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Agenda for This Week
n Today

q Wrap up Sequential Logic

q Hardware Description Languages and Verilog 
n Combinational Logic
n Sequential Logic

n Tomorrow

q Timing and Verification
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Agenda for Next Week
n Thursday

q Von Neumann Model of Execution
q Instruction Set Architecture

n LC-3 and MIPS

n Friday

q ISA and Assembly Programming
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Extra Assignment 1: Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch my inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Upload PDF file to Moodle – Deadline: Friday, March 15.
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https://www.youtube.com/watch?v=kgiZlSOcGFM


Extra Assignment 2: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated 

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: Friday, March 22

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf


Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-sms.pdf


Required Readings (This Week)
n Hardware Description Languages and Verilog 

q H&H Chapter 4 in full

n Timing and Verification
q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By tomorrow, make sure you are done with 
q P&P Chapters 1-3    +      H&H Chapters 1-4
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Required Readings (Next Week)
n Von Neumann Model, LC-3, and MIPS

q P&P, Chapters 4, 5
q H&H, Chapter 6
q P&P, Appendices A and C (ISA and microarchitecture of LC-3)
q H&H, Appendix B (MIPS instructions)

n Programming
q P&P, Chapter 6

n Recommended: Digital Building Blocks
q H&H, Chapter 5
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Wrap-Up Sequential Logic 
Circuits and Design
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Circuits that Can 
Store Information
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The Gated D Latch
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Sequential Logic Circuits
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Review: Finite State Machines
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Recall: Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic
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Recall: Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs: 
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs: 
n Lights: LA , LB  (Red, Yellow, Green)

q State can change every 5 seconds
n Except if green and traffic, stay green
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Recall: FSM Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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Recall: Finite State Machine:
State Transition Table
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Recall: FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11
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Recall: FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	S1 xor S0									(Simplified)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
67



Recall: Finite State Machine:
Output Table
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Recall: FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00
yellow 01
red 10
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Recall: FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0
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Recall: Finite State Machine:
Schematic
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Recall: FSM Schematic: State Register
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Recall: FSM Schematic: State Register
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Recall: FSM Schematic: Next State Logic
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Recall: FSM Schematic: Output Logic
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Recall: FSM Timing
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Finite State Machine:
State Encoding
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FSM State Encoding
n How do we encode the state bits?

q Three common state binary encodings with different tradeoffs
1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red
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FSM State Encoding (II)
1. Binary Encoding (Full Encoding):

q Use the minimum number of bits used to encode all states
n Use log2(num_states) bits to represent the states

q Example states: 00, 01, 10, 11
q Minimizes # flip-flops, but not necessarily output logic or 

next state logic

2. One-Hot Encoding:
q Each bit encodes a different state 

n Uses num_states bits to represent the states
n Exactly 1 bit is “hot” for a given state

q Example states: 0001, 0010, 0100, 1000
q Simplest design process – very automatable
q Maximizes # flip-flops, minimizes next state logic
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FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color), 
encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output 

q Minimizes output logic 
q Only works for Moore Machines (output function of state)
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FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color), 
encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output 

q Minimizes output logic 
q Only works for Moore Machines (output function of state)
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The designer must carefully choose
an encoding scheme to optimize the design 

under given constraints



Moore vs. Mealy Machines
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Recall: Moore vs. Mealy FSMs
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output 

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the 

inputs
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Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with 

1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled over 

are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with 

1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled over 

are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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State Transition Diagrams
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FSM Design Procedure
n Determine all possible states of your machine
n Develop a state transition diagram

q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and      

2) figure out how to get from one state to another
n Approach

q Start by defining the reset state and what happens from it – this is 
typically an easy point to start from

q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs
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What is to Come: LC-3 Processor
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What is to Come: LC-3 Datapath
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Backup Slides:
Different Types of Flip Flops
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Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1:  D passes through to Q on the clock edge 
q EN = 0:  the flip-flop retains its previous state
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Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0 
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop
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Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the 
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?
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Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1 
q Set = 0: the flip-flop behaves like an ordinary D flip-flop
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Recall:
Combinational Logic Blocks
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Recall: Combinational Building Blocks
n Combinational logic is often grouped into larger building 

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the 
function of the building block

n We now look at: 
q Decoders
q Multiplexers
q Full adder
q PLA (Programmable Logic Array)



Recall: Decoder
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output 

corresponding to the input pattern that the logic circuit is 
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0



Recall: Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output
n Needs log2N-bit control input
n 2:1 MUX A B
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S = 0

C

0A

A



Recall: Multiplexer (MUX)
n The output C is always connected to either the input A or 

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 8-input (8:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes
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Recall:
Sequential Logic Blocks
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Recall: An FSM Consists of:
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs
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n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

Recall: The Problem with Latches
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How can we change the latch, so that 

1) D (input) is observable at Q (output) 
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle



n 1) state change on clock edge, 2) data available for full cycle

D Latch (Slave)
D Latch (Master)

Recall: The D Flip-Flop
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Recall: The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle
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Recall: The D Flip-Flop
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n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
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Q
__

D Flip-Flop
We can use these Flip-Flops

to implement the state register!


