARI 66

Some Issues in Virtual Memory

Three Major Issues

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?
3. When do we do the translation in relation to cache access?

= There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

Q ...

068

Teaser: Virtual Memory Issue 111

When do we do the address translation?
o Before or after accessing the L1 cache?

09

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache

What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address - same physical address can be present in multiple
locations in the cache - can lead to inconsistency in data

70

Cache-VM Interaction

CPU

CPU

CPU

cache

lower
hier.

71

Virtual Memory
Summary

Virtual Memory Summary

Virtual memory gives the illusion of “infinite” capacity
A subset of virtual pages are located in physical memory

A page table maps virtual pages to physical pages — this is
called address translation

A TLB speeds up address translation
Multi-level page tables keep the page table size in check

Using different page tables for different programs provides

memory protection
73

Virtual Memory: Parting Thoughts

One of the most successful examples of
o architectural support for programmers

o how to partition work between hardware and software
o hardware/software cooperation
o programmer/architect tradeoff

Going forward: How does virtual memory scale into the
future? Three key trends:

o Increasing, huge physical memory sizes
o Hybrid physical memory systems (DRAM + NVM + ...)
o Many accelerators in the system addressing physical memory

74

Design of Digital Circuits
Lecture 25a: Virtual Memory 11

Prof. Onur Mutlu
ETH Zurich
Spring 2019
24 May 2019

Some Issues 1n Virtual Memory

Three Major Issues

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?
3. When do we do the translation in relation to cache access?

= There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

Q ...

77

Virtual Memory Issue 1

How large is the page table?

Where do we store it?

o In hardware?

o In physical memory? (Where is the PTBR?)
o In virtual memory? (Where is the PTBR?)

How can we store it efficiently without requiring physical
memory that can store all page tables?

o Idea: multi-level page tables
o Only the first-level page table has to be in physical memory

o Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

78

Issue: Page Table Size

64-bit
'd A N\
VPN Page Offset
4+ 52-bit +12-bit

Page / ;C@ a - PA
table 28-bit U 40-bit

Suppose 64-bit VA and 40-bit PA, how large is the page
table?

252 entries x ~4 bytes ~ 254 bytes
and that is for just one process!

and the process may not be using the entire VM space!
79

Solution: Multi-Level Page Tables

Example from the x86 architecture

Linear Address Space

Linear Address

» Dir

Linear Addr.

Table

Offset

Page Directory

_>

9-*

Page Table

Pqg. Dir. Entry \\ =

CR3*

*Physical Address

Pq. Tbl. Entry

X

Page

Physical Addr.

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Page Table Access

How do we access the Page Table?

Page Table Base Register (CR3 in x86)
Page Table Limit Register

If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page - access control
exception

Page Table Base Register is part of a process’s context
a Just like PC, status registers, general purpose registers
o Needs to be loaded when the process is context-switched in

81

More on x86 Page Tables (I): Small Pages

Linear Address
31 22 21 12 11 0
Directory Table Offset
/
/1 12 4-KByte Page
Y10 A10 Page Table —»| Physical Address
Page Directory
—» PTE
20
> PDE with PS=0 [—<
- 20
/32

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

More on x86 Page Tables (II): Large Pages

Linear Address
31 22 21 0

Directory Offset

A 22 4-MByte Page

A 10 Page Directory —» Physical Address

—3(PDE with PS=1 {é’

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

83

x86 Page Table Entries

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are "not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31/3029/28]27/2625[2412322/21/20(1918]17]16[15[14]13[12111/10/9 (87 [6[5]4[3/2]1]0] |

Address of page direc'cory1 Ignored Ignored] CR3

PDE:
4MB

page

Bits 39:32
of
address®

Bits 31:22 of address Reserved
of 2MB page frame (must be 0)

|t

Ignored |G

- >0

PDE

1] page
table

|_a

o

>
OMNTD| OND| OMN©
—S V| AE7V| 4=
n~Cc| n=c
S~ | T~

Address of page table Ignored (Q(g|A
n

PDE:
not
present

PTE:
4KB

page

o

Ignored

Address of 4KB page frame Ignored|G|A|D|A|C

—~ ST

n~c

=~
|_|

PTE:
Ignored 0] not
present

—_— Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

x860 PTE (4KB page)

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0(P)

Present; must be 1 to map a 4-KByte page

1 (R/W)

Read/write; if O, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (UIS)

User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT)

Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD)

Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A)

Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D)

Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT)

If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8(G)

Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119

Ignored

31:12

Physical address of the 4-KByte page referenced by this entry

85

x80 Page Directory Entry (PDE)

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

86

Four-level Paging 1n x386

47

39 38

Linear Address

30 29

2120

12 11

PML4

Directory Ptr

Directory

Table

Offset

|

/

/9

Page-Directory-
P%?nter Tabl?ery

—

PDE with PS=0

40

PDPTE

40

PML4E

CR3

Page-Directory

40

4

9 A9

Y

PTE

40

Page Table

[1 » 4-KByte Page
Physical Addr

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

87

Four-level Paging and Extended Physical Address Space in x86

A logical processor uses IA-32e paging if CR0O.PG = 1, CR4.PAE = 1, and

IA32_ EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use

of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:

88

Virtual Memory Issue 11

How fast is the address translation?
o How can we make it fast?

Idea: Use a hardware structure that caches PTEs >
Translation lookaside buffer

What should be done on a TLB miss?
o What TLB entry to replace?
2 Who handles the TLB miss? HW vs. SW?

What should be done on a page fault?
o What virtual page to replace from physical memory?
o Who handles the page fault? HW vs. SW?

89

Speeding up Translation with a TLLB

Essentially a cache of recent address translations
o Avoids going to the page table on every reference

Index = lower bits of VPN
(virtual page #)
Tag = unused bits of VPN +
process ID
Data = a page-table entry
Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.

Virtual address

VPN

-r - Page offset

Tag

Index

Physical page no.

II‘—

Page
offset

\ 4
C Physical address)

90

Handling TLLB Misses

The TLB is small; it cannot hold all PTEs
o Some translations will inevitably miss in the TLB
o Must access memory to find the appropriate PTE

Called walking the page directory/table
Large performance penalty

Who handles TLB misses? Hardware or software?

Handling TL.B Misses (II)

Approach #1. Hardware-Managed (e.g., x86)
o The hardware does the page walk

o The hardware fetches the PTE and inserts it into the TLB
If the TLB is full, the entry replaces another entry
o Done transparently to system software

Approach #2. Software-Managed (e.g., MIPS)

o The hardware raises an exception

o The operating system does the page walk

o The operating system fetches the PTE

o The operating system inserts/evicts entries in the TLB

Handling TLLB Misses (I1I)

= Hardware-Managed TLB
o Pro: No exception on TLB miss. Instruction just stalls
a Pro: Independent instructions may continue
o Pro: No extra instructions/data brought into caches.
Q

Con: Page directory/table organization is etched into the
system: OS has little flexibility in deciding these

= Software-Managed TLB
a Pro: The OS can define page table oganization
a Pro: More sophisticated TLB replacement policies are possible

a Con: Need to generate an exception - performance overhead
due to pipeline flush, exception handler execution, extra
instructions brought to caches

Virtual Memory Issue 111

When do we do the address translation?
o Before or after accessing the L1 cache?

94

Virtual Memory and Cache Interaction

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache

What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address - same physical address can be present in multiple
locations in the cache - can lead to inconsistency in data

96

Homonyms and Synonyms

Homonym: Same VA can map to two different PAs
o Why?
VA is in different processes

Synonym: Different VAs can map to the same PA
o Why?

Different pages can share the same physical frame within or
across processes

Reasons: shared libraries, shared data, copy-on-write pages
within the same process, ...

Do homonyms and synonyms create problems when we
have a cache?

o Is the cache virtually or physically addressed?
97

Cache-VM Interaction

CPU

CPU

CPU

cache

lower
hier.

98

Physical Cache

PTPT coke (Physret ccehe)

T VA

£ & On'unnl,“
: PA ore locokon

99

Virtual Cache

(\ovival Coe)

Pone o!ful—] VA

M éad M“q

A

uohul

S

: _

dotn
sht

>

-

r

:

hi-?

100

Virtual-Physical Cache

VIPT cede

Tk

Vés

Pty oifed—

Whee con e Q;cpka,grcdc-ou_cﬁlacv\ +e

Coske 7

101

Virtually-Indexed Physically-Tagged

If C<(page_ size x associativity), the cache index bits come only
from page offset (same in VA and PA)

If both cache and TLB are on chip
0 index both arrays concurrently using VA bits
a check cache tag (physical) against TLB output at the end

VPN Page Offset
v ' : Index BiB

TLB physical
cache

PPN @(tag data

TLB hit? cache hit? 102

Virtually-Indexed Physically-Tagged

= If C>(page size x associativity), the cache index bits include VPN

—> Synonyms can cause problems

0 The same physical address can exist in two locations

» Solutions?

VPN Page Offset
I v
TLB physical

cache

|

v
PPN ‘@* tag data
TLB hit? cache hit? 103

Some Solutions to the Synonym Problem

Limit cache size to (page size times associativity)
o get index from page offset

On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

o Used in Alpha 21264, MIPS R10K

Restrict page placement in OS

o make sure index(VA) = index(PA)
o Called page coloring

o Used in many SPARC processors

104

An Exercise (I)

We have a byte-addressable toy computer that has a physical address space of 512 bytes. The computer
uses a simple, one-level virtual memory system. The page table is always in physical memory. The page
size is specified as 8 bytes and the virtual address space is 2 KB.

Part A.

i. (1 point)
How many bits of each virtual address is the virtual page number?

ii. (1 point)
How many bits of each physical address is the physical frame number?

105

We would like to add a 128-byte wrife-through cache to enhance the performance of this computer.
However, we would like the cache access and address translation to be performed simultaneously. In
other words. we would like to index our cache using a virtual address, but do the tag comparison using the
physical addresses (virtually-indexed physically-tagged). The cache we would like to add is direct-
mapped. and has a block size of 2 bytes. The replacement policy is LRU. Answer the following questions:

iii. (1 point)
How many bits of a virtual address are used to determine which byte in a block is accessed?

iv. (2 point)
How many bits of a virtual address are used to index into the cache? Which bits exactly?

v. (1 point)
How many bits of the virtual page number are used to index into the cache?

vi. (S points)
What is the size of the tag store in bits? Show your work.

Part B.

Suppose we have two processes sharing our toy computer. These processes share some portion of the
physical memory. Some of the virtual page-physical frame mappings of each process are given below:

PROCESS 0 PROCESS 1
Virtual Page | Physical Frame Virtual Page | Physical Frame
Page 0 Frame 0 Page 0 Frame 4
Page 3 Frame 7 Page 1 Frame 5
Page 7 Frame 1 Page 7 Frame 3
Page 15 Frame 3 Page 11 Frame 2

vii. (2 points)
Give a complete physical address whose data can exist in two different locations in the cache.

viii. (3 points)

Give the indexes of those two different locations in the cache.

An Exercise (Concluded)

ix. (S points)
We do not want the same physical address stored in two different locations in the 128-byte cache. We can
prevent this by increasing the associativity of our virtually-indexed physically-tagged cache. What is the

minimum associativity required?

X. (4 points)
Assume we would like to use a direct-mapped cache. Describe a solution that ensures that the same

physical address is never stored in two different locations in the 128-byte cache.

108

Some System Software Tasks for VM

Keeping track of which physical frames are free
Allocating free physical frames to virtual pages

Page replacement policy
o When no physical frame is free, what should be removed?

Sharing pages between processes
Copy-on-write optimization

Page-flip optimization

109

