Design of Digital Circuits

Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019
14 March 2019

Agenda for This Week

- Today
 - Wrap up Sequential Logic
 - Hardware Description Languages and Verilog
 - Combinational Logic
 - Sequential Logic

- Tomorrow
 - Timing and Verification

Agenda for Next Week

Thursday

- Von Neumann Model of Execution
- Instruction Set Architecture
 - LC-3 and MIPS

Friday

ISA and Assembly Programming

Extra Assignment 1: Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
 - Watch my inaugural lecture at ETH and understand it
 - https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment for 1% extra credit
 - Write a 1-page summary of the lecture
 - What are your key takeaways?
 - What did you learn?
 - What did you like or dislike?
 - Upload PDF file to Moodle Deadline: Friday, March 15.

Extra Assignment 2: Moore's Law (I)

- Paper review
- G.E. Moore. "Cramming more components onto integrated circuits," Electronics magazine, 1965

- Optional Assignment for 1% extra credit
 - Write a 1-page review
 - Upload PDF file to Moodle Deadline: Friday, March 22

 I strongly recommend that you follow my guidelines for (paper) review (see next slide)

Extra Assignment 2: Moore's Law (II)

- Guidelines on how to review papers critically
 - Guideline slides: pdf ppt
 - Video: https://www.youtube.com/watch?v=tOL6FANAJ8c
 - Example reviews on "Main Memory Scaling: Challenges and Solution Directions" (link to the paper)
 - Review 1
 - Review 2
 - Example review on "Staged memory scheduling: Achieving high performance and scalability in heterogeneous systems" (link to the paper)
 - Review 1

Required Readings (This Week)

- Hardware Description Languages and Verilog
 - H&H Chapter 4 in full
- Timing and Verification
 - H&H Chapters 2.9 and 3.5 + (start Chapter 5)

- By tomorrow, make sure you are done with
 - □ P&P Chapters 1-3 + H&H Chapters 1-4

Required Readings (Next Week)

- Von Neumann Model, LC-3, and MIPS
 - P&P, Chapters 4, 5
 - H&H, Chapter 6
 - P&P, Appendices A and C (ISA and microarchitecture of LC-3)
 - H&H, Appendix B (MIPS instructions)
- Programming
 - P&P, Chapter 6
- Recommended: Digital Building Blocks
 - H&H, Chapter 5

Wrap-Up Sequential Logic Circuits and Design

Circuits that Can Store Information

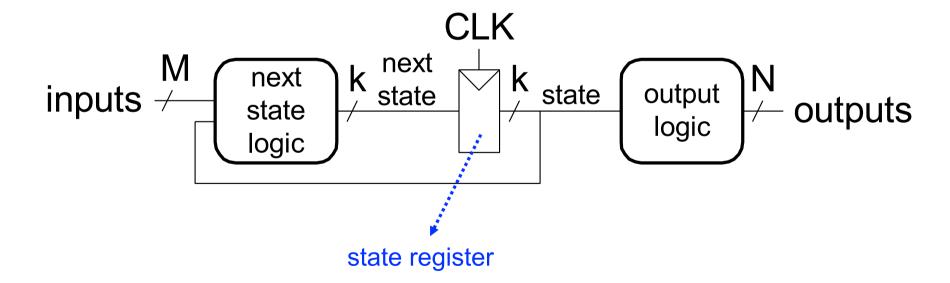
The Gated D Latch

Sequential Logic Circuits

Review: Finite State Machines

Recall: Finite State Machines (FSMs)

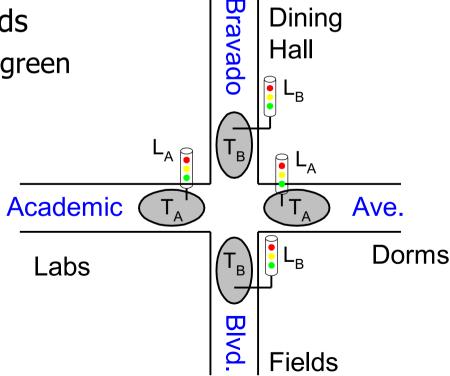
- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic



At the beginning of the clock cycle, next state is latched into the state register

Recall: Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A, T_B (TRUE when there's traffic)
 - 2 outputs:
 - Lights: L_A , L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green



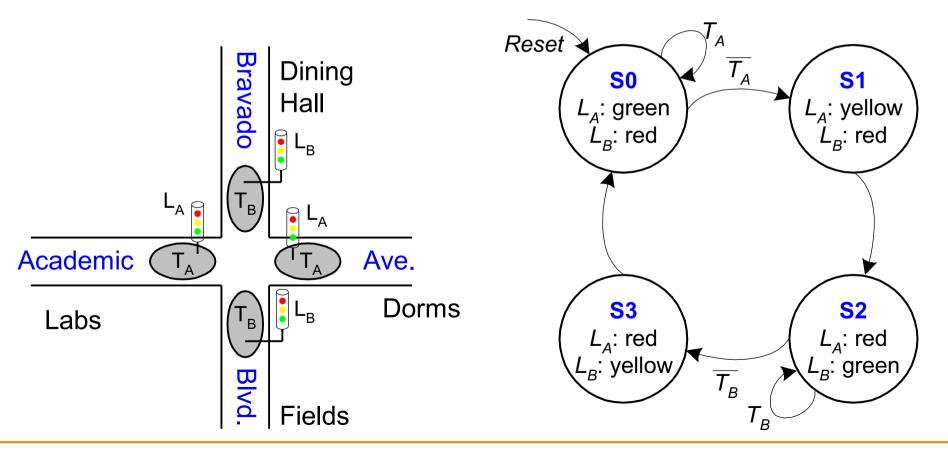
From H&H Section 3.4.1

Recall: FSM Transition Diagram

Moore FSM: outputs labeled in each state

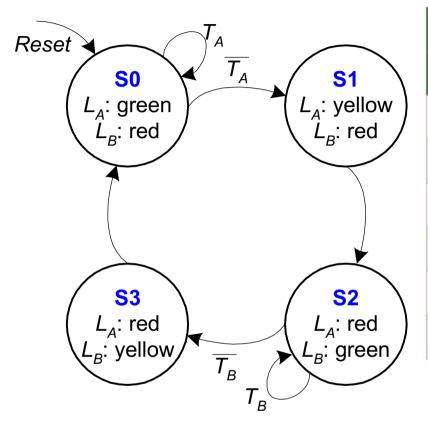
States: Circles

Transitions: Arcs



Recall: Finite State Machine: State Transition Table

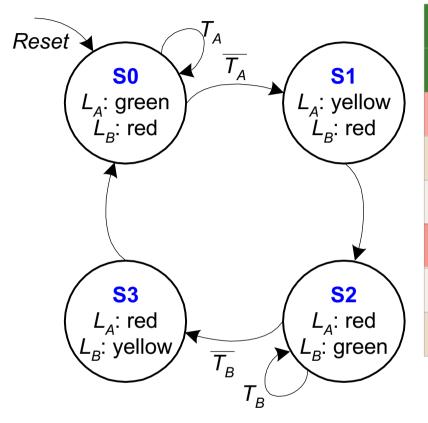
Recall: FSM State Transition Table



Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Recall: FSM State Transition Table



Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

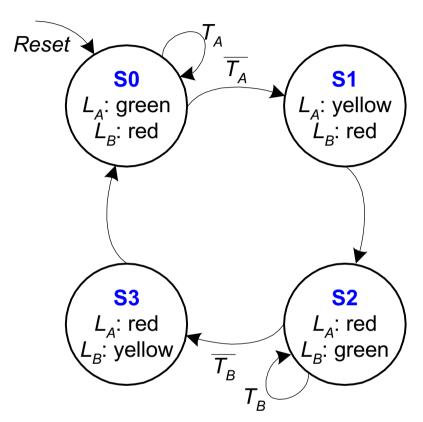
 $S'_1 = S_1 \text{ xor } S_0$ (Simplified)

 $S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Recall: Finite State Machine: Output Table

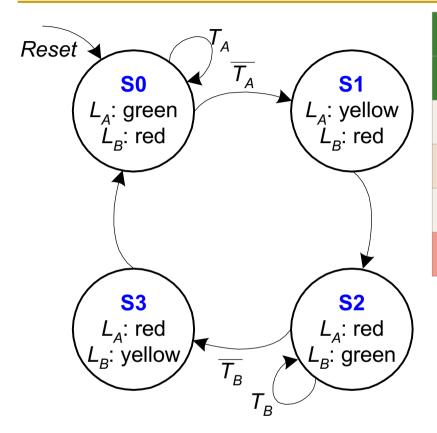
Recall: FSM Output Table



Current State		Outputs		
S_1	S_0	L_{A}	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

Recall: FSM Output Table



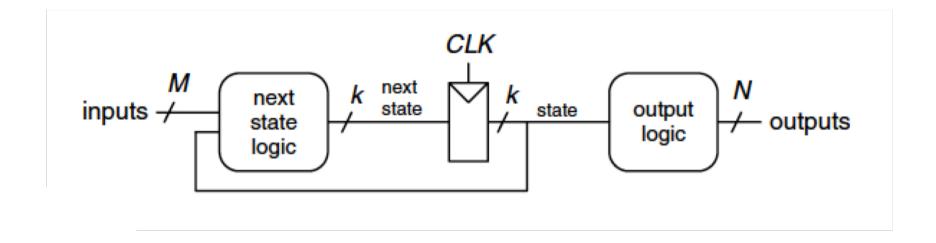
Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$ ·	S_0
$L_{B1} =$	$\overline{S_1}$	
$L_{B0} =$	S_1 -	S_0

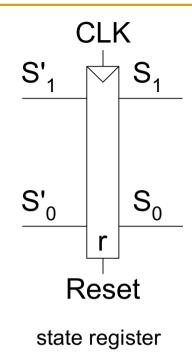
Output	Encoding
green	00
yellow	01
red	10

Recall: Finite State Machine: Schematic

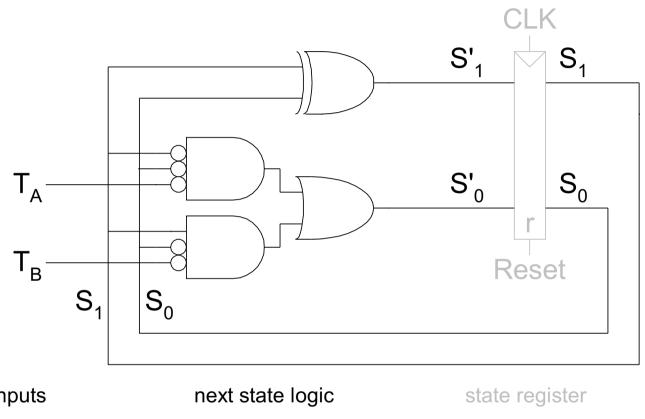
Recall: FSM Schematic: State Register



Recall: FSM Schematic: State Register



Recall: FSM Schematic: Next State Logic

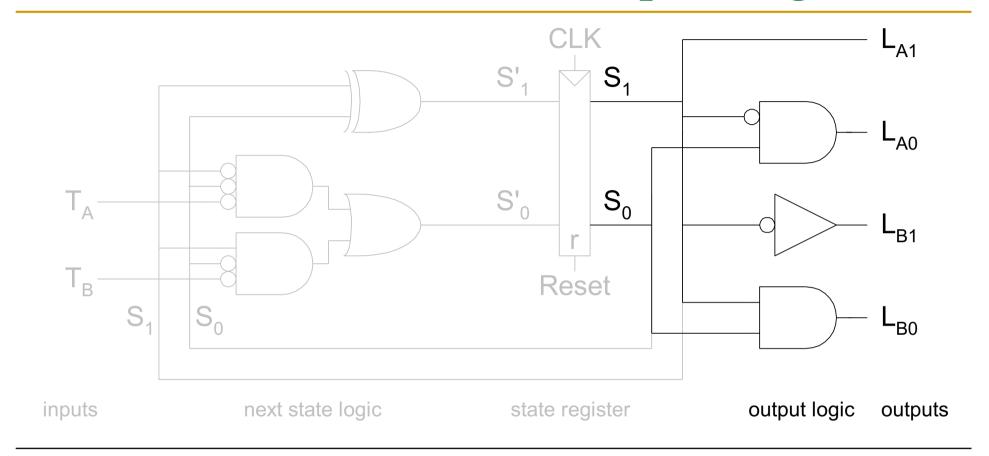


inputs

$$S'_1 = S_1 \times S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

Recall: FSM Schematic: Output Logic

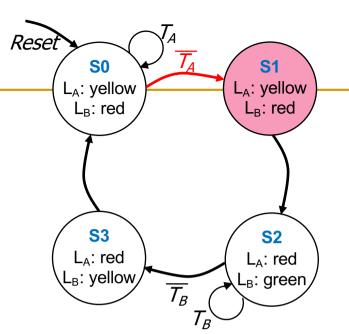


$$L_{A1} = \frac{S_1}{S_1} \cdot S_0$$

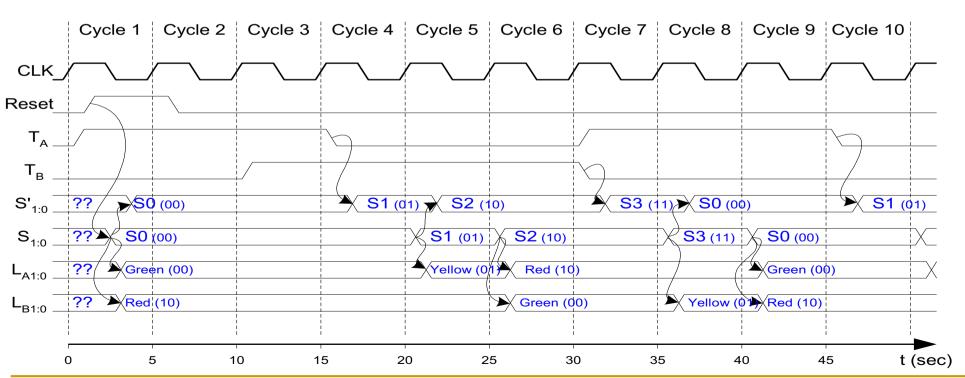
$$L_{B1} = \frac{S_1}{S_1} \cdot S_0$$

$$L_{B0} = S_1 \cdot S_0$$

Recall: FSM Timing



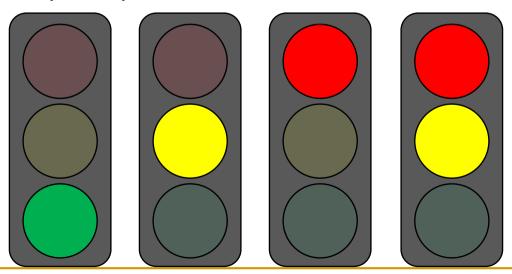
See H&H Chapter 3.4



Finite State Machine: State Encoding

FSM State Encoding

- How do we encode the state bits?
 - Three common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 2. 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - Green, Yellow, Red, Yellow+Red



FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
 - Use log₂(num_states) bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes green light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes **red** light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

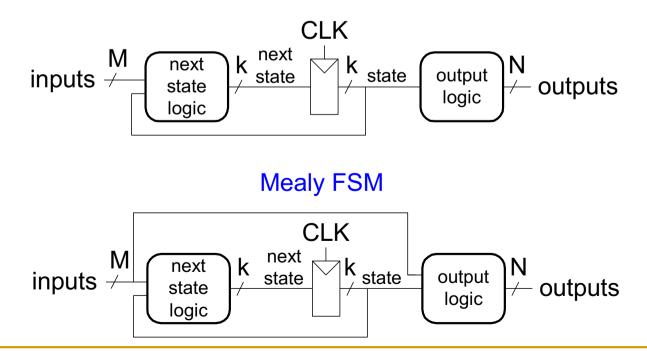
- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

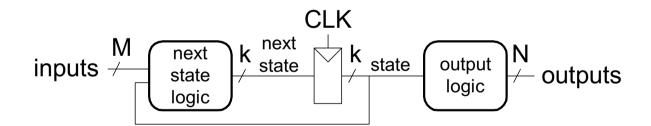
 Moore FSM



Moore vs. Mealy FSM Examples

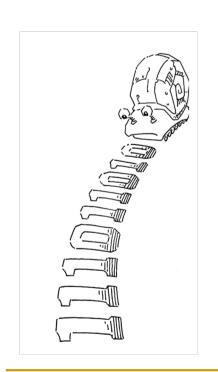
- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

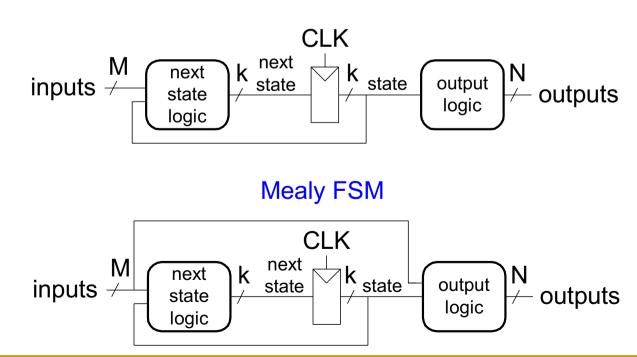


Moore vs. Mealy FSM Examples

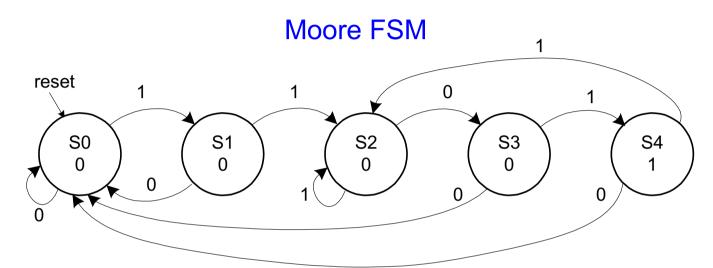
- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

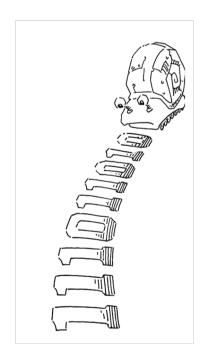


Moore FSM



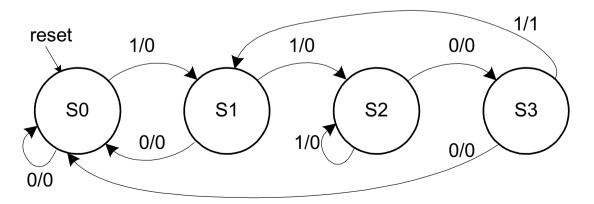
State Transition Diagrams





What are the tradeoffs?

Mealy FSM



FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
 - Generally this is done from a textual description
 - You need to 1) determine the inputs and outputs for each state and
 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is like programming (but it is not programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

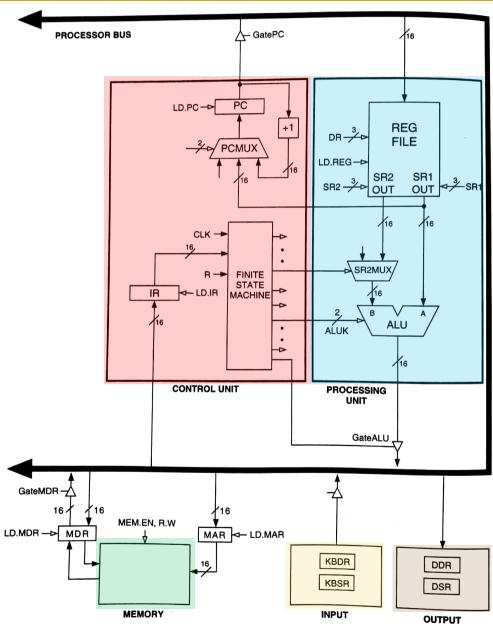
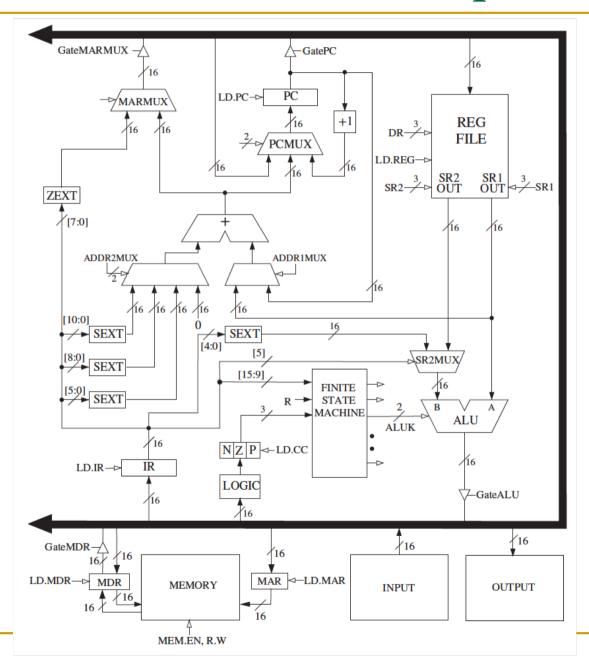


Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath



Design of Digital Circuits

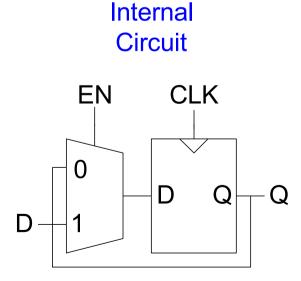
Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019
14 March 2019

Backup Slides: Different Types of Flip Flops

Enabled Flip-Flops

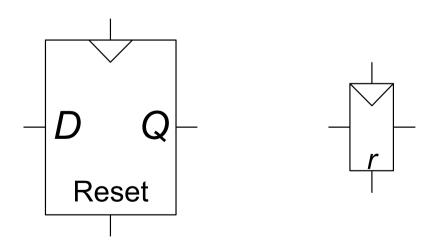
- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function:
 - EN = 1: D passes through to Q on the clock edge
 - □ **EN** = **0**: the flip-flop retains its previous state



Resettable Flip-Flop

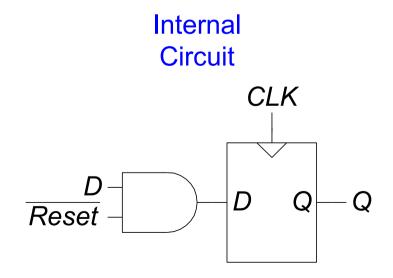
- Inputs: CLK, D, Reset
 - □ The Reset is used to set the output to 0.
- Function:
 - \square **Reset** = 1: Q is forced to 0
 - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols



Resettable Flip-Flops

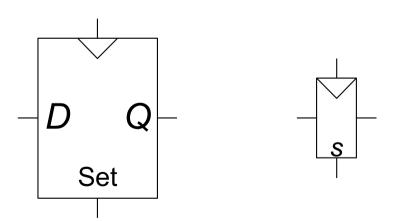
- Two types:
 - Synchronous: resets at the clock edge only
 - □ Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?



Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
 - □ **Set** = **1**: Q is set to 1
 - Set = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols



Recall:

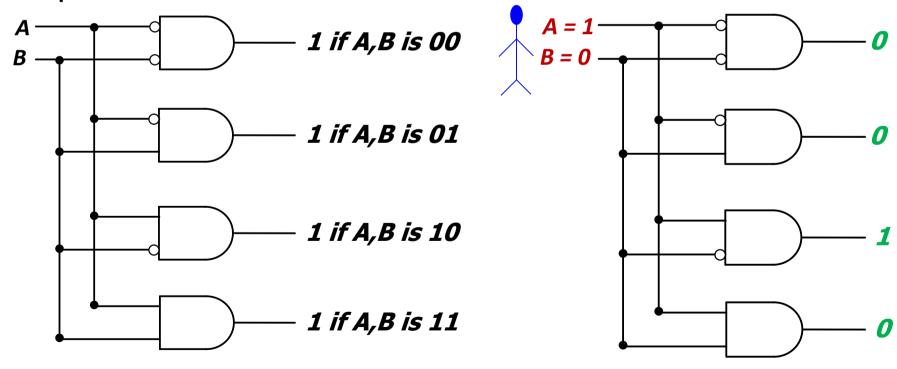
Combinational Logic Blocks

Recall: Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- We now look at:
 - Decoders
 - Multiplexers
 - Full adder
 - PLA (Programmable Logic Array)

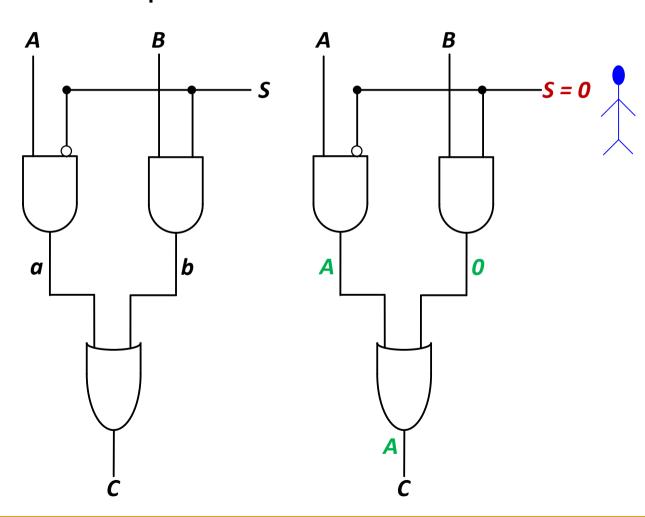
Recall: Decoder

- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect



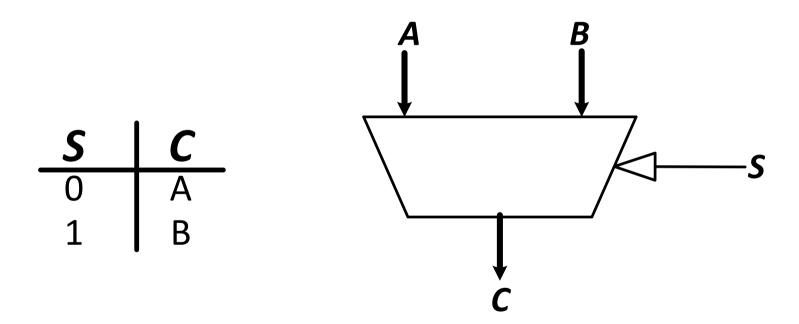
Recall: Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
- Needs log₂ N-bit control input
- 2:1 MUX



Recall: Multiplexer (MUX)

- The output C is always connected to either the input A or the input B
 - Output value depends on the value of the select line S



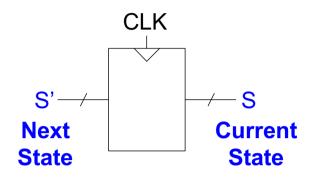
- Your task: Draw the schematic for an 8-input (8:1) MUX
 - Gate level: as a combination of basic AND, OR, NOT gates
 - Module level: As a combination of 2-input (2:1) MUXes

Recall: Sequential Logic Blocks

Recall: An FSM Consists of:

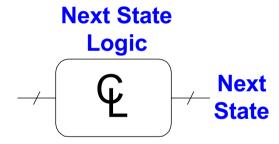
Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

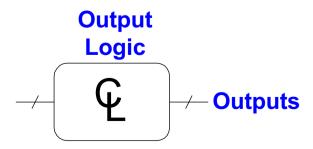


Combinational Circuits

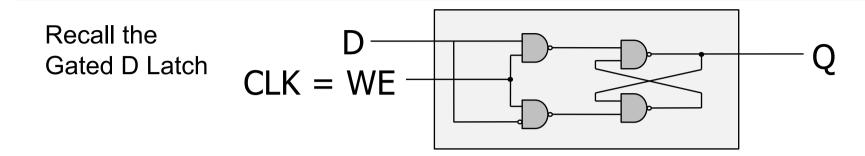
- Next state logic
 - Determines what the next state will be



- Output logic
 - Generates the outputs



Recall: The Problem with Latches



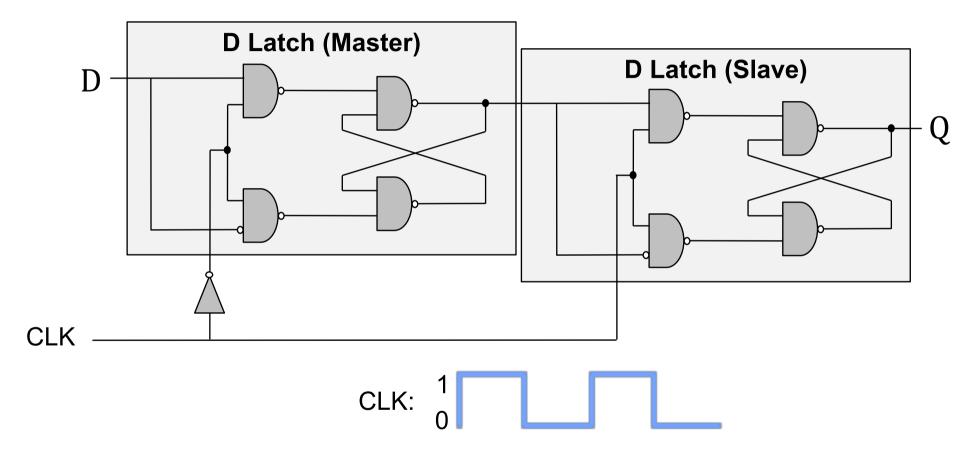
How can we change the latch, so that

1) D (input) is observable at Q (output) only at the beginning of next clock cycle?

2) Q is available for the full clock cycle

Recall: The D Flip-Flop

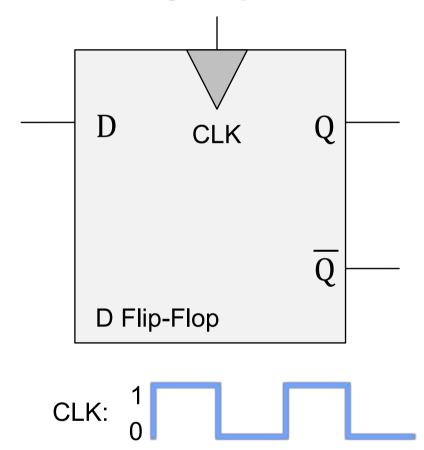
1) state change on clock edge, 2) data available for full cycle



- When the clock is low, master propagates **D** to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
 - At the rising edge of clock (clock going from 0->1), Q gets assigned D

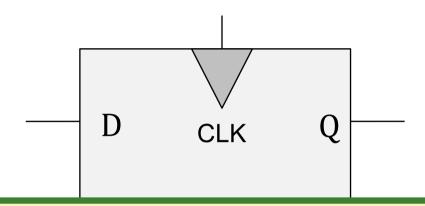
Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle



- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Recall: The D Flip-Flop



We can use these **Flip-Flops** to implement the state register!

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged