
Design of Digital Circuits
Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019

14 March 2019

Agenda for This Week
n Today

q Wrap up Sequential Logic

q Hardware Description Languages and Verilog
n Combinational Logic
n Sequential Logic

n Tomorrow

q Timing and Verification

2

Agenda for Next Week
n Thursday

q Von Neumann Model of Execution
q Instruction Set Architecture

n LC-3 and MIPS

n Friday

q ISA and Assembly Programming

3

Extra Assignment 1: Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch my inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Upload PDF file to Moodle – Deadline: Friday, March 15.

4

https://www.youtube.com/watch?v=kgiZlSOcGFM

Extra Assignment 2: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review
q Upload PDF file to Moodle – Deadline: Friday, March 22

n I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

5

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
n Review 1

6

https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-sms.pdf

Required Readings (This Week)
n Hardware Description Languages and Verilog

q H&H Chapter 4 in full

n Timing and Verification
q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By tomorrow, make sure you are done with
q P&P Chapters 1-3 + H&H Chapters 1-4

7

Required Readings (Next Week)
n Von Neumann Model, LC-3, and MIPS

q P&P, Chapters 4, 5
q H&H, Chapter 6
q P&P, Appendices A and C (ISA and microarchitecture of LC-3)
q H&H, Appendix B (MIPS instructions)

n Programming
q P&P, Chapter 6

n Recommended: Digital Building Blocks
q H&H, Chapter 5

8

Wrap-Up Sequential Logic
Circuits and Design

9

Circuits that Can
Store Information

10

The Gated D Latch

11

Sequential Logic Circuits

12

Review: Finite State Machines

13

Recall: Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic

14

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register

Recall: Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs:
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs:
n Lights: LA , LB (Red, Yellow, Green)

q State can change every 5 seconds
n Except if green and traffic, stay green

15

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

From H&H Section 3.4.1

Recall: FSM Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

16

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Recall: Finite State Machine:
State Transition Table

17

Recall: FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

62

Recall: FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00
S1 01
S2 10
S3 11

S’1 =	S1 xor S0									(Simplified)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
67

Recall: Finite State Machine:
Output Table

20

Recall: FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00
yellow 01
red 10

70

Recall: FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00
yellow 01
red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0

74

Recall: Finite State Machine:
Schematic

23

Recall: FSM Schematic: State Register

24

25

Recall: FSM Schematic: State Register

S1

S0

S'1

S'0

CLK

state register

Reset
r

26

Recall: FSM Schematic: Next State Logic

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1 =	S1 xor S0

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)

27

Recall: FSM Schematic: Output Logic

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0

28

Recall: FSM Timing

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

See H&H Chapter 3.4

Finite State Machine:
State Encoding

29

FSM State Encoding
n How do we encode the state bits?

q Three common state binary encodings with different tradeoffs
1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red

30

FSM State Encoding (II)
1. Binary Encoding (Full Encoding):

q Use the minimum number of bits used to encode all states
n Use log2(num_states) bits to represent the states

q Example states: 00, 01, 10, 11
q Minimizes # flip-flops, but not necessarily output logic or

next state logic

2. One-Hot Encoding:
q Each bit encodes a different state

n Uses num_states bits to represent the states
n Exactly 1 bit is “hot” for a given state

q Example states: 0001, 0010, 0100, 1000
q Simplest design process – very automatable
q Maximizes # flip-flops, minimizes next state logic

31

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

32

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

33

The designer must carefully choose
an encoding scheme to optimize the design

under given constraints

Moore vs. Mealy Machines

34

Recall: Moore vs. Mealy FSMs
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the

inputs

35

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

36

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

37

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

State Transition Diagrams

38

reset

Moore FSM

S0
0

S1
0

S2
0

S3
0

S4
1

0

1 1 0 1

1

01 0
0

reset

S0 S1 S2 S3
0/0

1/0 1/0 0/0
1/1

0/01/0

0/0

Mealy FSM
What are the tradeoffs?

FSM Design Procedure
n Determine all possible states of your machine
n Develop a state transition diagram

q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and

2) figure out how to get from one state to another
n Approach

q Start by defining the reset state and what happens from it – this is
typically an easy point to start from

q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs

39

What is to Come: LC-3 Processor

40

Scanned by CamScanner

What is to Come: LC-3 Datapath

41

Design of Digital Circuits
Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019

14 March 2019

Backup Slides:
Different Types of Flip Flops

43

Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1: D passes through to Q on the clock edge
q EN = 0: the flip-flop retains its previous state

44

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q
EN

Symbol

Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop

45

Symbols

D Q
Reset

r

Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?

46

Internal
Circuit

D Q

CLK

D QReset

Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1
q Set = 0: the flip-flop behaves like an ordinary D flip-flop

47

Symbols

D Q
Set

s

Recall:
Combinational Logic Blocks

48

Recall: Combinational Building Blocks
n Combinational logic is often grouped into larger building

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the
function of the building block

n We now look at:
q Decoders
q Multiplexers
q Full adder
q PLA (Programmable Logic Array)

Recall: Decoder
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0

Recall: Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output
n Needs log2N-bit control input
n 2:1 MUX A B

S

C

ba

A B

S = 0

C

0A

A

Recall: Multiplexer (MUX)
n The output C is always connected to either the input A or

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 8-input (8:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes

52

A B

S

C

S C
0 A
1 B

Recall:
Sequential Logic Blocks

53

Recall: An FSM Consists of:
n Sequential circuits

q State register(s)
n Store the current state and
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

54

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs

n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

Recall: The Problem with Latches

55

D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the
Gated D Latch

How can we change the latch, so that

1) D (input) is observable at Q (output)
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle

n 1) state change on clock edge, 2) data available for full cycle

D Latch (Slave)
D Latch (Master)

Recall: The D Flip-Flop

56

D
Q

CLK

n When the clock is low, master propagates D to the input of slave (Q unchanged)
n Only when the clock is high, slave latches D (Q stores D)

q At the rising edge of clock (clock going from 0->1), Q gets assigned D

CLK:
0
1

Recall: The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle

57

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop

Recall: The D Flip-Flop

58

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop
We can use these Flip-Flops

to implement the state register!

