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We Are Almost Done with This
n Building blocks of modern computers

q Transistors
q Logic gates

n Boolean algebra

n Combinational circuits

n How to use Boolean algebra to represent combinational 
circuits

n Minimizing logic circuits
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Agenda for Today and Next Week
n Today

q Wrap up Combinational Logic and Circuit Minimization

q Start (and finish) Sequential Logic 

n Next week

q Hardware Description Languages and Verilog 
n Combinational Logic
n Sequential Logic

q Timing and Verification
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Extra Assignment 1: Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch my inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Upload PDF file to Moodle – Deadline: Friday, March 15.
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https://www.youtube.com/watch?v=kgiZlSOcGFM


Extra Assignment 2: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated 

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: Friday, March 22

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf


Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


Assignment: Required Readings
n Combinational Logic 

q P&P Chapter 3 until 3.3     +        H&H Chapter 2
n Sequential Logic 

q P&P Chapter 3.4 until end   +       H&H Chapter 3 in full
n Hardware Description Languages and Verilog 

q H&H Chapter 4 in full
n Timing and Verification

q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By the end of next week, make sure you are done with 
q P&P Chapters 1-3    +      H&H Chapters 1-4
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Wrap-Up Combinational Logic 
Circuits and Design

8



Logic Simplification:
Karnaugh Maps (K-Maps)
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Recall: Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the 
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of 

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants
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Recall: K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 � use !,  constant 0 � use "#

n What is a good solution?
q Biggest groupings � eliminate more variables (literals) in each term 
q Fewest groupings � fewer terms (gates) all together
q OR together all AND terms you create from individual groups
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Recall: K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

12

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D



Recall: K-map Example: Two-bit Comparator (2)
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A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

!"
#$

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

!
"

$

#



Recall: K-map Example: Two-bit Comparator (3)
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A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

!"
#$

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

!
"

$

#



K-maps with “Don’t Care”
n Don’t Care really means I don’t care what my circuit outputs if this 

appears as input
q You have an engineering choice to use DON’T CARE patterns 

intelligently as 1 or 0 to better simplify the circuit
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I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •



A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment Function
n BCD (Binary Coded Decimal) digits 

q Encode decimal digits 0 - 9 with bit patterns 00002 — 10012
q When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1
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These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”



00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment Function

A B C D
+         1
W X Y Z
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00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
!"

#$ X
!"

#$

!"
#$!"

#$ ZY

Z (without don’t cares) = A'D' + B'C'D’ 

Z (with don’t cares) = D'

! "

$

#



K-map Summary

n Karnaugh maps as a formal systematic approach
for logic simplification

n 2-, 3-, 4-variable K-maps

n K-maps with “Don’t Care” outputs

n H&H Section 2.7
18



Sequential Logic Circuits and 
Design
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What We Will Learn Today
n Circuits that can store information

q Cross-coupled inverter
q R-S Latch
q Gated D Latch
q D Flip-Flop
q Register

n Finite State Machines (FSM)
q Moore Machine
q Mealy Machine

n Verilog implementations of sequential circuits (next week)
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Circuits that Can 
Store Information

21



Introduction
n Combinational circuit output depends only on current input
n We want circuits that produce output depending on 

current and past input values – circuits with memory
n How can we design a circuit that stores information?

22

Sequential Circuit

Combinational
Circuitin

pu
ts

ou
tp
ut
s

Storage
Element



Capturing Data
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Basic Element: Cross-Coupled Inverters

n Has two stable states: Q=1 or Q=0. 
n Has a third possible “metastable” state with both outputs 

oscillating between 0 and 1 (we will see this later)
n Not useful without a control mechanism for setting Q

24Image source: Harris and Harris, Digital Design and Computer Architecture, 2nd Ed., p.110.



More Realistic Storage Elements
n Have a control mechanism for setting Q

q We will see the R-S latch soon
q Let’s look at an SRAM (static random access memory) cell first

n We will get back to SRAM (and DRAM) later

25

wordline
bitline bitline

SRAM cell



The Big Picture: Storage Elements
n Latches and Flip-Flops

q Very fast, parallel access
q Very expensive (one bit costs tens of transistors)

n Static RAM (SRAM)
q Relatively fast, only one data word at a time
q Expensive (one bit costs 6+ transistors)

n Dynamic RAM (DRAM)
q Slower, one data word at a time, reading destroys content 

(refresh), needs special process for manufacturing
q Cheap (one bit costs only one transistor plus one capacitor)

n Other storage technology (flash memory, hard disk, tape)
q Much slower, access takes a long time, non-volatile
q Very cheap (no transistors directly involved) 



Basic Storage Element:
The R-S Latch
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The R-S (Reset-Set) Latch
n Cross-coupled NAND gates

q Data is stored at Q (inverse at Q’)
q S and R are control inputs 

n In quiescent (idle) state, both S and R are held at 1
n S (set): drive S to 0 (keeping R at 1) to change Q to 1
n R (reset): drive R to 0 (keeping S at 1) to change Q to 0

n S and R should never both be 0 at the same time

28

S

R Q’

Q Input Output
R S Q
1 1 Qprev

1 0 1
0 1 0
0 0 Forbidden



10

Why not R=S=0?

1. If R=S=0, Q and Q’ will both settle to 1, which breaks
our invariant that Q = !Q’

2. If S and R transition back to 1 at the same time, Q and Q’
begin to oscillate between 1 and 0 because their final 
values depend on each other (metastability)

q This eventually settles depending on variation in the 
circuits (more metastability to come in Lecture 8)
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S

R Q’

Q Input Output
R S Q
1 1 Qprev

1 0 1
0 1 0
0 0 Forbidden

10

0

01

1



The Gated D Latch
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The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

31

S

R
Q’

Q



The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

q Add two more NAND gates!

q Q takes the value of D, when write enable (WE) is set to 1 
q S and R can never be 0 at the same time!

32

S

R
Q’

Q

Write 
Enable

D



The Gated D Latch
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S

R Q’

Q

Write 
Enable

D

Input Output
WE D Q
0 0 Qprev

0 1 Qprev

1 0 0
1 1 1



The Register
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The Register
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D

Q

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Write 
Enable

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]



The Register
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How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]



Memory
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Memory
n Memory is comprised of locations that can be written to or 

read from. An example memory array with 4 locations:

n Every unique location in memory is indexed with a unique 
address. 4 locations require 2 address bits 
(log[#locations]).

n Addressability: the number of bits of information stored 
in each location. This example: addressability is 8 bits.

n The entire set of unique locations in memory is referred to 
as the address space.

n Typical memory is MUCH larger (billions of locations)
38

Addr(00):

Addr(10):

Addr(01):

Addr(11):

0100  1001

0010  0010

0100  1011

1100  1001



Addressing Memory
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Let’s implement a simple memory array with: 
• 3-bit addressability & address space size of 2 (total of 6 bits)

D Q
WE

1 Bit

Bit2 Bit1 Bit0

Bit2 Bit1 Bit0

Addr(0)

Addr(1)

6-Bit Memory Array



Reading from Memory
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How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit



Reading from Memory
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How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline



Address Decoder

Reading from Memory
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How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline



Address Decoder

Reading from Memory
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How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Multiplexer

Wordline



Writing to Memory
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How can we select an address and write to it?



Writing to Memory

45

How can we select an address and write to it?
• Input is indicated with Di

Di[2] Di[1] Di[0]
Addr[0]

WE



Putting it all Together
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[0]

WE

Let’s enable reading and writing to a memory array



A Bigger Memory Array
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE



A Bigger Memory Array
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer



Sequential Logic Circuits
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Sequential Logic Circuits
n We have looked at designs of circuit elements that can 

store information
n Now, we will use these elements to build circuits that 

remember past inputs

50https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo

Sequential
Opens depending on past inputs

Combinational
Only depends on current inputs



State
n In order for this lock to work, it has to keep track 

(remember) of the past events!
n If passcode is R13-L22-R3, sequence of states to unlock:

A. The lock is not open (locked), and no relevant operations have 
been performed

B. Locked but user has completed R13
C. Locked but user has completed R13-L22
D. Unlocked: user has completed R13-L22-R3

n The state of a system is a snapshot of all relevant 
elements of the system at the moment of the snapshot

q To open the lock, states A-D must be completed in order
q If anything else happens (e.g., L5), lock returns to state A
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State Diagram of Our Sequential Lock
n Completely describes the operation of the sequential lock

n We will understand “state diagrams” fully later today
52Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 76.



Another Simple Example of State
n A standard Swiss traffic light has 4 states

A. Green
B. Yellow
C. Red
D. Red and Yellow

n The sequence of these states are always as follows

53

A B C D



Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

n At the start of a clock cycle (        ), system state changes
q During a clock cycle, the state stays constant
q In this traffic light example, we are assuming the traffic light stays in 

each state an equal amount of time
54

A B C D

CLK: 0
1



Changing State: The Notion of Clock (II)
n Clock is a general mechanism that triggers transition from 

one state to another in a sequential circuit

n Clock synchronizes state changes across many sequential 
circuit elements

n Combinational logic evaluates for the length of the clock 
cycle

n Clock cycle should be chosen to accommodate maximum 
combinational circuit delay
q More on this later, when we discuss timing
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Finite State Machines
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Finite State Machines
n What is a Finite State Machine (FSM)?

q A discrete-time model of a stateful system
q Each state represents a snapshot of the system at a given time

n An FSM pictorially shows
1. the set of all possible states that a system can be in 
2. how the system transitions from one state to another

n An FSM can model 
q A traffic light, an elevator, fan speed, a microprocessor, etc.

n An FSM enables us to pictorially think of a stateful
system using simple diagrams
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Finite State Machines (FSMs) Consist of:
n Five elements:

1. A finite number of states 
n State: snapshot of all relevant elements of the 

system at the time of the snapshot
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions

n How to get from one state to another
5. An explicit specification of what determines 

each external output value
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Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic

59

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register



Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

60

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs



Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs
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Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs



State Register Implementation
n How can we implement a state register? Two properties:

1. We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle

62

CLK: 0
1

Register
Input:

Register
Output:

Desired behavior



The Problem with Latches

n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent
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D Q
CLK = WE

CLK: 0
1

Register
Input:

Register
Output:

Recall the 
Gated D Latch



n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent

The Problem with Latches

64

D Q
CLK = WE

CLK: 0
1

Register 
Input:

Register 
Output:

Recall the 
Gated D Latch

Undesirable!



n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

The Problem with Latches
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D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the 
Gated D Latch

How can we change the latch, so that 

1) D (input) is observable at Q (output) 
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle



The Need for a New Storage Element 
n To design viable FSMs

n We need storage elements that allow us 

q to read the current state throughout the current clock 
cycle

AND

q not write the next state values into the storage elements 
until the beginning of the next clock cycle.
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n 1) state change on clock edge, 2) data available for full cycle

D Latch (Slave)
D Latch (Master)

The D Flip-Flop
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D
Q

CLK

n When the clock is low, master propagates D to the input of slave (Q unchanged)
n Only when the clock is high, slave latches D (Q stores D)

q At the rising edge of clock (clock going from 0->1), Q gets assigned D

CLK:
0
1



The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle

68

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop



The D Flip-Flop
n How do we implement this?
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n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop
We can use these Flip-Flops

to implement the state register!



Rising-Clock-Edge Triggered Flip-Flop
n Two inputs: CLK, D

n Function
q The flip-flop “samples” D on the rising edge
of CLK (positive edge)

q When CLK rises from 0 to 1, D passes 
through to Q
q Otherwise, Q holds its previous value
q Q changes only on the rising edge of CLK

n A flip-flop is called an edge-triggered state element 
because it captures data on the clock edge
q A latch is a level-triggered state element 

70

D Flip-Flop
Symbols

D Q
Q

CLK



Register
n Multiple parallel flip-flops, each of which storing 1 bit
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CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed



A 4-Bit D-Flip-Flop-Based Register (Internally)

72Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., tentative page 95.



Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output 

logic:
q Moore FSM: outputs depend only on the current state
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output
logic

Moore FSM
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Mealy FSM



Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output 

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the 

inputs
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CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM



Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs: 
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs: 
n Lights: LA , LB  (Red, Yellow, Green)

q State can change every 5 seconds
n Except if green and traffic, stay green
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TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

From H&H Section 3.4.1



Finite State Machine Black Box
n Inputs: CLK, Reset, TA , TB
n Outputs: LA , LB
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TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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S0
LA: green
LB: red

Reset

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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Finite State Machine:
State Transition Table
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FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X
S0 1 X
S1 X X
S2 X 0
S2 X 1
S3 X X

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset
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FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset
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FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	?
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	?
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	S1 xor S0									(Simplified)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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Finite State Machine:
Output Table
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00
yellow 01
red 10
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
LA0 =	S1 ∙	S0
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1

73



FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0
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Finite State Machine:
Schematic
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FSM Schematic: State Register
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FSM Schematic: State Register

S1

S0

S'1

S'0

CLK

state register

Reset
r
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FSM Schematic: Next State Logic

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1 =	S1 xor S0

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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FSM Schematic: Output Logic

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0
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FSM Timing Diagram
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FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB



106

FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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FSM Timing Diagram
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We did not cover the remaining slides. 
They are for your preparation for the 

next lecture.
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FSM State Encoding
n How do we encode the state bits?

q Three common state binary encodings with different tradeoffs
1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red
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FSM State Encoding
1. Fully Encoded:

q Minimizes # flip-flops, but not necessarily output logic 
or next state logic

q Use log2(num_states) bits to represent the states
q Example states: 00, 01, 10, 11

2. 1-Hot Encoded:
q Maximizes # flip-flops, minimizes next state logic
q Simplest design process – very automatable
q Use num_states bits to represent the states
q Example states: 0001, 0010, 0100, 1000
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FSM State Encoding
3. Output Encoded:

q Minimizes output logic 
q Only works for Moore Machines (output function of state)
q Each state has to be encoded uniquely, but the outputs 

must be directly accessible in the state encoding
q For example, since we have 3 outputs (light color), 

encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output
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FSM State Encoding
3. Output Encoded:

q Minimizes output logic 
q Only works for Moore Machines (output function of state)
q Each state has to be encoded uniquely, but the outputs 

must be directly accessible in the state encoding
q For example, since we have 3 outputs (light color), 

encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output
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The designer must carefully choose
an encoding scheme to optimize the design 

under given constraints



Moore vs. Mealy Machines
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Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with 

1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled over 

are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with 

1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled over 

are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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State Transition Diagrams
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FSM Design Procedure
n Determine all possible states of your machine
n Develop a state transition diagram

q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and      

2) figure out how to get from one state to another
n Approach

q Start by defining the reset state and what happens from it – this is 
typically an easy point to start from

q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs
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What is to Come: LC-3 Processor
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What is to Come: LC-3 Datapath
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Backup Slides:
Different Types of Flip Flops
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The D Flip-Flop
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Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1:  D passes through to Q on the clock edge 
q EN = 0:  the flip-flop retains its previous state

129
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Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0 
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop

130

Symbols

D Q
Reset

r



Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the 
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?
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Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1 
q Set = 0: the flip-flop behaves like an ordinary D flip-flop
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Recall:
Combinational Logic Blocks
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Recall: Combinational Building Blocks
n Combinational logic is often grouped into larger building 

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the 
function of the building block

n We now look at: 
q Decoders
q Multiplexers
q Full adder
q PLA (Programmable Logic Array)



Recall: Decoder
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output 

corresponding to the input pattern that the logic circuit is 
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0



Recall: Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output
n Needs log2N-bit control input
n 2:1 MUX A B

S

C

ba

A B

S = 0

C

0A

A



Recall: Multiplexer (MUX)
n The output C is always connected to either the input A or 

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 8-input (8:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes
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