
Design of Digital Circuits

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zurich

Spring 2019

7 March 2019

Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch my inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of the lecture

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Upload PDF file to Moodle – Deadline: Friday, March 15.
2

https://www.youtube.com/watch?v=kgiZlSOcGFM

Assignment: Required Readings

◼ Last+This week

❑ Combinational Logic

◼ P&P Chapter 3 until 3.3 + H&H Chapter 2

◼ This+Next week

❑ Hardware Description Languages and Verilog

◼ H&H Chapter 4 until 4.3 and 4.5

❑ Sequential Logic

◼ P&P Chapter 3.4 until end + H&H Chapter 3 in full

◼ By the end of next week, make sure you are done with

❑ P&P Chapters 1-3 + H&H Chapters 1-4

3

Combinational Logic Circuits

and Design

4

What We Will Learn Today?

◼ Building blocks of modern computers

❑ Transistors

❑ Logic gates

◼ Boolean algebra

◼ Combinational circuits

◼ How to use Boolean algebra to represent combinational
circuits

◼ Minimizing logic circuits (if time permits)

5

Recall: CMOS NOT, NAND, AND Gates

6

A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

B
A Y

NOT

Y = A

A Y
0 1

1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Recall: General CMOS Gate Structure

◼ The general form used to construct any inverting logic gate,
such as: NOT, NAND, or NOR

7

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

❑ The networks may consist of
transistors in series or in

parallel

❑ When transistors are in
parallel, the network is ON if
one of the transistors is ON

❑ When transistors are in series,

the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up

nMOS transistors are used for pull-down

Recall: Digging Deeper: Power Consumption

◼ Dynamic Power Consumption

❑ C * V2 * f

◼ C = capacitance of the circuit (wires and gates)

◼ V = supply voltage

◼ f = charging frequency of the capacitor

◼ Static Power consumption

❑ V * Ileakage

◼ supply voltage * leakage current

◼ Energy Consumption

❑ Power * Time

◼ See more in H&H Chapter 1.8

8

Common Logic Gates

9

Larger Gates

◼ We can extend the gates to more than 2 inputs

◼ Example: 3-input AND gate, 10-input NOR gate

◼ See your readings

10

Aside: Moore’s Law:
Enabler of Many Gates on a Chip

11

An Enabler: Moore’s Law

12

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

13

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

14

Recommended Reading

◼ Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

◼ Only 3 pages

◼ A quote:

“With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

◼ Another quote:

“Will it be possible to remove the heat generated by tens of
thousands of components in a single silicon chip?”

15

How Do We Keep Moore’s Law

◼ Manufacturing smaller transistors/structures

❑ Some structures are already a few atoms in size

◼ Developing materials with better properties

❑ Copper instead of Aluminum (better conductor)

❑ Hafnium Oxide, air for Insulators

❑ Making sure all materials are compatible is the challenge

◼ Optimizing the manufacturing steps

❑ How to use 193nm ultraviolet light to pattern 20nm structures

◼ New technologies

❑ FinFET, Gate All Around transistor, Single Electron Transistor…

16

Combinational Logic Circuits

17

We Can Now Build Logic Circuits

◼ A logic circuit is composed of:

❑ Inputs

❑ Outputs

◼ Functional specification (describes relationship between

inputs and outputs)

◼ Timing specification (describes the delay between inputs
changing and outputs responding)

18

inputs outputs
functional spec

timing spec

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important
components of the microarchitecture of a computer!

Types of Logic Circuits

◼ Combinational Logic

❑ Memoryless

❑ Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

❑ In some books called Combinatorial Logic

◼ Later we will learn: Sequential Logic

❑ Has memory

◼ Structure stores history → Can ”store” data values

❑ Outputs are determined by previous (historical) and current
values of inputs

19

inputs outputs
functional spec

timing spec

Boolean Equations

20

Functional Specification

◼ Functional specification of outputs in terms of inputs

◼ What do we mean by “function”?

❑ Unique mapping from input values to output values

❑ The same input values produce the same output value every
time

❑ No memory (does not depend on the history of input values)

◼ Example (full 1-bit adder – more later):

S = F(A, B, Cin)

Cout = G(A, B, Cin)

21

A
S

S = A  B  C
in

C
out

 = AB + AC
in
 + BC

in

B
C

in

CL
C

out

Simple Equations: NOT / AND / OR

22

A

B
A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A

B
A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0
𝑨 𝑨

0 1

1 0

𝑨 𝑩 𝑨 • 𝑩

0 0 0

0 1 0

1 0 0

1 1 1

𝑨 𝑩 𝑨 +𝑩

0 0 0

0 1 1

1 0 1

1 1 1

Boolean Algebra: Big Picture

◼ An algebra on 1’s and 0’s

❑ with AND, OR, NOT operations

◼ What you start with

❑ Axioms: basic things about objects and operations
you just assume to be true at the start

◼ What you derive first

❑ Laws and theorems: allow you to manipulate Boolean expressions

❑ …also allow us to do some simplification on Boolean expressions

◼ What you derive later

❑ More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations

23George Boole, “The Mathematical Analysis of Logic,” 1847.

Boolean Algebra: Axioms

24

1. B contains at least two elements,
0 and 1, such that 0 ≠ 1

2. Closure a,b ∈ B,
(i) a + b ∈ B
(ii) a • b ∈ B

3. Commutative Laws: a,b ∈ B,
(i) a + b = b + a
(ii) a • b = b • a

4. Identities: 0, 1 ∈ B
(i) a + 0 = a
(ii) a • 1 = a

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

6. Complement:
(i) 𝐚 + ഥ𝒂= 1
(ii) 𝐚 • ഥ𝒂 = 0

English version

Result of AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra

…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...

Boolean Algebra: Duality

◼ Observation

❑ All the axioms come in “dual” form

❑ Anything true for an expression also true for its dual

❑ So any derivation you could make that is true, can be flipped into
dual form, and it stays true

◼ Duality — More formally

❑ A dual of a Boolean expression is derived by replacing

◼ Every AND operation with... an OR operation

◼ Every OR operation with... an AND

◼ Every constant 1 with... a constant 0

◼ Every constant 0 with... a constant 1

◼ But don’t change any of the literals or play with the complements!

25

➙ a + (b • c) = (a + b) • (a + c)

a • (b + c) = (a • b) + (a • c) Example

Boolean Algebra: Useful Laws

26

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

Useful Laws (cont)

27

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z

7D. (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

ത𝐘X • (Y +) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things

28

Proving theorems via axioms of Boolean Algebra:

EX: Prove the theorem: X • Y + X • = X

EX2: Prove the theorem: X + X • Y = X

X • 1 + X • Y = X Identity (4)

X • (1 + Y) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

ഥ𝒀

DeMorgan’s Law: Enabling Transformations

29

 Think of this as a transformation

▪ Let’s say we have:

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:

12.

12D. (𝑿 . 𝒀. 𝒁. …) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁+⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨+ 𝑩 +𝑪) = (ഥ𝑨. ഥ𝑩.ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan’s Law (Continued)

30

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0

Using Boolean Equations

to Represent a Logic Circuit

31

Sum of Products Form: Key Idea

◼ Assume we have the truth table of a Boolean Function

◼ How do we express the function in terms of the inputs in a
standard manner?

◼ Idea: Sum of Products form

◼ Express the truth table as a two-level Boolean expression

❑ that contains all input variable combinations that result in a 1

output

❑ If ANY of the combinations of input variables that results in a
1 is TRUE, then the output is 1

❑ F = OR of all input variable combinations that result in a 1

32

Some Definitions

 Complement: variable with a bar over it

𝑨 , 𝑩 , 𝑪

 Literal: variable or its complement

𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

 Implicant: product (AND) of literals

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑪) , (𝑩 ∙ 𝑪)

 Minterm: product (AND) that includes all input variables

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪)

 Maxterm: sum (OR) that includes all input variables

(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 +𝑩 + 𝑪)

33

Two-Level Canonical (Standard) Forms

◼ Truth table is the unique signature of a Boolean function …

❑ But, it is an expensive representation

◼ A Boolean function can have many alternative Boolean

expressions

❑ i.e., many alternative Boolean expressions (and gate

realizations) may have the same truth table (and function)

◼ Canonical form: standard form for a Boolean expression

❑ Provides a unique algebraic signature

❑ If they all say the same thing, why do we care?

◼ Different Boolean expressions lead to different gate realizations

34

Two-Level Canonical Forms

35

Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does It Work?

36

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏 — will be 1

◼ No other product terms will “turn on” — they will all be 0

◼ So if inputs A B C correspond to a product term in expression,
❑ We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output

◼ If inputs A B C do not correspond to any product term in expression
❑ We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

This input

Activates
this term

Aside: Notation for SOP

37

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth
table…

◼ then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Canonical SOP Forms

38

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪+ ഥ𝑪 + ഥ𝑨𝐁𝐂+ 𝐀𝐁(𝑪+ ഥ𝑪)

= 𝐀ഥ𝑩+ ഥ𝑨𝐁𝐂+ 𝐀𝐁

= 𝐀(ഥ𝑩+ 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀+ 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

From Logic to Gates

 SOP (sum-of-products) leads to two-level logic

 Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪

39

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS

40

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

A product of sums (POS)

0 0 0 0 0 1

sums

products

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 +𝑩 + 𝑪 𝑨+𝑩 + ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0 1 0

We can have another from of representation

DeMorgan of SOP of ഥ𝑭

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0

41

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 ഥ𝟏 𝟎𝟎 𝟏 ഥ𝟎𝟎 𝟏 𝟎

0 1 0
Input

POS: How to Write It

42

Maxterm form:

1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of ഥ𝑭!!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 ഥ𝑩 𝑪

𝑨 + ഥ𝑩 + 𝑪

Canonical POS Forms

43

Maxterms

0 0 0 = M0

0 0 1 = M1

0 1 0 = M2

0 1 1 = M3

1 0 0 = M4

1 0 1 = M5

1 1 0 = M6

1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you
form the

maxterms around
the “zeros” of the

function

This is not the
complement of
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 +𝑩 + 𝑪
𝑨 +𝑩 + ഥ𝑪
𝑨 + ഥ𝑩 + 𝑪
𝑨 + ഥ𝑩 + ഥ𝑪
ഥ𝑨 +𝑩 + 𝑪
ഥ𝑨 + 𝑩+ ഥ𝑪
ഥ𝑨 + ഥ𝑩 + 𝐂
ഥ𝑨 + ഥ𝑩 + ഥ𝑪

𝐅 = (𝑨 + 𝑩+ 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩+ 𝑪)

ෑ𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅

Useful Conversions

44

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 = ෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ෍𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 = ෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨, 𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

= ෍𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅

Combinational Building Blocks

used in Modern Computers

45

Combinational Building Blocks

◼ Combinational logic is often grouped into larger building
blocks to build more complex systems

◼ Hides the unnecessary gate-level details to emphasize the

function of the building block

◼ We now look at:

❑ Decoders

❑ Multiplexers

❑ Full adder

❑ PLA (Programmable Logic Array)

Decoder

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The one output that is logically 1 is the output
corresponding to the input pattern that the logic circuit is

expected to detect
A

1 if A,B is 00
B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1
0

B = 0

0

1

0

Decoder

◼ The decoder is useful in determining how to interpret a bit
pattern

48

A = 1
0

B = 0

0

1

0

❑ It could be the
address of a row in

DRAM, that the
processor intends to
read from

❑ It could be an
instruction in the
program and the
processor has to

decide what action to
do! (based on
instruction opcode)

Multiplexer (MUX), or Selector

◼ Selects one of the N inputs to connect it to the output

◼ Needs log2N-bit control input

◼ 2:1 MUX A B

S

C

ba

A B

S = 0

C

0A

A

Multiplexer (MUX)

◼ The output C is always connected to either the input A or
the input B

❑ Output value depends on the value of the select line S

◼ Your task: Draw the schematic for an 8-input (8:1) MUX

❑ Gate level: as a combination of basic AND, OR, NOT gates

❑ Module level: As a combination of 2-input (2:1) MUXes
50

A B

S

C

S C
0 A
1 B

Full Adder (I)

◼ Binary addition

❑ Similar to decimal addition

❑ From right to left

❑ One column at a time

❑ One sum and one carry bit

◼ Truth table of binary addition on one column of bits within

two n-bit operands

51

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder (II)

◼ Binary addition

❑ N 1-bit additions

❑ SOP of 1-bit addition

52

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Full Adder (1 bit)

4-Bit Adder from Full Adders

◼ Creating a 4-bit adder out of 1-bit full adders

❑ To add two 4-bit binary numbers A and B

53

𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎

𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏

+
𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎

𝟏 𝟎 𝟏 𝟏

+

Full Adder

a0b0

s0

0c1
Full Adder

a1b1

s1

c2
Full Adder

a2b2

s2

c3
Full Adder

a3b3

s3

c4

The Programmable Logic Array (PLA)

◼ The below logic structure is a very common building block
for implementing any collection of logic functions one

wishes to

54

◼ An array of AND gates
followed by an array of OR

gates

◼ How do we determine the
number of AND gates?

❑ Remember SOP: the
number of possible minterms

❑ For an n-input logic function, we need a PLA with 2n n-input
AND gates

◼ How do we determine the number of OR gates? The
number of output columns in the truth table

A

B

C

X

Y

Z

Connections

◼ How do we implement a logic function?

❑ Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)

55

❑ This is a simple programmable
logic

◼ Programming a PLA: we
program the connections from

AND gate outputs to OR gate
inputs to implement a desired

logic function

◼ Have you seen any other type of programmable logic?

❑ Yes! An FPGA…

❑ An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

56

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be

connected to any outputs We do not need

this output

Logical (Functional) Completeness

◼ Any logic function we wish to implement could be
accomplished with a PLA

❑ PLA consists of only AND gates, OR gates, and inverters

❑ We just have to program connections based on SOP of the
intended logic function

◼ The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification

of any truth table we wish, without using any other kind of
gate

◼ NAND is also logically complete. So is NOR.

❑ Your task: Prove this.

57

More Combinational Building Blocks

◼ H&H Chapter 2 in full

❑ Required Reading

❑ E.g., see Tri-state Buffer and Z values in Section 2.6

◼ H&H Chapter 5

❑ Will be required reading soon.

◼ You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

❑ Sections 5.1 and 5.2

58

Tri-State Buffer

◼ A tri-state buffer enables gating of different signals onto a
wire

◼ Floating signal (Z): Signal that is not driven by any circuit

❑ Open circuit, floating wire

59

Example: Use of Tri-State Buffers

◼ Imagine a wire connecting the CPU and memory

❑ At any time only the CPU or the memory can place a value on
the wire, both not both

❑ You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

60

Example Design with Tri-State Buffers

61

CPU

Memory

GateMem

GateCPU

Shared Bus

Logic Simplification:

Karnaugh Maps (K-Maps)

62

Recall: Full Adder in SOP Form Logic

63

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Goal: Simplified Full Adder

64

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

◼ The original Boolean expression (i.e., logic circuit) may not
be optimal

◼ Can we reduce a given Boolean expression to an equivalent

expression with fewer terms?

◼ The goal of logic simplification:

❑ Reduce the number of gates/inputs

❑ Reduce implementation cost

65

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification

◼ Systematic techniques for simplifications

❑ amenable to automation

66

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨ഥ𝑩+ 𝑨𝑩

𝑨ഥ𝑩+ 𝑨𝑩 = 𝑨 ഥ𝑩+ 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = ഥ𝑨ഥ𝑩+ 𝑨ഥ𝑩 = ഥ𝑨+ 𝑨 ഥ𝑩 = ഥ𝑩

Essence of Simplification:

Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Complex Cases

◼ One example

◼ Problem
❑ Easy to see how to apply Uniting Theorem…

❑ Hard to know if you applied it in all the right places…

❑ …especially in a function of many more variables

◼ Question
❑ Is there an easier way to find potential simplifications?

❑ i.e., potential applications of Uniting Theorem…?

◼ Answer
❑ Need an intrinsically geometric representation for Boolean f()

❑ Something we can draw, see…

67

𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪+ 𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 + 𝑨𝑩𝑪

Karnaugh Map

◼ Karnaugh Map (K-map) method

❑ K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

❑ Physical adjacency ↔ Logical adjacency

68

2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪

Karnaugh Map Methods

69

Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

70

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) = ෍𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀+ ഥ𝑩ഥ𝑫+ 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀

Logic Minimization Using K-Maps

◼ Very simple guideline:

❑ Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles

◼ Each circle should be as large as possible

❑ Read off the implicants that were circled

◼ More formally:

❑ A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

❑ Each circle on the K-map represents an implicant

❑ The largest possible circles are prime implicants

72

K-map Rules

◼ What can be legally combined (circled) in the K-map?

❑ Rectangular groups of size 2k for any integer k

❑ Each cell has the same value (1, for now)

❑ All values must be adjacent

◼ Wrap-around edge is okay

◼ How does a group become a term in an expression?

❑ Determine which literals are constant, and which vary across group

❑ Eliminate varying literals, then AND the constant literals

◼ constant 1 ➙ use 𝐗, constant 0 ➙ use ഥ𝑿

◼ What is a good solution?

❑ Biggest groupings ➙ eliminate more variables (literals) in each term

❑ Fewest groupings ➙ fewer terms (gates) all together

❑ OR together all AND terms you create from individual groups

73

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

74

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1

AB = CD

B
F2

AB < CD

C
F3

AB > CD

D

K-map Example: Two-bit Comparator (2)

75

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

76

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪

Design of Digital Circuits

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zurich

Spring 2019

7 March 2019

We did not cover the remaining slides.

They are for your preparation for the

next lecture.

78

K-maps with “Don’t Care”
◼ Don’t Care really means I don’t care what my circuit outputs if this

appears as input

❑ You have an engineering choice to use DON’T CARE patterns
intelligently as 1 or 0 to better simplify the circuit

79

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X

0 1 1 1

1 0 0 0 X X

1 0 0 1

• • •

A B C D W X Y Z

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Example: BCD Increment Function

◼ BCD (Binary Coded Decimal) digits

❑ Encode decimal digits 0 - 9 with bit patterns 00002 — 10012

❑ When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

80

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 1 X X

K-map for BCD Increment Function

A B C D

+ 1

W X Y Z

81

00 01 11 10

00

01 1

11 X X X X

10 1 X X

00 01 11 10

00 1

01 1 1 1

11 X X X X

10 X X

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 X X

W
𝑨𝑩

𝑪𝑫
X

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

◼ Karnaugh maps as a formal systematic approach

for logic simplification

◼ 2-, 3-, 4-variable K-maps

◼ K-maps with “Don’t Care” outputs

◼ H&H Section 2.7
82

Hardware Description Languages

& Verilog (Combinational Logic)

83

Agenda

◼ Implementing Combinational Logic

❑ Hardware Description Languages

❑ Hardware Design Methodologies

❑ Verilog

84

2017: Intel Kaby Lake

86

• 64-bit processor

• 4 cores, 8 threads

• 14-19 stage
pipeline

• 3.9 GHz clock

• 1.75B transistors

• In ~47 years,
about 1,000,000-
fold growth in

transistor count
and performance!

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

How to Deal with This Complexity?

◼ Hardware Description Languages!

◼ A fact of life in computer engineering

❑ Need to be able to specify complex designs

◼ communicate with others in your design group

❑ … and to simulate their behavior

◼ yes, it’s what I want to build

❑ … and to synthesize (automatically design) portions of it

◼ have an error-free path to implementation

◼ Hardware Description Languages

❑ Many similarly featured HDLs (e.g., Verilog, VHDL, ...)

◼ if you learn one, it is not hard to learn another

◼ mapping between languages is typically mechanical, especially for
the commonly used subset

87

Hardware Description Languages

◼ Two well-known hardware description languages

◼ Verilog

❑ Developed in 1984 by Gateway Design Automation

❑ Became an IEEE standard (1364) in 1995

❑ More popular in US

◼ VHDL (VHSIC Hardware Description Language)

❑ Developed in 1981 by the Department of Defense

❑ Became an IEEE standard (1076) in 1987

❑ More popular in Europe

◼ In this course we will use Verilog

88

Hardware Design Using Verilog

89

Hierarchical Design

◼ Design hierarchy of modules is built
using instantiation

❑ Predefined “primitive” gates (AND, OR, …)

❑ Simple modules are built by instantiating
these gates (components like MUXes)

❑ Other modules are built by instantiating
simple components, …

◼ Hierarchy controls complexity

❑ Analogous to the use of function
abstraction in SW

◼ Complexity is a BIG deal

❑ In real world how big is size of one “blob”
of random logic that we would describe as
an HDL, then synthesize to gates?

90

How many?

https://techreport.com/review/21987/intel

-core-i7-3960x-processor

https://techreport.com/review/21987/intel-core-i7-3960x-processor

Top-Down Design Methodology

◼ We define the top-level module and identify the
sub-modules necessary to build the top-level module

◼ Subdivide the sub-modules until we come to leaf cells

❑ Leaf cell: circuit components that cannot further be divided
(e.g., logic gates, cell libraries)

91

Top-level
Module

Sub-module Sub-module Sub-module

… … ……

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Bottom-Up Design Methodology

92

◼ We first identify the building blocks that are available to us

◼ Build bigger modules, using these building blocks

◼ These modules are then used for higher-level modules until
we build the top-level module in the design

Top-level
Module

Sub-module Sub-module Sub-module

… … ……

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Defining a Module in Verilog

◼ A module is the main building block in Verilog

◼ We first need to define:

❑ Name of the module

❑ Directions of its ports (e.g., input, output)

❑ Names of its ports

◼ Then:

❑ Describe the functionality of the module

a
b y
c

Verilog

Module

93

inputs output

example

Implementing a Module in Verilog

a
b y
c

Verilog

Module

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description

endmodule

94

Port list
(inputs and outputs)

ports have a
declared type

a module
definition

name of
module

example

◼ The following two codes are functionally identical

A Question of Style

module test (a, b, y);
input a;
input b;
output y;

endmodule

module test (input a,
input b,
output y);

endmodule

95

port name and direction declaration

can be combined

What If We Have Multi-bit Input/Output?

◼ You can also define multi-bit Input/Output (Bus)

❑ [range_end : range_start]

❑ Number of bits: range_end – range_start + 1

◼ Example:

◼ a represents a 32-bit value, so we prefer to define it as:
[31:0] a

◼ It is preferred over [0:31] a which resembles array definition

◼ It is good practice to be consistent with the representation
of multi-bit signals, i.e., always [31:0] or always [0:31]

input [31:0] a; // a[31], a[30] .. a[0]
output [15:8] b1; // b1[15], b1[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b2[0]
input c; // single signal

96

Manipulating Bits

// You can assign partial buses
wire [15:0] longbus;
wire [7:0] shortbus;
assign shortbus = longbus[12:5];

// Concatenating is by {}
assign y = {a[2],a[1],a[0],a[0]};

// Possible to define multiple copies
assign x = {a[0], a[0], a[0], a[0]}
assign y = { 4{a[0]} }

97

◼ Bit Slicing

◼ Concatenation

◼ Duplication

Basic Syntax

◼ Verilog is case sensitive

❑ SomeName and somename are not the same!

◼ Names cannot start with numbers:

❑ 2good is not a valid name

◼ Whitespaces are ignored

// Single line comments start with a //

/* Multiline comments
are defined like this */

98

Two Main Styles of HDL Implementation

◼ Structural (Gate-Level)

❑ The module body contains gate-level description of the circuit

❑ Describe how modules are interconnected

❑ Each module contains other modules (instances)

❑ … and interconnections between these modules

❑ Describes a hierarchy

◼ Behavioral

❑ The module body contains functional description of the circuit

❑ Contains logical and mathematical operators

❑ Level of abstraction is higher than gate-level

◼ Many possible gate-level realizations of a behavioral description

◼ Practical circuits would use a combination of both

99

Structural (Gate-Level) HDL

100

Structural HDL: Instantiating a Module

101

Schematic of module “top” that is built from
two instances of module “small”

i_first
i_second

Structural HDL Example

◼ Module Definitions in Verilog

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

102

i_first
i_second

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

◼ Defining wires (module interconnections)

103

i_first
i_second

◼ The first instantiation of the “small” module

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// instantiate small once
small i_first (.A(A),

.B(SEL),

.Y(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

104

i_first
i_second

◼ The second instantiation of the “small” module

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// instantiate small once
small i_first (.A(A),

.B(SEL),

.Y(n1));

// instantiate small second time
small i_second (.A(n1),

.B(C),

.Y(Y));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

105

i_first
i_second

◼ Short form of module instantiation

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// alternative
small i_first (A, SEL, n1);

/* Shorter instantiation,
pin order very important */

// any pin order, safer choice
small i_second (.B(C),

.Y(Y),

.A(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

106

i_first
i_second

Structural HDL Example 2

◼ Verilog supports basic logic gates as predefined primitives

❑ These primitives are instantiated like modules except that they
are predefined in Verilog and do not need a module definition

107

module mux2(input [3:0] d0, d1,
input s,
output [3:0] y);

and g1 (y1, d0, ns);
and g2 (y2, d1, s);
or g3 (y, y1, y2);
not g4 (ns, s);

endmodule

Behavioral HDL

108

Behavioral HDL: Defining Functionality

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |
a & ~b & c;

endmodule

109

Behavioral HDL: Schematic View

110

A behavioral implementation still models a
hardware circuit!

ANDa

y
b

c

AND

AND

OR

Bitwise Operators in Behavioral Verilog

module gates(input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit buses */

assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

111

Bitwise Operators: Schematic View

112

Reduction Operators in Behavioral Verilog

module and8(input [7:0] a,
output y);

assign y = &a;

// &a is much easier to write than
// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];

endmodule

113

Reduction Operators: Schematic View

114

ANDa[7:0]
[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

y

8-input AND gate

Conditional Assignment in Behavioral Verilog

◼ ? : is also called a ternary operator as it operates on three
inputs:

❑ s

❑ d1

❑ d0

module mux2(input [3:0] d0, d1,
input s,
output [3:0] y);

assign y = s ? d1 : d0;
// if (s) then y=d1 else y=d0;

endmodule

115

Conditional Assignment: Schematic View

116

More Complex Conditional Assignments

module mux4(input [3:0] d0, d1, d2, d3
input [1:0] s,
output [3:0] y);

assign y = s[1] ? (s[0] ? d3 : d2)
: (s[0] ? d1 : d0);

// if (s1) then
// if (s0) then y=d3 else y=d2
// else
// if (s0) then y=d1 else y=d0

endmodule

117

Even More Complex Conditional Assignments

module mux4(input [3:0] d0, d1, d2, d3
input [1:0] s,
output [3:0] y);

assign y = (s == 2’b11) ? d3 :
(s == 2’b10) ? d2 :
(s == 2’b01) ? d1 :
d0;

// if (s = “11”) then y= d3
// else if (s = “10”) then y= d2
// else if (s = “01”) then y= d1
// else y= d0

endmodule

118

Precedence of Operations in Verilog

Highest

Lowest

119

How to Express Numbers ?

N’Bxx
8’b0000_0001

◼ (N) Number of bits

❑ Expresses how many bits will be used to store the value

◼ (B) Base

❑ Can be b (binary), h (hexadecimal), d (decimal), o (octal)

◼ (xx) Number

❑ The value expressed in base

❑ Apart from numbers, it can also have X and Z as values

❑ Underscore _ can be used to improve readability

120

Number Representation in Verilog

Verilog Stored Number Verilog Stored Number

4’b1001 1001 4’d5 0101

8’b1001 0000 1001 12’hFA3 1111 1010 0011

8’b0000_1001 0000 1001 8’o12 00 001 010

8’bxX0X1zZ1 XX0X 1ZZ1 4’h7 0111

‘b01 0000 .. 0001 12’h0 0000 0000 0000

121

32 bits

(default)

Floating Signals (Z)

module tristate_buffer(input [3:0] a,
input en,
output [3:0] y);

assign y = en ? a : 4'bz;

endmodule

y_1[3:0]

y[3:0]
[3:0]

en

a[3:0]
[3:0] [3:0][3:0]

122

◼ Floating signal: Signal that is not driven by any circuit

❑ Open circuit, floating wire

◼ Also known as: high impedance, hi-Z, tri-stated signals

Aside: Tri-State Buffer

◼ A tri-state buffer enables gating of different signals onto a
wire

123

Example: Use of Tri-State Buffers

◼ Imagine a wire connecting the CPU and memory

❑ At any time only the CPU or the memory can place a value on
the wire, both not both

❑ You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

124

Example Design with Tri-State Buffers

125

CPU

Memory

GateMem

GateCPU

Shared Bus

Truth Table for AND with Z and X

AND
A

0 1 Z X

B

0 0 0 0 0

1 0 1 X X

Z 0 X X X

X 0 X X X

126

What Happens with HDL Code?

◼ Synthesis

❑ Modern tools are able to map a HDL code into
low-level cell libraries

❑ They can perform many optimizations

❑ … however they can not guarantee that a solution is optimal

◼ Mainly due to computationally expensive placement and routing
algorithms

❑ Most common way of Digital Design these days

◼ Simulation

❑ Allows the behavior of the circuit to be verified without

actually manufacturing the circuit

❑ Simulators can work on structural or behavioral HDL

127

Recall This “example”

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |
a & ~b & c;

endmodule

128

Synthesizing the “example”

129

ANDa

y
b

c

AND

AND

OR

Simulating the “example”

130

time

s
ig

n
a
ls

Waveform Diagram

1

1

1

0

ANDa

y
b

c

AND

AND

OR

What We Have Seen So Far

◼ Describing structural hierarchy with Verilog

❑ Instantiate modules in an other module

◼ Describing functionality using behavioral modeling

◼ Writing simple logic equations

❑ We can write AND, OR, XOR, …

◼ Multiplexer functionality

❑ If … then … else

◼ We can describe constants

◼ But there is more...

131

More Verilog Examples

◼ We can write Verilog code in many different ways

◼ Let’s see how we can express the same functionality by
developing Verilog code

❑ At low-level

◼ Poor readability

◼ More optimization opportunities

❑ At a higher-level of abstraction

◼ Better readability

◼ Limited optimization

132

Comparing Two Numbers

◼ Defining your own gates as new modules

◼ We will use our gates to show the different ways of
implementing a 4-bit comparator (equality checker)

module MyXnor (input a, b,
output z);

assign z = ~(a ^ b); //not XOR

endmodule

module MyAnd (input a, b,
output z);

assign z = a & b; // AND

endmodule

An XNOR gate An AND gate

133

Gate-Level Implementation

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3, c01, c23;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
MyAnd haha (.A(c0), .B(c1), .Z(c01)); // AND
MyAnd hoho (.A(c2), .B(c3), .Z(c23)); // AND
MyAnd bubu (.A(c01), .B(c23), .Z(eq)); // AND

endmodule

134

Using Logical Operators

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3, c01, c23;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
assign c01 = c0 & c1;
assign c23 = c2 & c3;
assign eq = c01 & c23;

endmodule

135

Eliminating Intermediate Signals

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
// assign c01 = c0 & c1;
// assign c23 = c2 & c3;
// assign eq = c01 & c23;
assign eq = c0 & c1 & c2 & c3;

endmodule

136

Multi-Bit Signals (Bus)

module compare (input [3:0] a, input [3:0] b,
output eq);

wire [3:0] c; // bus definition

MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0])); // XNOR
MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1])); // XNOR
MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2])); // XNOR
MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3])); // XNOR

assign eq = &c; // short format

endmodule

137

Bitwise Operations

module compare (input [3:0] a, input [3:0] b,
output eq);

wire [3:0] c; // bus definition

// MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]));
// MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]));
// MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]));
// MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]));

assign c = ~(a ^ b); // XNOR

assign eq = &c; // short format

endmodule

138

Highest Abstraction Level: Comparing Two Numbers

module compare (input [3:0] a, input [3:0] b,
output eq);

// assign c = ~(a ^ b); // XNOR

// assign eq = &c; // short format

assign eq = (a == b) ? 1 : 0; // really short

endmodule

139

Writing More Reusable Verilog Code

◼ We have a module that can compare two 4-bit numbers

◼ What if in the overall design we need to compare:

❑ 5-bit numbers?

❑ 6-bit numbers?

❑ …

❑ N-bit numbers?

❑ Writing code for each case looks tedious

◼ What could be a better way?

140

Parameterized Modules

We can set the parameters to different values

when instantiating the module

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] d0, d1,
input s,
output [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

141

In Verilog, we can define module parameters

Instantiating Parameterized Modules

// If the parameter is not given, the default (8) is assumed
mux2 i_mux (d0, d1, s, out);

// The same module with 12-bit bus width:
mux2 #(12) i_mux_b (d0, d1, s, out);

// A more verbose version:
mux2 #(.width(12)) i_mux_b (.d0(d0), .d1(d1),

.s(s), .out(out));

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] d0, d1,
input s,
output [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

142

What About Timing ?

◼ It is possible to define timing relations in Verilog. BUT:

❑ These are ONLY for simulation

❑ They CAN NOT be synthesized

❑ They are used for modeling delays in a circuit

‘timescale 1ns/1ps
module simple (input a, output z1, z2);

assign #5 z1 = ~a; // inverted output after 5ns
assign #9 z2 = a; // output after 9ns

endmodule

144

More to come in later lectures!

Good Practices

◼ Develop/use a consistent naming style

◼ Use MSB to LSB ordering for buses

❑ Use “a[31:0]”, not “a[0:31]”

◼ Define one module per file

❑ Makes managing your design hierarchy easier

◼ Use a file name that equals module name

❑ i.e., module TryThis is defined in a file called TryThis.v

◼ Always keep in mind that Verilog describes hardware

145

Summary

◼ We have seen an overview of Verilog

◼ Discussed structural and behavioral modeling

◼ Showed combinational logic constructs

146

