
Digital Design & Computer Arch.
Lecture 11: Microarchitecture I

Prof. Onur Mutlu

ETH Zürich
Spring 2020

26 March 2020

Readings
n This week

q Introduction to microarchitecture and single-cycle
microarchitecture
n H&H, Chapter 7.1-7.3
n P&P, Appendices A and C

q Multi-cycle microarchitecture
n H&H, Chapter 7.4
n P&P, Appendices A and C

n Next week
q Pipelining

n H&H, Chapter 7.5
n Pipelining Issues

n H&H, Chapter 7.8.1-7.8.3
2

Agenda for Today & Next Few Lectures

n Instruction Set Architectures (ISA): LC-3 and MIPS

n Assembly programming: LC-3 and MIPS

n Microarchitecture (principles & single-cycle uarch)

n Multi-cycle microarchitecture

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

3

Recall: The Von Neumann Model

4

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Recall: LC-3: A Von Neumann Machine

5

Scanned by CamScanner

Recall: The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

6

Recall: The Instruction Set Architecture
n The ISA is the interface between what the software commands

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 32 bits)
n Word- or Byte-addressable

q The register set
n R0 to R7 in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes
n Semantics of instructions

7

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Microarchitecture
n An implementation of the ISA

n How do we implement the ISA?
q We will discuss this for many lectures

n There can be many implementations of the same ISA
q MIPS R2000, R10000, …
q Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,

Coffee Lake, … AMD K5, K7, K9, Bulldozer, BobCat, …

8

(A Bit More on)
ISA Design and Tradeoffs

The Von Neumann Model/Architecture

n Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
q One instruction processed (fetched, executed, completed) at a time
q Program counter (instruction pointer) identifies the current instruction
q Program counter is advanced sequentially except for control transfer

instructions

10

When is a value interpreted as an instruction?

The Von Neumann Model/Architecture
n Recommended reading

q Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

n Required reading
q Patt and Patel book, Chapter 4, “The von Neumann Model”

n Stored program

n Sequential instruction processing

11

The Von Neumann Model (of a Computer)

12

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von Neumann Model (of a Computer)
n Q: Is this the only way that a computer can operate?

n A: No.
n Qualified Answer: But, it has been the dominant way

q i.e., the dominant paradigm for computing
q for N decades

13

The Dataflow Model (of a Computer)
n Von Neumann model: An instruction is fetched and

executed in control flow order
q As specified by the instruction pointer
q Sequential unless explicit control flow instruction

n Dataflow model: An instruction is fetched and executed in
data flow order
q i.e., when its operands are ready
q i.e., there is no instruction pointer
q Instruction ordering specified by data flow dependence

n Each instruction specifies “who” should receive the result
n An instruction can “fire” whenever all operands are received

q Potentially many instructions can execute at the same time
n Inherently more parallel

14

Von Neumann vs Dataflow
n Consider a Von Neumann program

q What is the significance of the program order?
q What is the significance of the storage locations?

n Which model is more natural to you as a programmer?
15

v <= a + b;
w <= b * 2;
x <= v - w
y <= v + w
z <= x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

More on Data Flow
n In a data flow machine, a program consists of data flow

nodes
q A data flow node fires (fetched and executed) when all it

inputs are ready
n i.e. when all inputs have tokens

n Data flow node and its ISA representation

16

Data Flow Nodes

17

An Example Data Flow Program

18

OUT

ISA-level Tradeoff: Instruction Pointer

n Do we need an instruction pointer in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the IP points to it
n IP automatically changes sequentially (except for control flow

instructions)
q No: Data-driven, parallel execution

n An instruction is executed when all its operand values are
available (data flow)

n Tradeoffs: MANY high-level ones
q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?

19

ISA vs. Microarchitecture Level Tradeoff
n A similar tradeoff (control vs. data-driven execution) can be

made at the microarchitecture level

n ISA: Specifies how the programmer sees the instructions to
be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a data-flow execution order

n Microarchitecture: How the underlying implementation
actually executes instructions
q Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software
n Programmer should see the order specified by the ISA

20

Let’s Get Back to the Von Neumann Model

n But, if you want to learn more about dataflow…

n Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

n Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

n A later lecture

n If you are really impatient:
q http://www.youtube.com/watch?v=D2uue7izU2c
q http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi

a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

21

http://www.youtube.com/watch%3Fv=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php%3Fmedia=onur-740-fall13-module5.2.1-dataflow-part1.ppt

The Von-Neumann Model
n All major instruction set architectures today use this model

q x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, …

n Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different
q Pipelined instruction execution: Intel 80486 uarch
q Multiple instructions at a time: Intel Pentium uarch
q Out-of-order execution: Intel Pentium Pro uarch
q Separate instruction and data caches

n But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software
q Difference between ISA and microarchitecture

22

What is Computer Architecture?
n ISA+implementation definition: The science and art of

designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

n Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
23

ISA vs. Microarchitecture

n ISA
q Agreed upon interface between software

and hardware
n SW/compiler assumes, HW promises

q What the software writer needs to know
to write and debug system/user programs

n Microarchitecture
q Specific implementation of an ISA
q Not visible to the software

n Microprocessor
q ISA, uarch, circuits
q “Architecture” = ISA + microarchitecture

24

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

ISA vs. Microarchitecture
n What is part of ISA vs. Uarch?

q Gas pedal: interface for “acceleration”
q Internals of the engine: implement “acceleration”

n Implementation (uarch) can be various as long as it
satisfies the specification (ISA)
q Add instruction vs. Adder implementation

n Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

q x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, Kaby Lake, Coffee Lake, …

n Microarchitecture usually changes faster than ISA
q Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs
q Why?

25

ISA
n Instructions

q Opcodes, Addressing Modes, Data Types
q Instruction Types and Formats
q Registers, Condition Codes

n Memory
q Address space, Addressability, Alignment
q Virtual memory management

n Call, Interrupt/Exception Handling
n Access Control, Priority/Privilege
n I/O: memory-mapped vs. instr.
n Task/thread Management
n Power and Thermal Management
n Multi-threading support, Multiprocessor support
n …

26

Microarchitecture
n Implementation of the ISA under specific design constraints

and goals
n Anything done in hardware without exposure to software

q Pipelining
q In-order versus out-of-order instruction execution
q Memory access scheduling policy
q Speculative execution
q Superscalar processing (multiple instruction issue?)
q Clock gating
q Caching? Levels, size, associativity, replacement policy
q Prefetching?
q Voltage/frequency scaling?
q Error correction?

27

Property of ISA vs. Uarch?
n ADD instruction’s opcode
n Bit-serial adder vs. Ripple-carry adder
n Number of general purpose registers
n Number of cycles to execute the MUL instruction
n Number of ports to the register file
n Whether or not the machine employs pipelined instruction

execution

n Remember
q Microarchitecture: Implementation of the ISA under specific

design constraints and goals

28

Design Point
n A set of design considerations and their importance

q leads to tradeoffs in both ISA and uarch
n Example considerations:

q Cost
q Performance
q Maximum power consumption, thermal
q Energy consumption (battery life)
q Availability
q Reliability and Correctness
q Time to Market
q Security, safety, predictability, …

n Design point determined by the “Problem” space
(application space), the intended users/market

29

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Application Space
Dream, and they will appear…

30

Patt, “Requirements, bottlenecks,
and good fortune: agents for
microprocessor evolution,”
Proc. of the IEEE 2001.

Many other workloads:
Genome analysis
Machine learning

Robotics
Web search

Graph analytics
…

Increasingly Demanding Applications

Dream

and, they will come

31

As applications push boundaries, computing platforms will become increasingly strained.

Tradeoffs: Soul of Computer Architecture

n ISA-level tradeoffs

n Microarchitecture-level tradeoffs

n System and Task-level tradeoffs
q How to divide the labor between hardware and software

n Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point
q Why art?

32

Why Is It (Somewhat) Art?

33

Microarchitecture
ISA

Program/Language
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

n We do not (fully) know the future (applications, users, market)

Logic
Circuits
Electrons

New demands
from the top
(Look Up)

New issues and
capabilities
at the bottom
(Look Down)

New demands and
personalities of users
(Look Up)

Why Is It (Somewhat) Art?

34

Microarchitecture
ISA

Program/Language
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

n And, the future is not constant (it changes)!

Logic
Circuits
Electrons

Changing demands
at the top
(Look Up and Forward)

Changing issues and
capabilities
at the bottom
(Look Down and Forward)

Changing demands and
personalities of users
(Look Up and Forward)

Analogue from Macro-Architecture
n Future is not constant in macro-architecture, either

n Example: Can a mill be later used as a theater + restaurant
+ conference room?

35

Mühle Tiefenbrunnen

36

n Originally built as a brewery in 1889, part of it was
converted into a mill in 1913, and the other part into a cold
store

n Nowadays is a center for a variety of activities: theater,
conferences, restaurants, shops, museum…

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/

Another Example (I)

37Photo credit: Prof. Can Alkan

Another Example (II)

38Photo credit: Prof. Can Alkan

39

By Roland zh (Own work) [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0)

Implementing the ISA:
Microarchitecture Basics

Now That We Have an ISA
n How do we implement it?

n i.e., how do we design a system that obeys the
hardware/software interface?

n Aside: “System” can be solely hardware or a combination of
hardware and software
q “Translation of ISAs”
q A virtual ISA can be converted by “software” into an

implementation ISA

n We will assume “hardware” implementation for most lectures

41

How Does a Machine Process Instructions?
n What does processing an instruction mean?
n We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

n Processing an instruction: Transforming AS to AS’ according
to the ISA specification of the instruction

42

The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

43

Recall: The Von Neumann Model

44

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The “Process Instruction” Step
n ISA specifies abstractly what AS’ should be, given an

instruction and AS
q It defines an abstract finite state machine where

n State = programmer-visible state
n Next-state logic = instruction execution specification

q From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
n One state transition per instruction

n Microarchitecture implements how AS is transformed to AS’
q There are many choices in implementation
q We can have programmer-invisible state to optimize the speed of

instruction execution: multiple state transitions per instruction
n Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
n Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple

clock cycles to transform AS to AS’)
45

A Very Basic Instruction Processing Engine
n Each instruction takes a single clock cycle to execute
n Only combinational logic is used to implement instruction

execution
q No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

46

A Very Basic Instruction Processing Engine
n Single-cycle machine

n What is the clock cycle time determined by?
n What is the critical path of the combinational logic

determined by?

47

AS’ ASSequential
Logic
(State)

Combinational
Logic

Recall: Programmer Visible (Architectural) State

48

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers
- given special names in the ISA

(as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Single-cycle vs. Multi-cycle Machines
n Single-cycle machines

q Each instruction takes a single clock cycle
q All state updates made at the end of an instruction’s execution
q Big disadvantage: The slowest instruction determines cycle time à

long clock cycle time

n Multi-cycle machines
q Instruction processing broken into multiple cycles/stages
q State updates can be made during an instruction’s execution
q Architectural state updates made at the end of an instruction’s

execution
q Advantage over single-cycle: The slowest “stage” determines cycle time

n Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

49

Instruction Processing “Cycle”
n Instructions are processed under the direction of a “control

unit” step by step.
n Instruction cycle: Sequence of steps to process an instruction
n Fundamentally, there are six steps:

n Fetch
n Decode
n Evaluate Address
n Fetch Operands
n Execute
n Store Result

n Not all instructions require all six steps (see P&P Ch. 4)
50

Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

51

Instruction Processing “Cycle” vs. Machine Clock Cycle

n Single-cycle machine:
q All six phases of the instruction processing cycle take a single

machine clock cycle to complete

n Multi-cycle machine:
q All six phases of the instruction processing cycle can take

multiple machine clock cycles to complete
q In fact, each phase can take multiple clock cycles to complete

52

Instruction Processing Viewed Another Way
n Instructions transform Data (AS) to Data’ (AS’)
n This transformation is done by functional units

q Units that “operate” on data

n These units need to be told what to do to the data

n An instruction processing engine consists of two components
q Datapath: Consists of hardware elements that deal with and

transform data signals
n functional units that operate on data
n hardware structures (e.g. wires and muxes) that enable the flow of

data into the functional units and registers
n storage units that store data (e.g., registers)

q Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

53

Single-cycle vs. Multi-cycle: Control & Data
n Single-cycle machine:

q Control signals are generated in the same clock cycle as the
one during which data signals are operated on

q Everything related to an instruction happens in one clock cycle
(serialized processing)

n Multi-cycle machine:
q Control signals needed in the next cycle can be generated in

the current cycle
q Latency of control processing can be overlapped with latency

of datapath operation (more parallelism)

n See P&P Appendix C for more (microprogrammed multi-
cycle microarchitecture)

54

Many Ways of Datapath and Control Design

n There are many ways of designing the data path and
control logic

n Single-cycle, multi-cycle, pipelined datapath and control
n Single-bus vs. multi-bus datapaths
n Hardwired/combinational vs. microcoded/microprogrammed

control
q Control signals generated by combinational logic versus
q Control signals stored in a memory structure

n Control signals and structure depend on the datapath
design

55

Flash-Forward: Performance Analysis
n Execution time of an instruction

q {CPI} x {clock cycle time}

n Execution time of a program
q Sum over all instructions [{CPI} x {clock cycle time}]
q {# of instructions} x {Average CPI} x {clock cycle time}

n Single-cycle microarchitecture performance
q CPI = 1
q Clock cycle time = long

n Multi-cycle microarchitecture performance
q CPI = different for each instruction

n Average CPI à hopefully small
q Clock cycle time = short

56

Here, we have
two degrees of freedom
to optimize independently

A Single-Cycle Microarchitecture
A Closer Look

Remember…
n Single-cycle machine

58

ASSequential
Logic
(State)

Combinational
Logic

AS’

Let’s Start with the State Elements
n Data and control inputs

59

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

MIPS State Elements
CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC'

CLK

32 32
32 32

32

32

32 32

32

32

5

5

5

q Program counter:
32-bit register

q Instruction memory:
Takes input 32-bit address A and reads the 32-bit data (i.e., instruction)
from that address to the read data output RD.

q Register file:
The 32-element, 32-bit register file has 2 read ports and 1 write port

q Data memory:
Has a single read/write port. If the write enable, WE, is 1, it writes data
WD into address A on the rising edge of the clock. If the write enable is 0,
it reads address A onto RD.

This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)

For Now, We Will Assume
n “Magic” memory and register file

n Combinational read
q output of the read data port is a combinational function of the

register file contents and the corresponding read select port

n Synchronous write
q the selected register is updated on the positive edge clock

transition when write enable is asserted
n Cannot affect read output in between clock edges

n Single-cycle, synchronous memory
q Contrast this with memory that tells when the data is ready
q i.e., Ready bit: indicating the read or write is done

n See P&P Appendix C (LC3-b) for multi-cycle memory
61

Instruction Processing
n 5 generic steps (P&H book)

q Instruction fetch (IF)
q Instruction decode and register operand fetch (ID/RF)
q Execute/Evaluate memory address (EX/AG)
q Memory operand fetch (MEM)
q Store/writeback result (WB)

62

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full MIPS Datapath

63

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Another Complete Single-Cycle Processor

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

64Single-cycle processor. Harris and Harris, Chapter 7.3.

Single-Cycle Datapath for
Arithmetic and Logical Instructions

n R-type: 3 register operands

n Semantics

R-Type ALU Instructions

66

add $s0, $s1, $s2 #$s0=rd, $s1=rs, $s2=rt

MIPS assembly (e.g., register-register signed addition)

Machine Encoding

if MEM[PC] == add rd rs rt
GPR[rd] ¬ GPR[rs] + GPR[rt]
PC ¬ PC + 4

0 rs rt rd 0 add (32)
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type

(R-Type) ALU Datapath

67

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
GPR[rd] ¬ GPR[rs] + GPR[rt]
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

n ALU operation (F2:0) comes from the control logic

Example: ALU Design

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

n I-type: 2 register operands and 1 immediate

n Semantics

I-Type ALU Instructions

69

addi (0) rs rt immediate

addi $s0, $s1, 5 #$s0=rt, $s1=rs

MIPS assembly (e.g., register-immediate signed addition)

Machine Encoding

if MEM[PC] == addi rs rt immediate
PC ¬ PC + 4
GPR[rt] ¬ GPR[rs] + sign-extend(immediate)

I-Type
5 bits 5 bits6 bits 16 bits

Datapath for R and I-Type ALU Insts.

70

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1 ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt] ¬ GPR[rs] + sign-extend (immediate)
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

n ADD assembly and machine code

Recall: ADD with one Literal in LC-3

71

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1 11110

ADD R1 R4 –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Single-Cycle Datapath for
Data Movement Instructions

n Load 4-byte word

n Semantics

Load Instructions

73

lw (35) base rt offset

op rs=base rt imm=offset

lw $s3, 8($s0) #$s0=rs, $s3=rt

MIPS assembly

Machine Encoding

I-Type
15 0162021252631

if MEM[PC] == lw rt offset16 (base)
PC ¬ PC + 4
EA = sign-extend(offset) + GPR(base)
GPR[rt] ¬ MEM[translate(EA)]

LW Datapath

74

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] ¬ MEM[translate(EA)]
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

1

0

Store Instructions
n Store 4-byte word

n Semantics

75

sw $s3, 8($s0) #$s0=rs, $s3=rt

MIPS assembly

sw (43) base rt offset

op rs=base rt imm=offset
Machine Encoding

if Mem[PC] == sw rt offset16 (base)
PC ¬ PC + 4
EA = sign-extend(offset) + GPR(base)
MEM[translate(EA)] ¬ GPR[rt]

I-Type
15 0162021252631

SW Datapath

76

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
MEM[translate(EA)] ¬ GPR[rt]
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

0

add

ALUSrc
isItype

RegDest
isItype

0

1

Load-Store Datapath

77

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add isStore

isLoad

ALUSrc
isItype

RegDest
isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

78

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc
isItype

MemtoReg

isLoad

RegDest
isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for
Control Flow Instructions

Jump Instruction
n Unconditional branch or jump

q 2 = opcode
q immediate (target) = target address

n Semantics
if MEM[PC]== j immediate26

target = { PC ✝[31:28], immediate26, 2’b00 }
PC ¬ target

80

j (2) immediate
6 bits 26 bits

j target

J-Type

✝This is the incremented PC

Unconditional Jump Datapath

81

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X 0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }

Other Jumps in MIPS
q jal: jump and link (function calls)

n Semantics
if MEM[PC]== jal immediate26

$ra ¬ PC + 4
target = { PC ✝[31:28], immediate26, 2’b00 }
PC ¬ target

q jr: jump register
n Semantics
if MEM[PC]== jr rs

PC ¬ GPR(rs)

q jalr: jump and link register
n Semantics
if MEM[PC]== jalr rs

$ra ¬ PC + 4
PC ¬ GPR(rs)

82✝This is the incremented PC

Aside: MIPS Cheat Sheet
n https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc

h.php?media=mips_reference_data.pdf

n On the course website

83

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php%3Fmedia=mips_reference_data.pdf

Conditional Branch Instructions
n beq (Branch if Equal)

n Semantics (assuming no branch delay slot)
if MEM[PC] == beq rs rt immediate16

target = PC✝+ sign-extend(immediate) x 4
if GPR[rs]==GPR[rt] then PC ¬ target
else PC ¬ PC + 4

q Variations: beq, bne, blez, bgtz

84

beq (4) rs rt immediate=offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset #$s0=rs,$s1=rt

✝This is the incremented PC

I-Type

Conditional Branch Datapath (for you to finish)

85

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation3

PC

Instruction
memory

Read
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

86

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Control Logic

Single-Cycle Hardwired Control
n As combinational function of Inst=MEM[PC]

n Consider
q All R-type and I-type ALU instructions
q lw and sw
q beq, bne, blez, bgtz
q j, jr, jal, jalr

88

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
15 0162021252631 11 10 6 5

opcode rs rt immediate I-Type
15 0162021252631

6 bits 5 bits 5 bits 16 bits

opcode immediate
6 bits 26 bits

J-Type
0252631

Single-Bit Control Signals (I)

89

When De-asserted When asserted Equation

RegDest
GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

ALUSrc
2nd ALU input from 2nd

GPR read port
2nd ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&

(opcode!=BEQ) &&
(opcode!=BNE)

MemtoReg Steer ALU result to GPR
write port

steer memory load to
GPR write port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options

Single-Bit Control Signals (II)

90

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1
According to PCSrc2 next PC is based on 26-

bit immediate jump
target

(opcode==J) ||
(opcode==JAL)

PCSrc2
next PC = PC + 4 next PC is based on 16-

bit immediate branch
target

(opcode==Bxx) &&
“bcond is satisfied”

JR and JALR require additional PCSrc options

Digital Design & Computer Arch.
Lecture 11: Microarchitecture I

Prof. Onur Mutlu

ETH Zürich
Spring 2020

26 March 2020

We did not cover the following slides in lecture.
These are for your preparation for the next lecture

ALU Control
n case opcode
‘0’ Þ select operation according to funct
‘ALUi’ Þ selection operation according to opcode
‘LW’ Þ select addition
‘SW’ Þ select addition
‘Bxx’ Þ select bcond generation function
__ Þ don’t care

n Example ALU operations
q ADD, SUB, AND, OR, XOR, NOR, etc.
q bcond on equal, not equal, LE zero, GT zero, etc.

93

Let’s Control The Single-Cycle MIPS Datapath

94

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

R-Type ALU

95

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0funct

I-Type ALU

96

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

0

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

opcode

LW

97

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

1

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

SW

98

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
1

0

XX
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

Branch (Not Taken)

99

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent
on the processing of data

Branch (Taken)

100

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent
on the processing of data

Jump

101

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX

X

X
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

X

What is in That Control Box?
n Combinational Logic à Hardwired Control

q Idea: Control signals generated combinationally based on
instruction

q Necessary in a single-cycle microarchitecture

n Sequential Logic à Sequential/Microprogrammed Control
q Idea: A memory structure contains the control signals

associated with an instruction
q Control Store

102

Review: Complete Single-Cycle Processor

103

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:

H&H, Chapter 7.1-7.3, 7.6

Another Complete Single-Cycle Processor

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

105Single-cycle processor. Harris and Harris, Chapter 7.3.

Carnegie Mellon

106

Example: Single-Cycle Datapath: lw fetch
¢ STEP 1: Fetch instruction

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC' Instr

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

107

Single-Cycle Datapath: lw register read
¢ STEP 2: Read source operands from register file

Instr

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

25:21

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

108

Single-Cycle Datapath: lw immediate
¢ STEP 3: Sign-extend the immediate

SignImm

CLK

A RD
Instruction

Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

109

Single-Cycle Datapath: lw address
¢ STEP 4: Compute the memory address

SignImm

CLK

A RD
Instruction

Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB

ALUResult
SrcA Zero

CLK

ALUControl2:0

AL
U

010

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

110

Single-Cycle Datapath: lw memory read
¢ STEP 5: Read from memory and write back to register file

A1

A3
WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD
Instruction

Memory

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB20:16

ALUResult ReadData
SrcA

RegWrite

Zero

CLK

ALUControl2:0

AL
U

0101

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

111

Single-Cycle Datapath: lw PC increment
¢ STEP 6: Determine address of next instruction

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB
20:16

ALUResult ReadData
SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl2:0

AL
U

0101

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type

n Control signals generated by the decoder in control unit

Similarly, We Need to Design the Control Unit

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

112Single-cycle processor. Harris and Harris, Chapter 7.3.

Another Complete Single-Cycle Processor (H&H)

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

113

Your Assignment
n Please read the Lecture Slides and the Backup Slides

n Please do your readings from the H&H Book
q H&H, Chapter 7.1-7.3, 7.6

114

Single-Cycle Uarch I (We Developed in Lectures)

115

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Uarch II (In Your Readings)

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

116

Evaluating the Single-Cycle
Microarchitecture

117

A Single-Cycle Microarchitecture
n Is this a good idea/design?

n When is this a good design?

n When is this a bad design?

n How can we design a better microarchitecture?

118

Performance Analysis Basics

Carnegie Mellon

120

Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed.

Carnegie Mellon

121

Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed.

¢ So how fast are my instructions ?
§ Instructions are realized on the hardware
§ They can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

Carnegie Mellon

122

Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed.

¢ So how fast are my instructions ?
§ Instructions are realized on the hardware
§ They can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

¢ How much time is one clock cycle?
§ The critical path determines how much time one cycle requires =

clock period.
§ 1/clock period = clock frequency = how many cycles can be done

each second.

Carnegie Mellon

123

Processor Performance
¢ Now as a general formula

§ Our program consists of executing N instructions.
§ Our processor needs CPI cycles for each instruction.
§ The maximum clock speed of the processor is f,

and the clock period is therefore T=1/f

Carnegie Mellon

124

Processor Performance
¢ Now as a general formula

§ Our program consists of executing N instructions.
§ Our processor needs CPI cycles for each instruction.
§ The maximum clock speed of the processor is f,

and the clock period is therefore T=1/f

¢ Our program executes in

N x CPI x (1/f) =

N x CPI x T seconds

Performance Analysis Basics
n Execution time of an instruction

q {CPI} x {clock cycle time}
n CPI: Number of cycles it takes to execute an instruction

n Execution time of a program
q Sum over all instructions [{CPI} x {clock cycle time}]
q {# of instructions} x {Average CPI} x {clock cycle time}

125

Performance Analysis of
Our Single-Cycle Design

A Single-Cycle Microarchitecture: Analysis
n Every instruction takes 1 cycle to execute

q CPI (Cycles per instruction) is strictly 1

n How long each instruction takes is determined by how long
the slowest instruction takes to execute
q Even though many instructions do not need that long to

execute

n Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction
q Critical path of the design is determined by the processing

time of the slowest instruction

127

What is the Slowest Instruction to Process?
n Let’s go back to the basics

n All six phases of the instruction processing cycle take a single
machine clock cycle to complete

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result

n Do each of the above phases take the same time (latency)
for all instructions?

128

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Let’s Find the Critical Path

129

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600
SW 200 50 100 200 550

Branch 200 50 100 350
Jump 200 200

Example Single-Cycle Datapath Analysis
n Assume (for the design in the previous slide)

q memory units (read or write): 200 ps
q ALU and adders: 100 ps
q register file (read or write): 50 ps
q other combinational logic: 0 ps

Let’s Find the Critical Path

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

132

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps400ps

100ps

100ps

LW

133

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps600ps

100ps

100ps

550ps

SW

134

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

100ps

550ps

Branch Taken

135

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps
350ps

100ps

350ps

200ps

Jump

136

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps

100ps

200ps

What About Control Logic?
n How does that affect the critical path?

n Food for thought for you:
q Can control logic be on the critical path?
q Historical example:

n CDC 5600: control store access too long…

137

What is the Slowest Instruction to Process?
n Memory is not magic

n What if memory sometimes takes 100ms to access?

n Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

n And, what if you need to access memory more than once to
process an instruction?
q Which instructions need this?
q Do you provide multiple ports to memory?

138

Single Cycle uArch: Complexity
n Contrived

q All instructions run as slow as the slowest instruction

n Inefficient
q All instructions run as slow as the slowest instruction
q Must provide worst-case combinational resources in parallel as required

by any instruction
q Need to replicate a resource if it is needed more than once by an

instruction during different parts of the instruction processing cycle

n Not necessarily the simplest way to implement an ISA
q Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

n Not easy to optimize/improve performance
q Optimizing the common case does not work (e.g. common instructions)
q Need to optimize the worst case all the time

139

(Micro)architecture Design Principles
n Critical path design

q Find and decrease the maximum combinational logic delay
q Break a path into multiple cycles if it takes too long

n Bread and butter (common case) design
q Spend time and resources on where it matters most

n i.e., improve what the machine is really designed to do
q Common case vs. uncommon case

n Balanced design
q Balance instruction/data flow through hardware components
q Design to eliminate bottlenecks: balance the hardware for the

work
140

Single-Cycle Design vs. Design Principles
n Critical path design

n Bread and butter (common case) design

n Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?

141

Aside: System Design Principles
n When designing computer systems/architectures, it is

important to follow good principles

n Remember: “principled design” from our first lecture
q Frank Lloyd Wright: “architecture […] based upon principle,

and not upon precedent”

142

Aside: From Lecture 1
n “architecture […] based upon principle, and not upon

precedent”

143

Aside: System Design Principles
n We will continue to cover key principles in this course
n Here are some references where you can learn more

n Yale Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn’s Bottleneck à Balanced design)

n Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law à Common-case design)

n Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.
q http://research.microsoft.com/pubs/68221/acrobat.pdf

144

http://research.microsoft.com/pubs/68221/acrobat.pdf

A Key System Design Principle
n Keep it simple

n “Everything should be made as simple as possible,
but no simpler.”
q Albert Einstein

n And, keep it low cost: “An engineer is a person who can
do for a dime what any fool can do for a dollar.”

n For more, see:
q Butler W. Lampson, “Hints for Computer System Design,” ACM

Operating Systems Review, 1983.
q http://research.microsoft.com/pubs/68221/acrobat.pdf

145

http://research.microsoft.com/pubs/68221/acrobat.pdf

Multi-Cycle Microarchitectures

146

