
Design of Digital Circuits

Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zurich

Spring 2019

1 March 2019

Agenda

◼ Assignments for this week and the next

◼ Wrap up the Comp Arch Mysteries lectures

❑ Takeaways

◼ Discuss course expectations (very brief)

◼ Combinational Logic Circuits and Design

2

Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch my inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Email your summary to digitaltechnik@lists.inf.ethz.ch
3

https://www.youtube.com/watch?v=kgiZlSOcGFM
mailto:digitaltechnik@lists.inf.ethz.ch

Assignment: Required Readings

◼ This week

❑ Combinational Logic

◼ P&P Chapter 3 until 3.3 + H&H Chapter 2

◼ Next week

❑ Hardware Description Languages and Verilog

◼ H&H Chapter 4 until 4.3 and 4.5

❑ Sequential Logic

◼ P&P Chapter 3.4 until end + H&H Chapter 3 in full

◼ By the end of next week, make sure you are done with

❑ P&P Chapters 1-3 + H&H Chapters 1-4

4

Recap: Four Mysteries

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memory Performance Attacks (2006-2007)

◼ Memories Forget: Refresh & RAIDR (2011-2012)

5

Takeaways

6

Takeaway I

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

7

Takeaway II

Cooperation between

multiple components and layers

can enable

more effective

solutions and systems

8

Recall: The Transformation Hierarchy

9

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

Some Takeaways

◼ It is an exciting time to be understanding and designing
computing platforms

◼ Many challenging and exciting problems in platform design

❑ That noone has tackled (or thought about) before

❑ That can have huge impact on the world’s future

◼ Driven by huge hunger for data and its analysis (“Big Data”),
new applications, ever-greater realism, …

❑ We can easily collect more data than we can analyze/understand

◼ Driven by significant difficulties in keeping up with that
hunger at the technology layer

❑ Three walls: Energy, reliability, complexity, security

10

Increasingly Demanding Applications

Dream

and, they will come

11

As applications push boundaries, computing platforms will become increasingly strained.

Dream, and, They Will Come

12Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg

Dream, and, They Will Come

13
Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/

Increasingly Diverging/Complex Tradeoffs

14

Dally, HiPEAC 2015

Increasingly Diverging/Complex Tradeoffs

15

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Example Consequence: Energy Waste
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

16

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

New Execution Paradigms Emerging (I)

17

New Execution Paradigms Emerging (II)

18

Increasingly Complex Systems

Past systems

19

Microprocessor Main Memory Storage (SSD/HDD)

Increasingly Complex Systems

20

(General Purpose) GPUs

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs

Modern systems

Recap: Some Goals of This Course
◼ Teach/enable/empower you to:

❑ Understand how a processor works: principles & precedents

❑ Implement a simple microprocessor from scratch on an FPGA

❑ Understand how decisions made in hardware affect the
software/programmer as well as hardware designer

❑ Think critically (in solving problems)

❑ Think broadly across the levels of transformation

❑ Understand how to analyze and make tradeoffs in design
21

Slightly More on

Course Info and Logistics

22

Course Info: Instructor

◼ Onur Mutlu

❑ Professor @ ETH Zurich, since September 2015 (started May 2016)

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ Office hours: By appointment (email me)

◼ Research and Teaching in:

❑ Computer architecture, computer systems, bioinformatics, hardware security

❑ Memory and storage systems

❑ Hardware security

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Genome analysis and application-algorithm-hardware co-design

❑ …

23

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com

A Note on Hardware vs. Software

◼ This course might seem like it is only “Computer Hardware”

◼ However, you will be much more capable if you master both
hardware and software (and the interface between them)

❑ Can develop better software if you understand the hardware

❑ Can design better hardware if you understand the software

❑ Can design a better computing system if you understand both

◼ This course covers the HW/SW interface and microarchitecture

❑ We will focus on tradeoffs and how they affect software

◼ Recall the four mysteries

24

What Do I Expect From You?

◼ Required background: Binary numbers/arithmetic, reading

material week 1, enthusiasm to learn & think, common sense

◼ Learn the material thoroughly

❑ attend lectures, do the readings, do the exercises, do the labs

◼ Work hard: this will be a hard but fun & informative course

◼ Ask questions, take notes, participate

◼ Perform the assigned readings

◼ Come to class on time

◼ Start early – do not procrastinate

◼ If you want feedback, come to office hours

◼ Remember “Chance favors the prepared mind.” (Pasteur)
25

What Do I Expect From You?

◼ How you prepare and manage your time is very important

◼ There will be 9 lab assignments

❑ They will take time

❑ Start early, work hard

◼ This will be a heavy course

❑ However, you will learn a lot of fascinating topics and
understand how a microprocessor actually works from the
ground up

❑ And, it will hopefully change how you look at and think about
designs around you

26

Computer Architecture as an

Enabler of the Future

27

Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch my inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Email your summary to digitaltechnik@lists.inf.ethz.ch
28

https://www.youtube.com/watch?v=kgiZlSOcGFM
mailto:digitaltechnik@lists.inf.ethz.ch

… but, first …

◼ Let’s understand the fundamentals…

◼ You can change the world only if you understand it well
enough…

❑ Especially the basics (fundamentals)

❑ Past and present dominant paradigms

❑ And, their advantages and shortcomings – tradeoffs

❑ And, what remains fundamental across generations

❑ And, what techniques you can use and develop to solve
problems

29

Fundamental Concepts

30

What is A Computer?

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

31

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

What is A Computer?

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

32

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

What is A Computer?

◼ We will cover all three components

33

Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath

Recall: The Transformation Hierarchy

34

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

What We Will Cover (I)

◼ Combinational Logic Design

◼ Hardware Description Languages (Verilog)

◼ Sequential Logic Design

◼ Timing and Verification

◼ ISA (MIPS and LC3b)

◼ MIPS Assembly Programming

35

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

What We Will Cover (II)

◼ Microarchitecture Basics: Single-cycle

◼ Multi-cycle and Microprogrammed Microarchitectures

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

◼ Out-of-Order Execution

◼ Other Processing Paradigms (SIMD, VLIW, Systolic, …)

◼ Memory and Caches

◼ Virtual Memory

36

Processing Paradigms We Will Cover

◼ Pipelining

◼ Out-of-order execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ SIMD Processing (Vector & array, GPUs)

◼ Decoupled Access Execute

◼ Systolic Arrays

37

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Combinational Logic Circuits

and Design

38

What We Will Learn Today?

◼ Building blocks of modern computers

❑ Transistors

❑ Logic gates

◼ Boolean algebra

◼ Combinational circuits

◼ How to use Boolean algebra to represent combinational
circuits

◼ Minimizing logic circuits (if time permits)

39

(Micro)-Processors

40

FPGAs

41

Custom ASICs

42

They All Look the Same

43

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

They All Look the Same

44

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

They All Look the Same

45

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++

They All Look the Same

46

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance

They All Look the Same

47

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance

Programming Executable file Bit file Design masks

Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL

Main Companies Intel, ARM, AMD Xilinx, Altera, Lattice TSMC, UMC, ST,
Globalfoundries

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance

Programming Executable file Bit file Design masks

Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL

Main Companies Intel, ARM, AMD Xilinx, Altera, Lattice TSMC, UMC, ST,
Globalfoundries

Using this language

They All Look the Same

48

Want to

learn how

these

work

By

program

ming

these

Building Blocks of Modern

Computers

49

Transistors

50

Transistors

51

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System

(VM, OS, MM)

Electrons

◼ Computers are built from very large numbers of very
simple structures

❑ Intel’s Pentium IV microprocessor, first offered
for sale in 2000, was made up of more than 42
million MOS transistors

❑ Intel’s Core i7 Broadwell-E, offered for sale in
2016, is made up of more than 3.2 billion MOS
transistors

◼ This lecture

❑ How the MOS transistor works (as a logic
element)

❑ How these transistors are connected to form
logic gates

❑ How logic gates are interconnected to form larger units that
are needed to construct a computer

MOS Transistor

◼ By combining

❑ Conductors (Metal)

❑ Insulators (Oxide)

❑ Semiconductors

◼ We get a Transistor (MOS)

◼ Why is this useful?

❑ We can combine many of these to realize simple logic gates

◼ The electrical properties of metal-oxide semiconductors are
well beyond the scope of what we want to understand in
this course

❑ They are below our lowest level of abstraction

52

Gate

Source Drain

Different Types of MOS Transistors

◼ There are two types of MOS transistors: n-type and p-type

◼ They both operate “logically,” very similar to the way wall
switches work

53

n-type p-type

Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?

❑ In order for the lamp to glow, electrons must flow

❑ In order for electrons to flow, there must be a closed circuit
from the power supply to the lamp and back to the power
supply

❑ The lamp can be turned on and off by simply manipulating the
wall switch to make or break the closed circuit

54

◼ Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

If the gate of an n-type transistor is

supplied with a high voltage, the

connection from source to drain acts like a

piece of wire

How Does a Transistor Work?

55

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is
supplied with a high voltage, the
connection from source to drain acts like a
piece of wire

Depending on the technology, 0.3V to 3V

If the gate of the n-type transistor is
supplied with 0V, the connection between
the source and drain is broken

Drain

Source

Gate

Power Supply

3 Volt

How Does a Transistor Work?

◼ The n-type transistor in a circuit with a battery and a bulb

◼ The p-type transistor works in exactly the opposite fashion
from the n-type transistor

56

Power Supply

0 Volt

Shorthand notation

The circuit is closed

when the gate is

supplied with 3V

The circuit is closed

when the gate is

supplied with 0V

Drain

Source

Gate

n-type p-type

Gate

Logic Gates

57

One Level Higher in the Abstraction

◼ Now, we know how a MOS transistor works

◼ How do we build logic out of MOS transistors?

58

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System

(VM, OS, MM)

Electrons

◼ We construct basic logic structures out of
individual MOS transistors

◼ These logical units are named logic gates

❑ They implement simple Boolean functions

Making Logic Blocks Using CMOS Technology

◼ Modern computers use both n-type and p-type transistors,
i.e. Complementary MOS (CMOS) technology

◼ The simplest logic structure that exists in a modern
computer

59

nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)

n-type

p-type

What does this circuit do?

Functionality of Our CMOS Circuit

60

What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor

pulls the output up

3V

0V

Y = 0V

Functionality of Our CMOS Circuit

61

What happens when the input is connected to 3V?

n-type transistor pulls

the output down

3V

0V

Out (Y)A= 3V

A P N Y

0

1

A P N Y

0 ON OFF 1

1

CMOS NOT Gate

◼ This is actually the CMOS NOT Gate

◼ Why do we call it NOT?

❑ If A = 0V then Y = 3V

❑ If A = 3V then Y = 0V

◼ Digital circuit: one possible interpretation

❑ Interpret 0V as logical (binary) 0 value

❑ Interpret 3V as logical (binary) 1 value

62

3V

0V

Out (Y)In (A)

P

N

𝑌 = ҧ𝐴

A P N Y

0 ON OFF 1

1 OFF ON 0

CMOS NOT Gate

◼ This is actually the CMOS NOT Gate

◼ Why do we call it NOT?

❑ If A = 0V then Y = 3V

❑ If A = 3V then Y = 0V

◼ Digital circuit: one possible interpretation

❑ Interpret 0V as logical (binary) 0 value

❑ Interpret 3V as logical (binary) 1 value

63

3V

0V

Out (Y)In (A)

P

N

A Y

We call it a NOT gate
or an inverter

Truth table: what would be the logical

output of the circuit for each possible input

NOT

Y = A

A Y
0 1

1 0

A Y𝑌 = ҧ𝐴

Another CMOS Gate: What Is This?

◼ Let’s build more complex gates!

64

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

CMOS NAND Gate

◼ Let’s build more complex gates!

❑ P1 and P2 are in parallel; only one must be ON to pull the
output up to 3V

❑ N1 and N2 are connected in series; both must be ON to pull
the output to 0V

65

A B P1 P2 N1 N2 Y

0 0

0 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

CMOS NAND Gate

◼ Let’s build more complex gates!

66

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵NAND

Y = AB

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

A
B

Y

A
Y

B

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

◼ How can we make an AND gate?

CMOS AND Gate

67

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵A B Y
0 0 0
0 1 0
1 0 0

111

A
Y

B

We make an AND gate using

one NAND gate and

one NOT gate

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

CMOS NOT, NAND, AND Gates

68

A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

B
A Y

NOT

Y = A

A Y
0 1

1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

General CMOS Gate Structure

◼ The general form used to construct any inverting logic gate,
such as: NOT, NAND, or NOR

69

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

❑ The networks may consist of
transistors in series or in
parallel

❑ When transistors are in
parallel, the network is ON if
one of the transistors is ON

❑ When transistors are in series,
the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up

nMOS transistors are used for pull-down

General CMOS Gate Structure (II)

◼ Exactly one network should be ON, and the other network
should be OFF at any given time

70

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

❑ If both networks are ON at the
same time, there is a short
circuit → likely incorrect

operation

❑ If both networks are OFF at
the same time, the output is
floating → undefined

pMOS transistors are used for pull-up

nMOS transistors are used for pull-down

Digging Deeper: Why This Structure?

◼ MOS transistors are not perfect switches

◼ pMOS transistors pass 1’s well but 0’s poorly

◼ nMOS transistors pass 0’s well but 1’s poorly

◼ pMOS transistors are good at “pulling up” the output

◼ nMOS transistors are good at “pulling down” the output

71

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

See Section 1.7 in H&H

Digging Deeper: Latency

◼ Which one is faster?

❑ Transistors in series

❑ Transistors in parallel

◼ Series connections are slower than parallel connections

❑ More resistance on the wire

◼ How do you alleviate this latency?

❑ See H&H Section 1.7.8 for an example: pseudo-nMOS Logic

72

Digging Deeper: Power Consumption

◼ Dynamic Power Consumption

❑ C * V2 * f

◼ C = capacitance of the circuit (wires and gates)

◼ V = supply voltage

◼ f = charging frequency of the capacitor

◼ Static Power consumption

❑ V * Ileakage

◼ supply voltage * leakage current

◼ See more in H&H Chapter 1.8

73

Design of Digital Circuits

Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zurich

Spring 2019

1 March 2019

We did not cover the remaining slides.

They are for your preparation for the

next lecture.

75

Common Logic Gates

76

Larger Gates

◼ We can extend the gates to more than 2 inputs

◼ Example: 3-input AND gate, 10-input NOR gate

◼ See your readings

77

Aside: Moore’s Law:
Enabler of Many Gates on a Chip

78

An Enabler: Moore’s Law

79

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

80

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

81

Recommended Reading

◼ Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

◼ Only 3 pages

◼ A quote:

“With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

◼ Another quote:

“Will it be possible to remove the heat generated by tens of
thousands of components in a single silicon chip?”

82

How Do We Keep Moore’s Law

◼ Manufacturing smaller transistors/structures

❑ Some structures are already a few atoms in size

◼ Developing materials with better properties

❑ Copper instead of Aluminum (better conductor)

❑ Hafnium Oxide, air for Insulators

❑ Making sure all materials are compatible is the challenge

◼ Optimizing the manufacturing steps

❑ How to use 193nm ultraviolet light to pattern 20nm structures

◼ New technologies

❑ FinFET, Gate All Around transistor, Single Electron Transistor…

83

Combinational Logic Circuits

84

We Can Now Build Logic Circuits

◼ A logic circuit is composed of:

❑ Inputs

❑ Outputs

◼ Functional specification (describes relationship between
inputs and outputs)

◼ Timing specification (describes the delay between inputs
changing and outputs responding)

85

inputs outputs
functional spec

timing spec

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important
components of the microarchitecture of a computer!

Types of Logic Circuits

◼ Combinational Logic

❑ Memoryless

❑ Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

❑ In some books called Combinatorial Logic

◼ Later we will learn: Sequential Logic

❑ Has memory

◼ Structure stores history → Can ”store” data values

❑ Outputs are determined by previous (historical) and current
values of inputs

86

inputs outputs
functional spec

timing spec

Boolean Equations

87

Functional Specification

◼ Functional specification of outputs in terms of inputs

◼ What do we mean by “function”?

❑ Unique mapping from input values to output values

❑ The same input values produce the same output value every
time

❑ No memory (does not depend on the history of input values)

◼ Example (full 1-bit adder – more later):

S = F(A, B, Cin)

Cout = G(A, B, Cin)

88

A
S

S = A B C
in

C
out

 = AB + AC
in
 + BC

in

B
C

in

CL
C

out

Simple Equations: NOT / AND / OR

89

A

B
A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A

B
A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨

0 1

1 0

𝑨 𝑩 𝑨 • 𝑩

0 0 0

0 1 0

1 0 0

1 1 1

𝑨 𝑩 𝑨 + 𝑩

0 0 0

0 1 1

1 0 1

1 1 1

Boolean Algebra: Big Picture

◼ An algebra on 1’s and 0’s

❑ with AND, OR, NOT operations

◼ What you start with

❑ Axioms: basic things about objects and operations
you just assume to be true at the start

◼ What you derive first

❑ Laws and theorems: allow you to manipulate Boolean expressions

❑ …also allow us to do some simplification on Boolean expressions

◼ What you derive later

❑ More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations

90George Boole, “The Mathematical Analysis of Logic,” 1847.

Boolean Algebra: Axioms

91

1. B contains at least two elements,
0 and 1, such that 0 ≠ 1

2. Closure a,b ∈ B,
(i) a + b ∈ B
(ii) a • b ∈ B

3. Commutative Laws: a,b ∈ B,
(i) a + b = b + a
(ii) a • b = b • a

4. Identities: 0, 1 ∈ B
(i) a + 0 = a
(ii) a • 1 = a

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

6. Complement:
(i) 𝐚 + ഥ𝒂= 1
(ii) 𝐚 • ഥ𝒂 = 0

English version

Result of AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra

…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...

Boolean Algebra: Duality

◼ Observation

❑ All the axioms come in “dual” form

❑ Anything true for an expression also true for its dual

❑ So any derivation you could make that is true, can be flipped into
dual form, and it stays true

◼ Duality — More formally

❑ A dual of a Boolean expression is derived by replacing

◼ Every AND operation with... an OR operation

◼ Every OR operation with... an AND

◼ Every constant 1 with... a constant 0

◼ Every constant 0 with... a constant 1

◼ But don’t change any of the literals or play with the complements!

92

➙ a + (b • c) = (a + b) • (a + c)

a • (b + c) = (a • b) + (a • c) Example

Boolean Algebra: Useful Laws

93

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

Useful Laws (cont)

94

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z

7D. (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

ത𝐘X • (Y +) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things

95

Proving theorems via axioms of Boolean Algebra:

EX: Prove the theorem: X • Y + X • = X

EX2: Prove the theorem: X + X • Y = X

X • 1 + X • Y = X Identity (4)

X • (1 + Y) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

ഥ𝒀

DeMorgan’s Law: Enabling Transformations

96

 Think of this as a transformation

▪ Let’s say we have:

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:

12.

12D. (𝑿 . 𝒀. 𝒁.…) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = (ഥ𝑨. ഥ𝑩. ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan’s Law (Continued)

97

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0

Using Boolean Equations

to Represent a Logic Circuit

98

Sum of Products Form: Key Idea

◼ Assume we have the truth table of a Boolean Function

◼ How do we express the function in terms of the inputs in a
standard manner?

◼ Idea: Sum of Products form

◼ Express the truth table as a two-level Boolean expression

❑ that contains all input variable combinations that result in a 1
output

❑ If ANY of the combinations of input variables that results in a
1 is TRUE, then the output is 1

❑ F = OR of all input variable combinations that result in a 1

99

Some Definitions

 Complement: variable with a bar over it

𝑨 , 𝑩 , 𝑪

 Literal: variable or its complement

𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

 Implicant: product (AND) of literals

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑪) , (𝑩 ∙ 𝑪)

 Minterm: product (AND) that includes all input variables

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪)

 Maxterm: sum (OR) that includes all input variables

(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)

100

Two-Level Canonical (Standard) Forms

◼ Truth table is the unique signature of a Boolean function …

❑ But, it is an expensive representation

◼ A Boolean function can have many alternative Boolean
expressions

❑ i.e., many alternative Boolean expressions (and gate
realizations) may have the same truth table (and function)

◼ Canonical form: standard form for a Boolean expression

❑ Provides a unique algebraic signature

❑ If they all say the same thing, why do we care?

◼ Different Boolean expressions lead to different gate realizations

101

Two-Level Canonical Forms

102

Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does It Work?

103

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏— will be 1

◼ No other product terms will “turn on” — they will all be 0

◼ So if inputs A B C correspond to a product term in expression,
❑ We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output

◼ If inputs A B C do not correspond to any product term in expression
❑ We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

This input

Activates
this term

Aside: Notation for SOP

104

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth
table…

◼ then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Canonical SOP Forms

105

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪 + ഥ𝑪 + ഥ𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + ഥ𝑪)

= 𝐀ഥ𝑩 + ഥ𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀(ഥ𝑩 + 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

From Logic to Gates

 SOP (sum-of-products) leads to two-level logic

 Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪

106

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS

107

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

A product of sums (POS)

0 0 0 0 0 1

sums

products

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩+ ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0 1 0

We can have another from of representation

DeMorgan of SOP of ഥ𝑭

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0

108

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 ഥ𝟏 𝟎𝟎 𝟏 ഥ𝟎𝟎 𝟏 𝟎

0 1 0
Input

POS: How to Write It

109

Maxterm form:

1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of ഥ𝑭!!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 ഥ𝑩 𝑪

𝑨 + ഥ𝑩 + 𝑪

Canonical POS Forms

110

Maxterms

0 0 0 = M0

0 0 1 = M1

0 1 0 = M2

0 1 1 = M3

1 0 0 = M4

1 0 1 = M5

1 1 0 = M6

1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you
form the

maxterms around
the “zeros” of the

function

This is not the
complement of
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩+ 𝑪
𝑨 + 𝑩+ ഥ𝑪
𝑨 + ഥ𝑩 + 𝑪
𝑨 + ഥ𝑩+ ഥ𝑪
ഥ𝑨 + 𝑩+ 𝑪
ഥ𝑨 + 𝑩 + ഥ𝑪
ഥ𝑨 + ഥ𝑩 + 𝐂
ഥ𝑨 + ഥ𝑩 + ഥ𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

ෑ𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅

Useful Conversions

111

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 =𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅

Combinational Building Blocks

used in Modern Computers

112

Combinational Building Blocks

◼ Combinational logic is often grouped into larger building
blocks to build more complex systems

◼ Hides the unnecessary gate-level details to emphasize the
function of the building block

◼ We now look at:

❑ Decoders

❑ Multiplexers

❑ Full adder

❑ PLA (Programmable Logic Array)

Decoder

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The one output that is logically 1 is the output
corresponding to the input pattern that the logic circuit is
expected to detect

A
1 if A,B is 00

B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1
0

B = 0

0

1

0

Decoder

◼ The decoder is useful in determining how to interpret a bit
pattern

115

A = 1
0

B = 0

0

1

0

❑ It could be the
address of a row in
DRAM, that the
processor intends to
read from

❑ It could be an
instruction in the
program and the
processor has to
decide what action to
do! (based on
instruction opcode)

Multiplexer (MUX), or Selector

◼ Selects one of the N inputs to connect it to the output

◼ Needs log2N-bit control input

◼ 2:1 MUX A B

S

C

ba

A B

S = 0

C

0A

A

Multiplexer (MUX)

◼ The output C is always connected to either the input A or
the input B

❑ Output value depends on the value of the select line S

◼ Your task: Draw the schematic for an 8-input (8:1) MUX

❑ Gate level: as a combination of basic AND, OR, NOT gates

❑ Module level: As a combination of 2-input (2:1) MUXes
117

A B

S

C

S C
0 A
1 B

Full Adder (I)

◼ Binary addition

❑ Similar to decimal addition

❑ From right to left

❑ One column at a time

❑ One sum and one carry bit

◼ Truth table of binary addition on one column of bits within
two n-bit operands

118

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder (II)

◼ Binary addition

❑ N 1-bit additions

❑ SOP of 1-bit addition

119

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Full Adder (1 bit)

4-Bit Adder from Full Adders

◼ Creating a 4-bit adder out of 1-bit full adders

❑ To add two 4-bit binary numbers A and B

120

𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎

𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏

+
𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎

𝟏 𝟎 𝟏 𝟏

+

Full Adder

a0b0

s0

0c1
Full Adder

a1b1

s1

c2
Full Adder

a2b2

s2

c3
Full Adder

a3b3

s3

c4

The Programmable Logic Array (PLA)

◼ The below logic structure is a very common building block
for implementing any collection of logic functions one
wishes to

121

◼ An array of AND gates
followed by an array of OR
gates

◼ How do we determine the
number of AND gates?

❑ Remember SOP: the
number of possible minterms

❑ For an n-input logic function, we need a PLA with 2n n-input
AND gates

◼ How do we determine the number of OR gates? The
number of output columns in the truth table

A

B

C

X

Y

Z

Connections

◼ How do we implement a logic function?

❑ Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)

122

❑ This is a simple programmable
logic

◼ Programming a PLA: we
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

◼ Have you seen any other type of programmable logic?

❑ Yes! An FPGA…

❑ An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

123

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be

connected to any outputs We do not need

this output

Logical (Functional) Completeness

◼ Any logic function we wish to implement could be
accomplished with PLA

❑ PLA consists of only AND gates, OR gates, and inverters

❑ We just have to program connections based on SOP of the
intended logic function

◼ The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

◼ NAND is also logically complete. So is NOR.

❑ Your task: Prove this.

124

More Combinational Building Blocks

◼ H&H Chapter 5

◼ Will be required reading soon.

◼ You will benefit greatly by reading the “combinational”
parts of that chapter soon.

❑ Sections 5.1 and 5.2

125

Logic Simplification:

Karnaugh Maps (K-Maps)

126

Recall: Full Adder in SOP Form Logic

127

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Goal: Simplified Full Adder

128

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

◼ The original Boolean expression (i.e., logic circuit) may not
be optimal

◼ Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

◼ The goal of logic simplification:

❑ Reduce the number of gates/inputs

❑ Reduce implementation cost

129

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification

◼ Systematic techniques for simplifications

❑ amenable to automation

130

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨ഥ𝑩 + 𝑨𝑩

𝑨ഥ𝑩 + 𝑨𝑩 = 𝑨 ഥ𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = ഥ𝑨ഥ𝑩 + 𝑨ഥ𝑩 = ഥ𝑨 + 𝑨 ഥ𝑩 = ഥ𝑩

Essence of Simplification:

Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Complex Cases

◼ One example

◼ Problem
❑ Easy to see how to apply Uniting Theorem…

❑ Hard to know if you applied it in all the right places…

❑ …especially in a function of many more variables

◼ Question
❑ Is there an easier way to potential simplifications?

❑ i.e., potential applications of Uniting Theorem…?

◼ Answer
❑ Need an intrinsically geometric representation for Boolean f()

❑ Something we can draw, see…

131

𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪 + 𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 + 𝑨𝑩𝑪

Karnaugh Map

◼ Karnaugh Map (K-map) method

❑ K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

❑ Physical adjacency ↔ Logical adjacency

132

2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit changes from

code word to next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪

Karnaugh Map Methods

133

Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

134

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + ഥ𝑩ഥ𝑫 + 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀

K-map Rules

◼ What can be legally combined (circled) in the K-map?

❑ Rectangular groups of size 2k for any integer k

❑ Each cell has the same value (1, for now)

❑ All values must be adjacent

◼ Wrap-around edge is okay

◼ How does a group become a term in an expression?

❑ Determine which literals are constant, and which vary across group

❑ Eliminate varying literals, then AND the constant literals

◼ constant 1 ➙ use 𝐗, constant 0 ➙ use ഥ𝑿

◼ What is a good solution?

❑ Biggest groupings ➙ eliminate more variables (literals) in each term

❑ Fewest groupings ➙ fewer terms (gates) all together

❑ OR together all AND terms you create from individual groups

136

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

137

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1

AB = CD

B
F2

AB < CD

C
F3

AB > CD

D

K-map Example: Two-bit Comparator (2)

138

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

139

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11 1

10

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪

K-maps with “Don’t Care”
◼ Don’t Care really means I don’t care what my circuit outputs if this

appears as input

❑ You have an engineering choice to use DON’T CARE patterns
intelligently as 1 or 0 to better simplify the circuit

140

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X

0 1 1 1

1 0 0 0 X X

1 0 0 1

• • •

A B C D W X Y Z

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Example: BCD Increment Function

◼ BCD (Binary Coded Decimal) digits

❑ Encode decimal digits 0 - 9 with bit patterns 00002 — 10012

❑ When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

141

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 1 X X

K-map for BCD Increment Function

A B C D

+ 1

W X Y Z

142

00 01 11 10

00

01 1

11 X X X X

10 1 X X

00 01 11 10

00 1

01 1 1 1

11 X X X X

10 X X

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 X X

W

𝑨𝑩
𝑪𝑫

X

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

◼ Karnaugh maps as a formal systematic approach
for logic simplification

◼ 2-, 3-, 4-variable K-maps

◼ K-maps with “Don’t Care” outputs

143

Next Lecture: Hardware

Description Languages & Verilog

144

