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Agenda

◼ Assignments for this week and the next

◼ Wrap up the Comp Arch Mysteries lectures

❑ Takeaways

◼ Discuss course expectations (very brief)

◼ Combinational Logic Circuits and Design
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Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch my inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Email your summary to digitaltechnik@lists.inf.ethz.ch
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Assignment: Required Readings

◼ This week

❑ Combinational Logic 

◼ P&P Chapter 3 until 3.3     +        H&H Chapter 2

◼ Next week

❑ Hardware Description Languages and Verilog 

◼ H&H Chapter 4 until 4.3 and 4.5

❑ Sequential Logic 

◼ P&P Chapter 3.4 until end   +       H&H Chapter 3 in full

◼ By the end of next week, make sure you are done with 

❑ P&P Chapters 1-3    +      H&H Chapters 1-4
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Recap: Four Mysteries

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memory Performance Attacks (2006-2007)

◼ Memories Forget: Refresh & RAIDR (2011-2012)

5



Takeaways
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Takeaway I

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Takeaway II

Cooperation between 

multiple components and layers 

can enable 

more effective 

solutions and systems
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Recall: The Transformation Hierarchy
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Computer Architecture 
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Some Takeaways

◼ It is an exciting time to be understanding and designing 
computing platforms

◼ Many challenging and exciting problems in platform design

❑ That noone has tackled (or thought about) before

❑ That can have huge impact on the world’s future

◼ Driven by huge hunger for data and its analysis (“Big Data”), 
new applications, ever-greater realism, …

❑ We can easily collect more data than we can analyze/understand

◼ Driven by significant difficulties in keeping up with that 
hunger at the technology layer

❑ Three walls: Energy, reliability, complexity, security
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Increasingly Demanding Applications

Dream

and, they will come
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As applications push boundaries, computing platforms will become increasingly strained.



Dream, and, They Will Come

12Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Dream, and, They Will Come

13
Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/



Increasingly Diverging/Complex Tradeoffs
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Dally, HiPEAC 2015



Increasingly Diverging/Complex Tradeoffs

15

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Example Consequence: Energy Waste
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


New Execution Paradigms Emerging (I)
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New Execution Paradigms Emerging (II)
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Increasingly Complex Systems

Past systems

19

Microprocessor Main Memory Storage (SSD/HDD)



Increasingly Complex Systems

20

(General Purpose) GPUs

Heterogeneous

Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs

Modern systems



Recap: Some Goals of This Course
◼ Teach/enable/empower you to:

❑ Understand how a processor works: principles & precedents 

❑ Implement a simple microprocessor from scratch on an FPGA

❑ Understand how decisions made in hardware affect the 
software/programmer as well as hardware designer

❑ Think critically (in solving problems)

❑ Think broadly across the levels of transformation

❑ Understand how to analyze and make tradeoffs in design
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Slightly More on

Course Info and Logistics
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Course Info: Instructor

◼ Onur Mutlu

❑ Professor @ ETH Zurich, since September 2015 (started May 2016)

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ Office hours: By appointment (email me)

◼ Research and Teaching in:

❑ Computer architecture, computer systems, bioinformatics, hardware security

❑ Memory and storage systems

❑ Hardware security 

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Genome analysis and application-algorithm-hardware co-design

❑ … 
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https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com


A Note on Hardware vs. Software

◼ This course might seem like it is only “Computer Hardware”

◼ However, you will be much more capable if you master both 
hardware and software (and the interface between them)

❑ Can develop better software if you understand the hardware

❑ Can design better hardware if you understand the software 

❑ Can design a better computing system if you understand both

◼ This course covers the HW/SW interface and microarchitecture

❑ We will focus on tradeoffs and how they affect software

◼ Recall the four mysteries
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What Do I Expect From You?

◼ Required background: Binary numbers/arithmetic, reading 

material week 1, enthusiasm to learn & think, common sense

◼ Learn the material thoroughly

❑ attend lectures, do the readings, do the exercises, do the labs

◼ Work hard: this will be a hard but fun & informative course

◼ Ask questions, take notes, participate

◼ Perform the assigned readings

◼ Come to class on time

◼ Start early – do not procrastinate

◼ If you want feedback, come to office hours

◼ Remember “Chance favors the prepared mind.” (Pasteur)
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What Do I Expect From You?

◼ How you prepare and manage your time is very important

◼ There will be 9 lab assignments

❑ They will take time

❑ Start early, work hard

◼ This will be a heavy course

❑ However, you will learn a lot of fascinating topics and 
understand how a microprocessor actually works from the 
ground up 

❑ And, it will hopefully change how you look at and think about 
designs around you
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Computer Architecture as an 

Enabler of the Future
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Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch my inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Email your summary to digitaltechnik@lists.inf.ethz.ch
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… but, first …

◼ Let’s understand the fundamentals…

◼ You can change the world only if you understand it well 
enough…

❑ Especially the basics (fundamentals)

❑ Past and present dominant paradigms

❑ And, their advantages and shortcomings – tradeoffs

❑ And, what remains fundamental across generations 

❑ And, what techniques you can use and develop to solve 
problems
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Fundamental Concepts
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What is A Computer?

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory

31

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What is A Computer?

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What is A Computer?

◼ We will cover all three components
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Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath



Recall: The Transformation Hierarchy
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What We Will Cover (I)

◼ Combinational Logic Design

◼ Hardware Description Languages (Verilog)

◼ Sequential Logic Design

◼ Timing and Verification

◼ ISA (MIPS and LC3b) 

◼ MIPS Assembly Programming
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What We Will Cover (II)

◼ Microarchitecture Basics: Single-cycle

◼ Multi-cycle and Microprogrammed Microarchitectures

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

◼ Out-of-Order Execution

◼ Other Processing Paradigms (SIMD, VLIW, Systolic, …)

◼ Memory and Caches

◼ Virtual Memory
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Processing Paradigms We Will Cover

◼ Pipelining

◼ Out-of-order execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ SIMD Processing (Vector & array, GPUs)

◼ Decoupled Access Execute

◼ Systolic Arrays
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Combinational Logic Circuits 

and Design
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What We Will Learn Today?

◼ Building blocks of modern computers

❑ Transistors

❑ Logic gates

◼ Boolean algebra

◼ Combinational circuits

◼ How to use Boolean algebra to represent combinational 
circuits

◼ Minimizing logic circuits (if time permits)
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(Micro)-Processors
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FPGAs
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Custom ASICs
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They All Look the Same

43

Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance

Programming Executable file Bit file Design masks

Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL

Main Companies Intel, ARM, AMD Xilinx, Altera, Lattice TSMC, UMC, ST,  
Globalfoundries



Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++

Good for Ubiquitous
Simple to use

Prototyping
Small volume

Mass production,
Max performance

Programming Executable file Bit file Design masks

Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL

Main Companies Intel, ARM, AMD Xilinx, Altera, Lattice TSMC, UMC, ST,  
Globalfoundries

Using this language

They All Look the Same
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Want to 

learn how 

these 

work

By 

program

ming 

these



Building Blocks of Modern 

Computers
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Transistors
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Transistors

51

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System

(VM, OS, MM)

Electrons

◼ Computers are built from very large numbers of very 
simple structures

❑ Intel’s Pentium IV microprocessor, first offered 
for sale in 2000, was made up of more than 42 
million MOS transistors

❑ Intel’s Core i7 Broadwell-E, offered for sale in 
2016, is made up of more than 3.2 billion MOS 
transistors

◼ This lecture

❑ How the MOS transistor works (as a logic 
element)

❑ How these transistors are connected to form 
logic gates

❑ How logic gates are interconnected to form larger units that 
are needed to construct a computer



MOS Transistor

◼ By combining

❑ Conductors (Metal)

❑ Insulators (Oxide)

❑ Semiconductors

◼ We get a Transistor (MOS)

◼ Why is this useful?

❑ We can combine many of these to realize simple logic gates

◼ The electrical properties of metal-oxide semiconductors are 
well beyond the scope of what we want to understand in 
this course

❑ They are below our lowest level of abstraction
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Gate

Source Drain



Different Types of MOS Transistors

◼ There are two types of MOS transistors: n-type and p-type

◼ They both operate “logically,” very similar to the way wall 
switches work
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n-type p-type



Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?

❑ In order for the lamp to glow, electrons must flow

❑ In order for electrons to flow, there must be a closed circuit 
from the power supply to the lamp and back to the power 
supply

❑ The lamp can be turned on and off by simply manipulating the 
wall switch to make or break the closed circuit
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◼ Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

If the gate of an n-type transistor is 

supplied with a high voltage, the 

connection from source to drain acts like a 

piece of wire

How Does a Transistor Work?
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Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is 
supplied with a high voltage, the 
connection from source to drain acts like a 
piece of wire

Depending on the technology, 0.3V to 3V

If the gate of the n-type transistor is 
supplied with 0V, the connection between 
the source and drain is broken



Drain

Source

Gate

Power Supply

3 Volt

How Does a Transistor Work?

◼ The n-type transistor in a circuit with a battery and a bulb

◼ The p-type transistor works in exactly the opposite fashion 
from the n-type transistor
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Power Supply

0 Volt

Shorthand notation

The circuit is closed 

when the gate is 

supplied with 3V

The circuit is closed 

when the gate is 

supplied with 0V

Drain

Source

Gate

n-type p-type

Gate



Logic Gates
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One Level Higher in the Abstraction

◼ Now, we know how a MOS transistor works

◼ How do we build logic out of MOS transistors?
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Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem
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Runtime System
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Electrons

◼ We construct basic logic structures out of 
individual MOS transistors

◼ These logical units are named logic gates

❑ They implement simple Boolean functions



Making Logic Blocks Using CMOS Technology

◼ Modern computers use both n-type and p-type transistors, 
i.e. Complementary MOS (CMOS) technology

◼ The simplest logic structure that exists in a modern 
computer
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nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)

n-type

p-type

What does this circuit do?



Functionality of Our CMOS Circuit
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What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor 

pulls the output up



3V

0V

Y = 0V

Functionality of Our CMOS Circuit
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What happens when the input is connected to 3V?

n-type transistor pulls 

the output down

3V

0V

Out (Y)A= 3V



A P N Y

0

1

A P N Y

0 ON OFF 1

1

CMOS NOT Gate

◼ This is actually the CMOS NOT Gate

◼ Why do we call it NOT?

❑ If A = 0V then Y = 3V

❑ If A = 3V then Y = 0V

◼ Digital circuit: one possible interpretation

❑ Interpret 0V as logical (binary) 0 value

❑ Interpret 3V as logical (binary) 1 value
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3V

0V

Out (Y)In (A)

P

N

𝑌 = ҧ𝐴

A P N Y

0 ON OFF 1

1 OFF ON 0



CMOS NOT Gate

◼ This is actually the CMOS NOT Gate

◼ Why do we call it NOT?

❑ If A = 0V then Y = 3V

❑ If A = 3V then Y = 0V

◼ Digital circuit: one possible interpretation

❑ Interpret 0V as logical (binary) 0 value

❑ Interpret 3V as logical (binary) 1 value
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3V

0V

Out (Y)In (A)

P

N

A Y

We call it a NOT gate
or an inverter

Truth table: what would be the logical 

output of the circuit for each possible input

NOT

Y = A

A Y
0 1

1 0

A Y𝑌 = ҧ𝐴



Another CMOS Gate: What Is This?

◼ Let’s build more complex gates!
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3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



CMOS NAND Gate

◼ Let’s build more complex gates!

❑ P1 and P2 are in parallel; only one must be ON to pull the 
output up to 3V

❑ N1 and N2 are connected in series; both must be ON to pull 
the output to 0V
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A B P1 P2 N1 N2 Y

0 0

0 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



CMOS NAND Gate

◼ Let’s build more complex gates!
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𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵NAND

Y = AB

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

A
B

Y

A
Y

B

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



◼ How can we make an AND gate?

CMOS AND Gate
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𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵A B Y
0 0 0
0 1 0
1 0 0

111

A
Y

B

We make an AND gate using

one NAND gate and 

one NOT gate

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3



CMOS NOT, NAND, AND Gates
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A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

B
A Y

NOT

Y = A

A Y
0 1

1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



General CMOS Gate Structure

◼ The general form used to construct any inverting logic gate, 
such as: NOT, NAND, or NOR
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pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

❑ The networks may consist of 
transistors in series or in 
parallel

❑ When transistors are in 
parallel, the network is ON if 
one of the transistors is ON

❑ When transistors are in series, 
the network is ON only if all 
transistors are ON

pMOS transistors are used for pull-up

nMOS transistors are used for pull-down



General CMOS Gate Structure (II)

◼ Exactly one network should be ON, and the other network 
should be OFF at any given time
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pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

❑ If both networks are ON at the 
same time, there is a short 
circuit → likely incorrect 

operation

❑ If both networks are OFF at 
the same time, the output is 
floating → undefined

pMOS transistors are used for pull-up

nMOS transistors are used for pull-down



Digging Deeper: Why This Structure?

◼ MOS transistors are not perfect switches

◼ pMOS transistors pass 1’s well but 0’s poorly

◼ nMOS transistors pass 0’s well but 1’s poorly

◼ pMOS transistors are good at “pulling up” the output

◼ nMOS transistors are good at “pulling down” the output
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3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

See Section 1.7 in H&H 



Digging Deeper: Latency

◼ Which one is faster?

❑ Transistors in series

❑ Transistors in parallel

◼ Series connections are slower than parallel connections

❑ More resistance on the wire

◼ How do you alleviate this latency?

❑ See H&H Section 1.7.8 for an example: pseudo-nMOS Logic
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Digging Deeper: Power Consumption

◼ Dynamic Power Consumption

❑ C * V2 * f

◼ C = capacitance of the circuit (wires and gates)

◼ V = supply voltage

◼ f = charging frequency of the capacitor

◼ Static Power consumption

❑ V * Ileakage

◼ supply voltage * leakage current

◼ See more in H&H Chapter 1.8
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We did not cover the remaining slides. 

They are for your preparation for the 

next lecture.
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Common Logic Gates
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Larger Gates

◼ We can extend the gates to more than 2 inputs

◼ Example: 3-input AND gate, 10-input NOR gate

◼ See your readings
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Aside: Moore’s Law: 
Enabler of Many Gates on a Chip
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An Enabler: Moore’s Law
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Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965.       Component counts double every other year

Image source: Intel



80

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia
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Recommended Reading

◼ Moore, “Cramming more components onto integrated 
circuits,” Electronics Magazine, 1965. 

◼ Only 3 pages

◼ A quote:

“With unit cost falling as the number of components per 
circuit rises, by 1975 economics may dictate squeezing as 
many as 65 000 components on a single silicon chip.”

◼ Another quote:

“Will it be possible to remove the heat generated by tens of 
thousands of components in a single silicon chip?”
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How Do We Keep Moore’s Law  

◼ Manufacturing smaller transistors/structures

❑ Some structures are already a few atoms in size

◼ Developing materials with better properties

❑ Copper instead of Aluminum (better conductor)

❑ Hafnium Oxide, air for Insulators

❑ Making sure all materials are compatible is the challenge

◼ Optimizing the manufacturing steps

❑ How to use 193nm ultraviolet light to pattern 20nm structures

◼ New technologies

❑ FinFET, Gate All Around transistor, Single Electron Transistor…
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Combinational Logic Circuits
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We Can Now Build Logic Circuits

◼ A logic circuit is composed of:

❑ Inputs

❑ Outputs

◼ Functional specification (describes relationship between 
inputs and outputs)

◼ Timing specification (describes the delay between inputs 
changing and outputs responding)
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inputs outputs
functional spec

timing spec

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important 
components of the microarchitecture of a computer!



Types of Logic Circuits

◼ Combinational Logic

❑ Memoryless

❑ Outputs are strictly dependent on the combination of input 
values that are being applied to circuit right now

❑ In some books called Combinatorial Logic

◼ Later we will learn: Sequential Logic

❑ Has memory

◼ Structure stores history → Can ”store” data values

❑ Outputs are determined by previous (historical) and current 
values of inputs
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inputs outputs
functional spec

timing spec



Boolean Equations
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Functional Specification

◼ Functional specification of outputs in terms of inputs

◼ What do we mean by “function”?

❑ Unique mapping from input values to output values

❑ The same input values produce the same output value every 
time

❑ No memory (does not depend on the history of input values)

◼ Example (full 1-bit adder – more later): 

S = F(A, B, Cin)

Cout = G(A, B, Cin) 
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A
S

S      = A  B  C
in

C
out

  = AB + AC
in
 + BC

in

B
C

in

CL
C

out



Simple Equations: NOT / AND / OR
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A

B
A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A

B
A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨

0 1

1 0

𝑨 𝑩 𝑨 • 𝑩

0 0 0

0 1 0

1 0 0

1 1 1

𝑨 𝑩 𝑨 + 𝑩

0 0 0

0 1 1

1 0 1

1 1 1



Boolean Algebra: Big Picture

◼ An algebra on 1’s and 0’s

❑ with AND, OR, NOT operations 

◼ What you start with

❑ Axioms: basic things about objects and operations
you just assume to be true at the start

◼ What you derive first

❑ Laws and theorems: allow you to manipulate Boolean expressions

❑ …also allow us to do some simplification on Boolean expressions

◼ What you derive later

❑ More “sophisticated” properties useful for manipulating digital 
designs represented in the form of Boolean equations

90George Boole, “The Mathematical Analysis of Logic,” 1847.



Boolean Algebra: Axioms

91

1.  B contains at least two elements,  
0 and 1,  such that 0 ≠ 1

2.  Closure a,b ∈ B,
(i)   a + b ∈ B
(ii)  a • b ∈ B

3.  Commutative Laws: a,b ∈ B, 
(i)   a + b = b + a
(ii)  a • b = b • a

4.  Identities: 0, 1 ∈ B
(i)  a + 0 = a
(ii) a • 1 = a

5.  Distributive Laws:
(i)  a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b +  a • c

6.  Complement:
(i) 𝐚 + ഥ𝒂= 1
(ii) 𝐚 • ഥ𝒂 = 0

English version

Result of  AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra

…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...



Boolean Algebra: Duality

◼ Observation 

❑ All the axioms come in “dual” form 

❑ Anything true for an expression also true for its dual

❑ So any derivation you could make that is true, can be flipped into 
dual form, and it stays true

◼ Duality — More formally

❑ A dual of a Boolean expression is derived by replacing 

◼ Every AND operation with... an OR operation

◼ Every OR operation with... an AND

◼ Every constant 1 with... a constant 0

◼ Every constant 0 with... a constant 1

◼ But don’t change any of the literals or play with the complements!
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➙ a + (b • c) = (a + b) • (a + c)

a • (b + c) = (a • b) + (a • c) Example



Boolean Algebra: Useful Laws
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Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of  Complementarity:

Commutative Law:

1.  X + 0 = X
2.  X + 1 = 1

3.  X + X = X

4.  = X

5.  X + = 1

6.  X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self  = self

double complement = 
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D.  X • 1 = X
2D.  X • 0 = 0

3D.  X • X = X

5D.  X • = 0

6D.  X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)



Distributive Laws:

Simplification Theorems:
9.   X • Y  +  X • = X

10.  X + X • Y = X

11.  (X + ) • Y = X • Y

9D.   (X + Y)  •  (X + ) = X

10D.  X • (X + Y) = X

11D.  (X • ) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

Useful Laws (cont)
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8.  X • (Y+ Z) = (X • Y) + (X • Z) 8D.  X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7.  (X + Y) + Z = X + (Y + Z)

= X + Y + Z

7D.  (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…



ത𝐘X • ( Y + ) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things
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Proving theorems via axioms of  Boolean Algebra:

EX: Prove the theorem:   X • Y  +  X • = X

EX2: Prove the theorem:       X  +  X • Y  =  X

X • 1 + X • Y = X Identity (4)

X • ( 1 + Y ) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

ഥ𝒀



DeMorgan’s Law: Enabling Transformations
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 Think of this as a transformation

▪ Let’s say we have:  

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:

12.

12D.  (𝑿 . 𝒀. 𝒁.… ) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = (ഥ𝑨. ഥ𝑩. ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false



DeMorgan’s Law (Continued)
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NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0



Using Boolean Equations 

to Represent a Logic Circuit
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Sum of Products Form: Key Idea

◼ Assume we have the truth table of a Boolean Function

◼ How do we express the function in terms of the inputs in a 
standard manner?

◼ Idea: Sum of Products form

◼ Express the truth table as a two-level Boolean expression

❑ that contains all input variable combinations that result in a 1 
output

❑ If ANY of the combinations of input variables that results in a 
1 is TRUE, then the output is 1

❑ F = OR of all input variable combinations that result in a 1

99



Some Definitions

 Complement: variable with a bar over it

𝑨 , 𝑩 , 𝑪

 Literal: variable or its complement

𝑨 ,  𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

 Implicant: product (AND) of literals

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑪) , (𝑩 ∙ 𝑪)

 Minterm: product (AND) that includes all input variables

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪)

 Maxterm: sum (OR) that includes all input variables

(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)
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Two-Level Canonical (Standard) Forms

◼ Truth table is the unique signature of a Boolean function …

❑ But, it is an expensive representation

◼ A Boolean function can have many alternative Boolean 
expressions

❑ i.e., many alternative Boolean expressions (and gate 
realizations) may have the same truth table (and function)

◼ Canonical form: standard form for a Boolean expression 

❑ Provides a unique algebraic signature 

❑ If they all say the same thing, why do we care?

◼ Different Boolean expressions lead to different gate realizations

101



Two-Level Canonical Forms
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Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.



SOP Form — Why Does It Work?
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0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏— will be 1  

◼ No other product terms will “turn on” — they will all be 0

◼ So if inputs A B C correspond to a product term in expression,
❑ We get  0 + 0 + … + 1 + … + 0 + 0 = 1 for output

◼ If inputs A B C do not correspond to any product term in expression
❑ We get 0 + 0 + … + 0 = 0 for output 

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

This input

Activates
this term



Aside: Notation for SOP
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111 = decimal 7 so this is minterm #7, or  m7

100 = decimal 4 so this is minterm #4, or  m4

◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth 
table…

◼ then we can enumerate each row with the decimal number that 
corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅



Canonical SOP Forms
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Shorthand Notation for
Minterms of  3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪 + ഥ𝑪 + ഥ𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + ഥ𝑪)

= 𝐀ഥ𝑩 + ഥ𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀(ഥ𝑩 + 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂



From Logic to Gates

 SOP (sum-of-products) leads to two-level logic

 Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪
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BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C



0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS
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For the given input, only the shaded sum term 
will equal 0 

Anything ANDed with 0 is 0; Output F will be 0

A product of sums (POS)

0  0    0 0  0   1

sums

products

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩+ ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the 
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0  1 0

We can have another from of representation

DeMorgan of SOP of ഥ𝑭



0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0
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Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 ഥ𝟏 𝟎𝟎 𝟏 ഥ𝟎𝟎 𝟏 𝟎

0  1  0
Input



POS: How to Write It
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Maxterm form:

1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of ഥ𝑭!!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 ഥ𝑩 𝑪

𝑨 + ഥ𝑩 + 𝑪



Canonical POS Forms
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Maxterms

0 0 0 = M0

0 0 1 = M1

0 1 0 = M2

0 1 1 = M3

1 0 0 = M4

1 0 1 = M5

1 1 0 = M6

1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you 
form the 

maxterms around 
the “zeros” of the 

function

This is not the 
complement of 
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩+ 𝑪
𝑨 + 𝑩+ ഥ𝑪
𝑨 + ഥ𝑩 + 𝑪
𝑨 + ഥ𝑩+ ഥ𝑪
ഥ𝑨 + 𝑩+ 𝑪
ഥ𝑨 + 𝑩 + ഥ𝑪
ഥ𝑨 + ഥ𝑩 + 𝐂
ഥ𝑨 + ഥ𝑩 + ഥ𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

ෑ𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅



Useful Conversions
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1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as 

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 =𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅



Combinational Building Blocks 

used in Modern Computers

112



Combinational Building Blocks

◼ Combinational logic is often grouped into larger building 
blocks to build more complex systems

◼ Hides the unnecessary gate-level details to emphasize the 
function of the building block

◼ We now look at: 

❑ Decoders

❑ Multiplexers

❑ Full adder

❑ PLA (Programmable Logic Array)



Decoder

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The one output that is logically 1 is the output 
corresponding to the input pattern that the logic circuit is 
expected to detect

A
1 if A,B is 00

B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1
0

B = 0

0

1

0



Decoder

◼ The decoder is useful in determining how to interpret a bit 
pattern
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A = 1
0

B = 0

0

1

0

❑ It could be the 
address of a row in 
DRAM, that the 
processor intends to 
read from

❑ It could be an 
instruction in the 
program and the 
processor has to 
decide what action to 
do! (based on 
instruction opcode)



Multiplexer (MUX), or Selector

◼ Selects one of the N inputs to connect it to the output

◼ Needs log2N-bit control input

◼ 2:1 MUX A B

S

C

ba

A B

S = 0

C

0A

A



Multiplexer (MUX)

◼ The output C is always connected to either the input A or 
the input B

❑ Output value depends on the value of the select line S

◼ Your task: Draw the schematic for an 8-input (8:1) MUX

❑ Gate level: as a combination of basic AND, OR, NOT gates

❑ Module level: As a combination of 2-input (2:1) MUXes
117

A B

S

C

S C
0 A
1 B



Full Adder (I)

◼ Binary addition

❑ Similar to decimal addition

❑ From right to left

❑ One column at a time

❑ One sum and one carry bit

◼ Truth table of binary addition on one column of bits within 
two n-bit operands
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𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1



Full Adder (II)

◼ Binary addition

❑ N 1-bit additions

❑ SOP of 1-bit addition
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𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Full Adder (1 bit)



4-Bit Adder from Full Adders

◼ Creating a 4-bit adder out of 1-bit full adders

❑ To add two 4-bit binary numbers A and B
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𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎

𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏

+
𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎

𝟏 𝟎 𝟏 𝟏

+

Full Adder

a0b0

s0

0c1
Full Adder

a1b1

s1

c2
Full Adder

a2b2

s2

c3
Full Adder

a3b3

s3

c4



The Programmable Logic Array (PLA)

◼ The below logic structure is a very common building block 
for implementing any collection of logic functions one 
wishes to
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◼ An array of AND gates 
followed by an array of OR 
gates

◼ How do we determine the 
number of AND gates?

❑ Remember SOP: the 
number of possible minterms

❑ For an n-input logic function, we need a PLA with 2n n-input 
AND gates

◼ How do we determine the number of OR gates? The 
number of output columns in the truth table

A

B

C

X

Y

Z

Connections



◼ How do we implement a logic function?

❑ Connect the output of an AND gate to the input of an OR gate 
if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)
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❑ This is a simple programmable 
logic

◼ Programming a PLA: we 
program the connections from 
AND gate outputs to OR gate 
inputs to implement a desired 
logic function

◼ Have you seen any other type of programmable logic?

❑ Yes! An FPGA…

❑ An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections



Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

123

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be

connected to any outputs We do not need

this output



Logical (Functional) Completeness

◼ Any logic function we wish to implement could be 
accomplished with PLA

❑ PLA consists of only AND gates, OR gates, and inverters

❑ We just have to program connections based on SOP of the 
intended logic function

◼ The set of gates {AND, OR, NOT} is logically complete 
because we can build a circuit to carry out the specification 
of any truth table we wish, without using any other kind of 
gate

◼ NAND is also logically complete. So is NOR.

❑ Your task: Prove this.
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More Combinational Building Blocks

◼ H&H Chapter 5

◼ Will be required reading soon.

◼ You will benefit greatly by reading the “combinational” 
parts of that chapter soon.

❑ Sections 5.1 and 5.2
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Logic Simplification:

Karnaugh Maps (K-Maps)
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Recall: Full Adder in SOP Form Logic
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ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si



Goal: Simplified Full Adder
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How do we simplify Boolean logic?



Quick Recap on Logic Simplification

◼ The original Boolean expression (i.e., logic circuit) may not 
be optimal

◼ Can we reduce a given Boolean expression to an equivalent 
expression with fewer terms?

◼ The goal of logic simplification:

❑ Reduce the number of gates/inputs

❑ Reduce implementation cost
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F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today



Logic Simplification

◼ Systematic techniques for simplifications

❑ amenable to automation
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Key Tool:  The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input 
value is not needed

𝑭 = 𝑨ഥ𝑩 + 𝑨𝑩

𝑨ഥ𝑩 + 𝑨𝑩 = 𝑨 ഥ𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = ഥ𝑨ഥ𝑩 + 𝑨ഥ𝑩 = ഥ𝑨 + 𝑨 ഥ𝑩 = ഥ𝑩

Essence of Simplification:

Find two element subsets of the ON-set where only one variable 
changes its value.  This single varying variable can be eliminated!



Complex Cases

◼ One example

◼ Problem
❑ Easy to see how to apply Uniting Theorem…

❑ Hard to know if you applied it in all the right places…

❑ …especially in a function of many more variables

◼ Question
❑ Is there an easier way to potential simplifications?

❑ i.e., potential applications of Uniting Theorem…? 

◼ Answer
❑ Need an intrinsically geometric representation for Boolean f( ) 

❑ Something we can draw, see…
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𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪 + 𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 + 𝑨𝑩𝑪



Karnaugh Map

◼ Karnaugh Map (K-map) method

❑ K-map is an alternative method of representing the truth table 
that helps visualize adjacencies in up to 6 dimensions

❑ Physical adjacency ↔ Logical adjacency
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2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10  is called a
“Gray Code” — only a single bit changes from

code word to next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪



Karnaugh Map Methods
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Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪



K-map Cover - 4 Input Variables
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00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + ഥ𝑩ഥ𝑫 + 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀



K-map Rules

◼ What can be legally combined (circled) in the K-map?

❑ Rectangular groups of size 2k for any integer k

❑ Each cell has the same value (1, for now)

❑ All values must be adjacent

◼ Wrap-around edge is okay

◼ How does a group become a term in an expression?

❑ Determine which literals are constant, and which vary across group

❑ Eliminate varying literals, then AND the constant literals

◼ constant 1 ➙ use 𝐗,  constant 0 ➙ use ഥ𝑿

◼ What is a good solution?

❑ Biggest groupings ➙ eliminate more variables (literals) in each term 

❑ Fewest groupings ➙ fewer terms (gates) all together

❑ OR together all AND terms you create from individual groups
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K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions
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A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1

AB = CD

B
F2

AB < CD

C
F3

AB > CD

D



K-map Example: Two-bit Comparator (2)
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A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪



K-map Example: Two-bit Comparator (3)
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A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11 1

10

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪



K-maps with “Don’t Care”
◼ Don’t Care really means I don’t care what my circuit outputs if this 

appears as input

❑ You have an engineering choice to use DON’T CARE patterns 
intelligently as 1 or 0 to better simplify the circuit
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I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X

0 1 1 1

1 0 0 0 X X

1 0 0 1

• • •



A B C D W X Y Z

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Example: BCD Increment Function

◼ BCD (Binary Coded Decimal) digits 

❑ Encode decimal digits 0 - 9 with bit patterns 00002 — 10012

❑ When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1
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These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”



00 01 11 10

00 1 1

01 1 1

11 X X X X

10 1 X X

K-map for BCD Increment Function

A B C D

+         1

W X Y Z
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00 01 11 10

00

01 1

11 X X X X

10 1 X X

00 01 11 10

00 1

01 1 1 1

11 X X X X

10 X X

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 X X

W

𝑨𝑩
𝑪𝑫

X

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

ZY

Z (without don’t cares) = A'D' + B'C'D’ 

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪



K-map Summary

◼ Karnaugh maps as a formal systematic approach
for logic simplification

◼ 2-, 3-, 4-variable K-maps

◼ K-maps with “Don’t Care” outputs
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Next Lecture: Hardware 

Description Languages & Verilog
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