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Readings

This week
o Introduction to microarchitecture and single-cycle
microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Next week
o Pipelining
H&H, Chapter 7.5
= Pipelining Issues
H&H, Chapter 7.8.1-7.8.3



Agenda for Today & Next Few Lectures

= Instruction Set Architectures (ISA): LC-3 and MIPS
= Assembly programming: LC-3 and MIPS

= Microarchitecture (principles & single-cycle uarch)
= Multi-cycle microarchitecture

= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution




Recall: The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...




Recall: LLC-3: A Von Neumann Machine
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Figure 4.3  The LC-3 as an example of the von Neumann model|



Recall: The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO




Recall: The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 32 bits)
Word- or Byte-addressable

o The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes

Data types

Addressing modes
Semantics of instructions

Problem

Algorithm

Program

ISA




Microarchitecture

An implementation of the ISA

How do we implement the ISA?
o We will discuss this for many lectures

There can be many implementations of the same ISA
o MIPS R2000, R10000, ...

o Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,
Coffee Lake, ... AMD K5, K7, K9, Bulldozer, BobCat, ...



(A Bit More on)
ISA Design and Tradeoffs




The Von Neumann Model/Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions
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The Von Neumann Model/ Architecture

Recommended reading

o Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Required reading

o Patt and Patel book, Chapter 4, “The von Neumann Model”

Stored program

Sequential instruction processing

11



The Von Neumann Model (of a Computer)
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The Von Neumann Model (of a Computer)

Q: Is this the only way that a computer can operate?

A: No.

Qualified Answer: But, it has been the dominant way
o i.e., the dominant paradigm for computing
o for N decades

13



The Datatlow Model (of a Computer)

Von Neumann model: An instruction is fetched and
executed in control flow order

o As specified by the instruction pointer
o Sequential unless explicit control flow instruction

Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready

o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence

Each instruction specifies “who"” should receive the result
An instruction can “fire” whenever all operands are received

o Potentially many instructions can execute at the same time

Inherently more parallel
14



Von Neumann vs Dataflow

Consider a Von Neumann program
o What is the significance of the program order?
o What is the significance of the storage locations?

v<=a+b;
w<=b *2;
X<=V-W
V<=V+W
z<=x*y

Sequential

d

S

;
5

; Dataflow

YA

Which model is more natural to you as a programmer?

15



More on Data Flow

In a data flow machine, a program consists of data flow
nodes

o A data flow node fires (fetched and executed) when all it
inputs are ready
i.e. when all inputs have tokens

Data flow node and its ISA representation

/ | | |

o | * | R ARG1 R ARG2 | Dest. Of Result
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Data Flow Nodes
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An Example Data Flow Program

ouT
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ISA-level Tradeoff: Instruction Pointer

Do we need an instruction pointer in the ISA?

o Yes: Control-driven, sequential execution
An instruction is executed when the IP points to it

IP automatically changes sequentially (except for control flow
instructions)

o No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available (data flow)

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?

19



ISA vs. Microarchitecture Level Tradeoff

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a data-flow execution order

Microarchitecture: How the underlying implementation
actually executes instructions

o Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA
20



Let’s Get Back to the Von Neumann Model

= But, if you want to learn more about dataflow...

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= A later lecture

= If you are really impatient:
o http://www.youtube.com/watch?v=D2uue’izU2c

o http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt
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http://www.youtube.com/watch%3Fv=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php%3Fmedia=onur-740-fall13-module5.2.1-dataflow-part1.ppt

The Von-Neumann Model

All major instruction set architectures today use this model
o x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, ...

Underneath (at the microarchitecture level), the execution
model of almost all /implementations (or, microarchitectures)
is very different

o Pipelined instruction execution: Inte/ 80486 uarch
o Multiple instructions at a time: Inte/ Pentium uarch
o Out-of-order execution: Intel Pentium Pro uarch

o Separate instruction and data caches

But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

o Difference between ISA and microarchitecture

22



What 1s Computer Architecturer

ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture

ISA
0 Agreed upon interface between software  p=sr
and hardware )
Algorithm
SW/compiler assumes, HW promises g
o What the software writer needs to know [ g,

to write and debug system/user programs Microarchitecture

Microarchitecture Circuits

o Specific implementation of an ISA Electrons

o Not visible to the software

Microprocessor

o ISA, uarch, circuits
o “Architecture” = ISA + microarchitecture



ISA vs. Microarchitecture

What is part of ISA vs. Uarch?

o Gas pedal: interface for “acceleration”
o Internals of the engine: implement “acceleration”

Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

o Add instruction vs. Adder implementation

Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

o X86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, Kaby Lake, Coffee Lake, ...

Microarchitecture usually changes faster than ISA
o Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs

o Why?
25



ISA

Instructions

o Opcodes, Addressing Modes, Data Types

o Instruction Types and Formats . |

o Registers, Condition Codes (lnte,

Memory

o Address space, Addressability, Alignment

o Virtual memory management Intel® 64 and IA-32 Architectures

Call, Interrupt/Exception Handling Software Developer's Manual
.. . . Volume 1:

Access Control, Priority/Privilege Basic Architecture

I/O: memory-mapped vs. instr.

Task/thread Management

Power and Thermal Management
Multi-threading support, Multiprocessor support

26



Microarchitecture

Implementation of the ISA under specific design constraints
and goals

Anything done in hardware without exposure to software
Pipelining

In-order versus out-of-order instruction execution

Memory access scheduling policy

Speculative execution

Superscalar processing (multiple instruction issue?)

Clock gating

Caching? Levels, size, associativity, replacement policy
Prefetching?

Voltage/frequency scaling?

Error correction?

o 0o 0o 0o 0o o o o o o

27



Property ot ISA vs. Uarch?

ADD instruction’s opcode

Bit-serial adder vs. Ripple-carry adder

Number of general purpose registers

Number of cycles to execute the MUL instruction
Number of ports to the register file

Whether or not the machine employs pipelined instruction
execution

Remember

o Microarchitecture: Implementation of the ISA under specific
design constraints and goals

28



Design Point

A set of design considerations and their importance
o leads to tradeoffs in both ISA and uarch

Example considerations: Problem
o Cost Algorithm

o Performance Program

o Maximum power consumption, thermal ISA

o Energy consumption (battery life) Microarchitecture
o Availability Circuits

o Reliability and Correctness Electrons

o Time to Market

o Security, safety, predictability, ...

Design point determined by the “Problem” space
(application space), the intended users/ market



Application Space

Dream, and they will appear...

Other examples of the application space that continue to

drive the need for unique design points are the following:
Duch 2 those whose compt

tions control nuclear power plants determine where to

y control, payro]]s IRS activity,
and various personncl record keeping, whether the per-
sonnel are em lo ees . students, or voters;

ch as high-speed routing of
ntemet packe ; enable the connection of your

antage of the Internet;
35) .a. real time) applications that

require the result of a computation by a certain critical
deadline:

6)embedded applications fwhere the processor 1s a com-
ponent of a larger system that is used to solve the (usu-

dedicated application;

4)

audlo ﬁles A
8) random software packages that desktop users would
like to run on their PCs.

Each of these application areas has a very different set of

charactenistics. Each application area demands a different set

of tradeoffs to be made m specifying the microprocessor to
do the job.

Patt, “Requirements, bottlenecks,

and good fortune: agents for
microprocessor evolution,”
Proc. of the IEEE 2001.

Many other workloads:

Genome analysis
Machine learning
Robotics
Web search
Graph analytics

30



Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.

SAFARI 31



Tradeotts: Soul of Computer Architecture

= [SA-level tradeoffs

= Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

o Why art?

32



Why Is It (Somewhat) Art?

New demands
from the top

(Look Up) New demands and

personalities of users
/ (Look Up)

Runtime System

ISA

New issues and
capabilities

at the bottom
(Look Down)

= We do not (fully) know the future (applications, users, market)

33




Why Is It (Somewhat) Art?

Changing demands
at the top

(Look Up and Forward) Changing demands and

personalities of users
/ (Look Up and Forward)

Runtime System

ISA

Changing issues and
capabilities

at the bottom

(Look Down and Forward)

= And, the future is not constant (it changes)!

34



Analogue from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a mill be later used as a theater + restaurant
+ conference room?

35



Miuhle Tiefenbrunnen

= Originally built as a brewery in 1889, part of it was
converted into a mill in 1913, and the other part into a cold
store

= Nowadays is a center for a variety of activities: theater,
conferences, restaurants, shops, museum...

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/ 36



Another Example (I)

HU § 865694

Photo credit: Prof. Can Alkan



Photo credit: Prof. Can Alkan
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By Roland zh (Own work) [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

39



https://creativecommons.org/licenses/by-sa/3.0)

Implementing the ISA:
Microarchitecture Basics




Now That We Have an ISA

How do we implement it?

i.e., how do we design a system that obeys the
hardware/software interface?

Aside: “"System” can be solely hardware or a combination of
hardware and software

a Translation of ISAs”

o A virtual ISA can be converted by “software” into an
implementation ISA

We will assume “hardware” implementation for most lectures

41



How Does a Machine Process Instructions?

What does processing an instruction mean?
We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

Processing an instruction: Transforming AS to AS’ according

to the ISA specification of the instruction
42



The Von Neumann Model/ Architecture

Stored program

Sequential instruction processing

43



Recall: The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...
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The “Process Instruction” Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification

o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’

o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to AS) E



A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute
= Only combinational logic is used to implement instruction

execution
o MNo intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginninﬁf a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

46



A Very Basic Instruction Processing Engine

= Single-cycle machine

AS’ AS

Sequential |
Logic
(State)

Combinational
Logic

= What is the clock cycle time determined by?

= What is the critical path of the combinational logic
determined by?

47



Recall: Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

48



Single-cycle vs. Multi-cycle Machines

Single-cycle machines

Q

Each instruction takes a single clock cycle

o All state updates made at the end of an instruction’s execution

Q

Big disadvantage: The slowest instruction determines cycle time >
long clock cycle time

Multi-cycle machines

Q

Q

Q

Instruction processing broken into multiple cycles/stages
State updates can be made during an instruction’s execution

Architectural state updates made at the end of an instruction’s
execution

Advantage over single-cycle: The slowest “stage” determines cycle time

Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

49



Instruction Processing “Cycle”

Instructions are processed under the direction of a “control
unit” step by step.

Instruction cycle: Sequence of steps to process an instruction
Fundamentally, there are six steps:

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

Not all instructions require all six steps (see P&P Ch. 4)
50



Recall: The Instruction Processing “Cycle”™

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO
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Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

a All six phases of the instruction processing cycle take a sing/e
machine clock cycle to complete

Multi-cycle machine:

o All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

a In fact, each phase can take multiple clock cycles to complete

52



Instruction Processing Viewed Another Way

Instructions transform Data (AS) to Data’ (AS’)

This transformation is done by functional units
o Units that “operate” on data

These units need to be told what to do to the data

An instruction processing engine consists of two components
o Datapath: Consists of hardware elements that deal with and
transform data signals
functional units that operate on data

hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

storage units that store data (e.g., registers)

o Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

53



Single-cycle vs. Multi-cycle: Control & Data

Single-cycle machine:

o Control signals are generated in the same clock cycle as the
one during which data signals are operated on

a Everything related to an instruction happens in one clock cycle
(serialized processing)

Multi-cycle machine:
o Control signals needed in the next cycle can be generated in
the current cycle

o Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

See P&P Appendix C for more (microprogrammed multi-

cycle microarchitecture)
54



Many Ways of Datapath and Control Design

There are many ways of designing the data path and
control logic

Sing
Sing

Harg

e-cycle, multi-cycle, pipelined datapath and control
e-bus vs. multi-bus datapaths

wired/combinational vs. microcoded/microprogrammed

control

o Control signals generated by combinational logic versus
o Control signals stored in @a memory structure

Control signals and structure depend on the datapath
design

55



Flash-Forward: Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single-cycle microarchitecture performance
o CPI =1
o Clock cycle time = long

= Multi-cycle microarchitecture performance

a CPI = different for each instruction Here, we have
= Average CPI = hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently

56



A Single-Cycle Microarchitecture
A Closer ook




Remember...

= Single-cycle machine

Combinational
Logic

AS’

AS

Sequential |
Logic
(State)
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Iet’s Start with the State Elements

Data and control inputs

=5| Read
register 1 Read
5 datza1
N Read
register 2
Registers
—{PCI— 5 |wite °
register
datas
Write
data
‘ RegWrite
‘ MemWrite
' Instruction
address
»| Address Read |__
data
Instruction e
. i Data
Instruction —| Write
memory data memory
MemRead

59

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



MIPS State Elements

CLK CLK CLK
I I I I
PCR&'PC WE3 WE
1 [ - A RD |4 -1 A1 RD1 =
- A2 RD2 =
Instruction ° 32 A RDI7%
Memory Data
-+ A3 Redist Memory
egister
= WD3 File = WD

o Program counter:
32-bit register
o Instruction memory:

Takes input 32-bit address A and reads the 32-bit data (i.e., instruction)
from that address to the read data output RD.

o Register file:
The 32-element, 32-bit register file has 2 read ports and 1 write port
o Data memory:

Has a single read/write port. If the write enable, WE, is 1, it writes data
WD into address A on the rising edge of the clock. If the write enable is 0,
it reads address A onto RD.

This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)



For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges

Single-cycle, synchronous memory
o Contrast this with memory that tells when the data is ready

o i.e., Ready bit: indicating the read or write is done

See P&P Appendix C (LC3-b) for multi-cycle memory
61



Instruction Processing

= 5 generic steps (P&H book)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)
Execute/Evaluate memory address (EX/AG)
Memory operand fetch (MEM)
Store/writeback result (WB)

Q
Q
Q
Q

B | wB

—
Register #
PC ==»| Address Instruction Registers >ALU Address
Instruction ister #
memory Data
Register # memory

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



What Is To Come: The Full MIPS Datapath

N

Instruction [25—-0] \ [ Shift \\

Jump address [31-0]

\ \
26 left 2 28

PC+4 [31-28]

>Add

Read
address

Instruction
[31-
Instruction
memory

ALU
>Add result
Jump
Instruction [31—26]
> Control
Instruction [25—21] Read
register 1 Read
Instruction [20—16] Read data 1
[ register 2 beond
0 _ Registers Read >ALU ALU
M Write data 2 0 result
u register M
Instruction [15—11] X Write >L:
L data 1
Instruction [15-0] 1\6 Sign %
N Tlextend| M

Instruction [5— 0]

0 1
M M
u u
X X
> \1/ 0
Read
Address data [ 1
M
u
Data X
memo
Write v 0
data

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]

JAL, IR, JALR omitt&d



Another Complete Single-Cycle Processor

A RD Instr

31:26

MemtoReg

Control
Unit

MemWrite

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

Instruction
Memory

20:16

A2
A3

WD3

~ + PCPlus4

20:16

WE3

Register

RD1

SrcA

Zero

RD2

—_

U/

ALUResult

PCSrc

CI‘_K

WE

'B SrcB
—

WriteData

Data
Memory

WD

File

15:11

[0
1

WriteReg, ,

150 Sign Extend

Signlmm

<<2

PCBranch
+

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.
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Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions




R-Type ALU Instructions

= R-type: 3 register operands

MIPS assembly (e.q., register-register signed addition)

add $s0, $sl, $s2 #SsO0=rd, S$sl=rs, Ss2=rt
Machine Encoding
0 rs rt d 0 |add@32)| R-Type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
= Semantics

if MEM[PC] == add rd rs rt
GPRJrd] « GPR][rs] + GPR]rt]

PC <« PC+4

06



(R-Type) ALU Datapath

>Add

4 —
Read Readt 1
— _&—| NC2 register ea
PC address fo daRta 1d
Instruction \r:/gfterl-?zegisters >ALU ALU
Instruction reéligter Read result
memory | write data 2
data
IF |[iID ||ex [[mEM|wB
if MEM[PC] == ADD rd rs rt Combinational
GPR[rd] <~ GPR[rs] + GPR|rt] _
PC <« PC+4 state update logic

67

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Example: ALU Design

m ALU operation (F,.q) comes from the control logic

N§ : Function

2 F A|B
] 2
N
0
\
Cout {*’SJ/
[N-1]
N N N
\ %2‘ Fro 111 SLT
J(N
Y




[-Type ALU Instructions

= I-type: 2 register operands and 1 immediate

MIPS assembly (e.g., register-immediate signed addition)
addi $s0, S$sl, 5 #Ss0=rt, S$sl=rs

Machine Encoding

addi (0) | rs rt immediate I-TYPG
6bits  5bits 5 bits 16 bits
= Semantics
if MEM[PC] == addi rs rt immediate
PC <« PC+4

GPR[rt] « GPR]rs] + sign-extend(immediate)

09



Datapath for R and I-Type ALU Insts.

Read
address

Instruction
memory

> Add

Instruction

if MEM[PC] == ADDI rt rs immediate
GPR][rt] <~ GPR][rs] + sign-extend (immediate)

PC<« PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Read
register 1

Read
register 2

Write
register

_| Write
| data

Registers

Read

data 1

ID

EX

MEM|

WB

Combinational
state-updatelogic_;




Recall: ADD with one Literal in 1.C-3

= ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2

Field Values

OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm5
0001 001 100 (1] 11110
15 12 11 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[sexT] extend

16

.

1111111111111110
I

R6

R7

0000000000000100 |DR

0000000000000110  |SR

Bit[5]

ADD
From
FSM
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Single-Cycle Datapath tor

Data Mowvement Instructions




l.oad Instructions

= Load 4-byte word
MIPS assembly

lw $s3,

8($s0)

#Ss0=rs, S$s3=rt

Machine Encoding

op

rs=base

rt

imm=offset

lw (35)

base

rt

offset

31 26

= Semantics

if MEM[PC] == Iw rt offset,; (base)

25 21

PC « PC +4
EA = sign-extend(offset) + GPR(base)

GPR[rt] « MEM][ translate(EA) ]

20

16

15

I-Type
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LW Datapath

4] —
,| Read
| pc aR(?(?rdess register 1 Read
| Read data 1
U ister 2 —| Add Read
Instruction “Hj’ \r;ilzerRegisters >ALU reétkj ress data [~
Instruction register .
memory Write d;‘;azd - \é\é?;e mz‘rztzry
data
16
\
N lextend
if MEM[PC]==LW rt offset,4 (base) IF ID EX || MEM| wWB
EA = sign-extend(offset) + GPR[base] Combinational

GPR[rt] « MEM[ translate(EA) ]

PC <« PC+4 state update logic 74



Store Instructions

= Store 4-byte word

MIPS assembly

SW

$s3,

8(Ss0) #SsO=rs, S$s3=rt

Machine Encoding

op

rs=base

rt

imm=offset

sw (43)

base

offset

31

= Semantics

if Mem[PC] == sw rt offset,; (base)

26 25

PC « PC +4
EA = sign-extend(offset) + GPR(base)

MEM[ translate(EA) | « GPR[rt]

21 20

16 15

I-Type
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SW Datapath

4] —
,| Read
| pc aR(?(?rdess register 1 dzgaf
- rReZ?sdter2 =—s| Address Read | _
Instruction . Registers >A|—U ALU data
Instruction 1 \rlc\alg]l;[s‘.eter Read result
memory Write datzaz - \é\gti;e mz‘rztzry
data
16
\
N | extend
if MEM[PC]==SW rt offset, (base) IF ID EX || MEM[wB
EA = sign-extend(offset) + GPR[base] Combinational

MEM][ translate(EA) ] < GPR]rt]

PC <« PC+4 state update logic 76



Load-Store Datapath

Read
address

memory

Instruction

Instruction

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

Read
register 1 Read
Read data 1
register 2
Registers
Write ? _ Address Read
register Read » data
; data 2
Write
Data
dat
aa ) memory
Write
| data
16 ) 32
\ | Sign
N | extend
77




Datapath for Non-Control-Flow Insts.

—PC

4 —
Read Read
ea register 1
address J thea{j
Read ala
register 2
Instruction Registers
Write R
Instruction register Read g
memory Write data 2
| data
isltype
yp 16 32
\ | Sign
N “lextend

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

—

Read
Address data
Data
memo
_| Write i
| data
78




Single-Cycle Datapath tor

Control Flow Instructions




Jump Instruction

= Unconditional branch or jump

j target

j(2)

immediate

6 bits

o 2 = opcode

26 bits

o immediate (target) = target address

= Semantics

if MEM[PC]== j immediate,

target = { PC 1[31:28], immediate,¢, 2" b00 }

PC « target

J-Type

"This is the incremented PC
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Unconditional Jump Datapath

>Add
4 —)
ALU operation

N —_ Read 3 .

> PC Rgzgd register 1 Read MemWrite
> address data 1 g
Read
‘ register 2
Instruction ) Registers >ALU ALU
. Write . result Address Read
Instruction register Read > data
memor
@ ' o irite dete 2 Data
data
? Write memory
/" e RegWrite * data
/ 16 , 32
\ | Sign MemRead
N “lextend
**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2" b0O } What about JR, JAL, JALR?



Other Jumps 1n MIPS

o jal: jump and link (function calls)
= Semantics
if MEM[PC]== jal immediate,
$ra «— PC + 4

target = { PC T[31:28], immediate,s, 2" b00 }
PC « target

Q jr: jump register
= Semantics
if MEM[PC]== jr rs
PC <« GPR(rs)

o jalr: jump and link register
= Semantics
if MEM[PC]== jalr rs
$ra <~ PC + 4
PC <« GPR(rs)

"This is the incremented PC
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Aside: MIPS Cheat Sheet

= https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc

h.php?media=mips_reference data.pdf

= On the course website

83


https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php%3Fmedia=mips_reference_data.pdf

Conditional Branch Instructions

= beq (Branch if Equal)

beq $s0, $sl, offset #Ss0O=rs,Ssl=rt

beq (4) rs rt

immediate=offset

6 bits 5 bits 5 bits

16 bits

= Semantics (assuming no branch delay slot)

if MEM[PC] == beq rs rt immediate;q
target = PC™ + sign-extend(immediate) x 4
if GPR[rs]==GPR[rt] then PC « target

else PC < PC + 4

o Variations: beq, bne, blez, bgtz

I-Type

"This is the incremented PC
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Conditional Branch Datapath (for you to finish)

watch out
PC + 4 from instruction datapath =
>Add
> Add Sum pH==> Branch targef
4 —

-N\ —

> PC 4 Read

> address ALU operation

> Read
register 1

Instruction d;zaf
Read
Instruction register 2
memory Registers ALU bcond To branch_
A Write control logic
register Read R
Write data 2
data
RegWrite
16 . 32
\ Sign
N “lextend
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semantiés?



Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
x\left2 [}
26 UZS 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ 0
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 Read
address ) ea
Instruction [20— 16] Read data 1
. register 2 bcond
|nStI‘[l§Cthl’1 l—v 0 _ Registers Read 0 >ALU ALU Read
, M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 LR
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittéé




Single-Cycle Control Logic




Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]
31 26 25 2 20 16 15 11 10 6 5 0
0 rs rt rd | shamt | funct R‘TYPC
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

31 26 25 21 20 16 15 0

opcode rs rt immediate I-Type
6 bits 5 bits 5 bits 16 bits

31 26 25 0

opcode immediate ]—Type
6 bits 26 bits
Consider

o All R-type and I-type ALU instructions
o lw and sw

a beq, bne, blez, bgtz

a j, jr, jal, jalr




Single-Bit Control Signals (I)

When De-asserted When asserted Equation
GPR write select GPR write select opcode==0
according to rt, i.e., according tord, i.e.,
inst[20:16] inst[15:11]

2" ALU input from 2" | 2" ALU input from sign- | (opcode!=0) &&

GPR read port extended 16-bit (opcode!=BEQ) &&

immediate (opcodel=BNE)

Steer ALU result to GPR | steer memory load to opcode==LW

write port GPR write port

GPR write disabled GPR write enabled (opcode!=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg optitrhs



Single-Bit Control Signals (11)

When De-asserted When asserted Equation

Memory read disabled | Memory read port opcode==LW
return load value

Memory write disabled | Memory write enabled | opcode==SW

According to next PCis based on 26- | (opcode==J) ||
bit immediate jump (opcode==JAL)
target

next PC=PC+4 next PCis based on 16- | (opcode==Bxx) &&
bit immediate branch “bcond is satisfied”
target

JR and JALR require additional PCSrc optidhs
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture




ALU Control

case opcode
‘0" = select operation according to funct

‘ALUI"’ = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
= don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.

o bcond on equal, not equal, LE zero, GT zero, etc.
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| —

_et’s Control The Single-Cycle MIPS Datapath

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> ;
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 e |
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittgé




R-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
I Read register 1 O
address ) Read
Instruction [20—-16] Read data 1
) register 2 beond
Instr[gﬁtlog N " Registers Read >ALU ALU
. Write data 2 result Address Read|
Instruction register data
memory Instruction [15—11] ‘ Write
data | R Data d
. memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

N |extend

ALU operation O

unet

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
—>|PC aRggr%ss register 1 Read O
Instruction [20—16] Read data 1
) register 2 bcond
IHStEgCtlon  Registers Read > ALU ALU
) Write data 2 0 result Address Read{
Instruction u register M data
memory Instruction [15—11] X Write p
1 data Data d
) memory
Write
data
Instruction [15-0] 1\6 Sign ?{2
N "lextend

?pcod éLU operation O

Instruction [5—- 0]

(@)

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]



LW

Instruction [25-0] \ [ Shift \\

PCSrci=Jump

Jump address [31-0]

\ \
2 @2&

PC+4 [31-28]

>Add

Read
address

Instruction
memory

Instruction
[3

./

ALU

L.

>Add result

\d

bcond
ALU ALU

N

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
register 1 Read
Instruction [20— 16] Read data 1
register 2
Registers Read
Write data 2
u register
Instruction [15—11] X Write
1 data
Instruction [15-0] 1\6 Sign ?{2

PCSrc,=Br Taken

esult

(=

N lextend [ M

Instruction [5—- 0]

Read
Address data ‘
Data
memo
Write v
data

Add ALU operation 1
I_,

**Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]




SW

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
I Read register 1 1
address . Read
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[gti‘tlog l—; 0 Registers Read " >A|—U ALU Read
M Write data 2 Add cadl .,
nstruction ! register ata M result ress data
memory Instruction [15—11] Write 4
! data o /\
memory Q'
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V I"Add ALU operation O

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]



Branch (Not Taken)

Some control signals are dependent
on the processing of data

ALU L
>Add result 1 @

Instruction [25-0] \ [ Shift \\
\ \
2% left 2 28

PC+4 [31-28]

Jump address [31-0]

./

>Add

Jump

\d

Instruction [31—-26]

Control

0

Instruction [15-0]

Instruction [25—21] Read
—(PC aRggr%ss register 1 Read O
Instruction [20—-16] Read data 1
reqi bcond
: I gister 2
Instlil:;ctlon 0  Registers Read > ALU ALU
. M Write data 2 result Address Read{
Instruction u register data
memory Instruction [15—11] Write
data mgritgry X
Write Q’
data
16 ) 32
\ Sign |\
N

cond 0

| @

Instruction [5—- 0]

D
O

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]



Branch (Taken)

Some control signals are dependent
on the processing of data

Instruction [25-0] \ { Shift \\ Jump address [31- 0]

\ AY
26 left 2 28 5 |
PC+4 [31-28] I\JI
\ X
" ALU
>Add result

>Add

./

\d

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
| PC Read register 1 O
address _ Read
Instruction [20—16] Read data 1
) register 2 bcond
Instr[g(i‘tlog l—» 0 ~ Registers Read >ALU ALU
i M Write data 2 result Address Read
Instruction U register data
memory Instruction [15—11] Write
data | g mlg;tgry }Q'
Write
data
Instruction [15-0] 1\6 Sign %2
‘ U | pcond 0
Instruction [5—- 0]
**Based on original fi f 1 OO
ginal figure from [P&H CO&D, COPYRIGHT T

2004 Elsevier. ALL RIGHTS RESERVED.]



Jump

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og o |

PC+4 [31-28]

M
u

./

ALU
>Add result \1/

M
u
X

0

>Add

PCSrc,=Br Taken

\d

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
| PC aRggr(éss register 1 Read O
Instruction [20—-16] Read data 1
reqi bcond
: I gister 2
IHStEgCtlon 0  Registers Read >ALU ALU
i M Write data 2 0 result Address Read{
Instruction Lu register M data
memory Instruction [15—11] Write
2| X
Write Q'
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [ ¥ ALU operation O

Instruction [5—- 0] r X

P

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on
instruction

o Necessary in a single-cycle microarchitecture

Sequential Logic = Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store
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Review: Complete Single-Cycle Processor

Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o \left2 [0 5 I_» /
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
> Add
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address cad (4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
1 1 e |
Write v
data
Instruction [15—0] 1° [ gign |32

N Tlextend | N

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR Omltlgé




Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:
H&H, Chapter 7.1-7.3, 7.6



Another Complete Single-Cycle Processor

'r0 PC' PC A RD
1

Instruction
Memory

Instr

31:26

MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

= +

PCPlus4

20:16

A2

A3

20:16

WD3

WE3

Register

RD1

SrcA

Zero

RD2

—_

'B SrcB
—

ALUResult

PCSrc

CI‘_K

WE

v
ALU

WriteData

Data
Memory

File

15:11

[0
- 1
WriteReg, ,

Signlmm
150 Sign Extend

<<2

PCBranch
+

WD

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.
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Example: Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $S§i 1&%9) # read memory word 1 into $s3

T TType

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signimm ,
Sign Extend

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIzz0
010

SrcA Zero
ALUResult

oy

ALU

SrcB

Signimm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite
1
CLK
|

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CI‘_K
PCy "V pc

)
PCPlus4
4

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Similarly, We Need to Design the Control Unit

= Control signals generated by the decoder in control unit

R-type 000000
w 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
addi 001000 1 0 1 0 0 0 00 0
j 000010 0 X X X 0 X XX 1

Single-cycle processor. Harris and Harris, Chapter 7.3. 112



Another Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSre

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

) WE3 [~ Zero WE

-r0 PCl 7 |PC Instr P22 A1 RD1 S 0
1 A RD >3 ALUResult ReadData )
Instruction 20:16 N <C
A2 RD2 |0 ISch Dat
Memory ata
A3 - Memory

i WriteData
WD3 Relgillzter [ WD

20:16 B
15:11 1
o WriteReg,

PCPlus4

= +
4 _l/ Signlmm <<?
= 150 Sign Extend .\ PCBranch

—_

Result
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Your As signment

Please read the Lecture Slides and the Backup Slides

Please do your readings from the H&H Book
o H&H, Chapter 7.1-7.3, 7.6
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Single-Cycle Uarch I (We Developed in Lectures)

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> ;
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 e |
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR Omltléa




Single-Cycle Uarch II (In Your Readings)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSre

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

_ WE3 SrcA [T
-rO pc|™|ec IS s Y RD1
1

Zero WE
0
ALUResult ReadData 1

Instruction 20:16 0 <
A2 RD2 0 ]srcB Dat
Memory e
A3 -| ] M
Register — WriteData emory

WD3 File WD

20:16 B
1511 1
o WriteReg,

PCPlus4

= +
4 _l/ Signlmm <<?
= 150 Sign Extend N PCBranch

A RD

U/

—_

Result
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Evaluating the Single-Cycle
Microarchitecture




A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?
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Pertormance Analysis Basics




Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.



Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI



Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

® The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.



Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f



Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

= Our program executes in
N x CPI x (1/f) =

N x CPI x T seconds



Pertormance Analysis Basics

= Execution time of an instruction

o {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of a program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

125



Performance Analysis of

Our Single-Cycle Design




A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
a CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Ciritical path of the design is determined by the processing
time of the slowest instruction
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What is the Slowest Instruction to Process?

= Let's go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Fetch 1. Instruction fetch (IF)
Decode 2. Instruction decode and
Evaluate Address register operand fetch (ID/RF)

3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Fetch Operands
Execute
Store Result

o o 0O o 0O O

= Do each of the above phases take the same time (latency)
for all instructions?
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Let’s Find the Critical Path

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left2 /)
2 Uzs N
PC+4 [31-28] M M
u u
\ ¥ X
- ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 ——
Instruction [31—-26]
Control
Read Instruction [25—21] Read
ister 1
—(PC address register Read
Instruction [20—-16] data 1
Read bcond
: I register 2
IHStF[UCtlon 0  Registers Read >ALU ALU
i M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X : Y u
[ ] 1 \é\é?;e 1X Data X
memo
Write v 0
data
Instruction [15-0] 1\6 Sign ?{2 -
N lextend [ ¥ ALU operation
Instruction [5—- 0] r
[Based on original figure from P&H CO&D, COPYRIGHT 2004 12

Elsevier. ALL RIGHTS RESERVED.]



Example Single-Cycle Datapath Analysis

Assume (for the design in the previous slide)
o memory units (read or write): 200 ps

o ALU and adders: 100 ps

o register file (read or write): 50 ps

a

other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200




Let’s Find the Critical Path

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left 2 /)
26 UZB 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
" ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Read Instruction [25—21] Read
ister 1
—>|PC address register Read
Instruction [20—16] Read data 1
reqi bcond
: gister 2
Instr[uctlon l—» 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X ; Y u
[ ] 1 \éVnte X Data X
ata ! memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V ALU operation

Instruction [5—- 0] r

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]




R-Type and I-Type ALU

Instruction [15-0]

Sign

3
A\

PCSrc,=Br Taken

Instruction [5-0]

N |extend

\

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ AY
26 left 2 08 | .
PC+4 [31-28] I\Lfl I\L/II
X
ALU
d result L
Add
Jump
4 —
Instruction [31—-26]
Control
Instruction [25—-21] Read
Read :
©a register 1 Read
2() J Igstruction [20— 16 data 1 ot
| h 2 bcond
n n .
0 ~ Registers ALU ALU
. [ M Write data 2 Address Read
Instruction u data
memory Instruction [15—11] X Write 400 p 5
1 data 3 5 (§ Data
pJ | memory
Write
data

x

ALU operati

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



LW

100ps

Add

Read

Instruction
memory

PC+4 [31-28]

ALU
d result

bcond

ALU ALU
[t

35

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 \eft2 /g | 1

M
u

xcZ

PCSrc,=Br Taken

P

Jump

Instruction [31—-26]

Control
Instruction [25—-21] Read

register 1 Read

Igstruction [20—16 data 1 2 o

0 ~ Registers

M Write data 2

u
Instruction [15—11] 1X i
Instruction [15-0] 1\6 Sign

N Tlextend| M

Instruction [5— 0]

Addres:
; Data
memo
Write v
data

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




SW

Instruction [25-0] \ [ Shift \\

Jump address [31-0]

PCSrc,=Jum

\ \
2 @2&

PC+4 [31-28]

ALU
d result

e

M
u

2004 Elsevier. ALL RIGHTS RESERVED.]

Add PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Instruction [25—21] Read
Read register 1 Read
2 () Igstruction [20— 16 data 1 ot
| ‘ 2 bcond
n n .
0 ~ Registers ALU ALU
; M Write data 2 Addrgss Read ]
Instruction u register data M
memory Instruction [15—11] X Write u
1 data 3 5 (& ata X
pS, 55 ;
Wit IS
data
Instruction [15-0] 1\6 Sign ?{
N lextend [ ¥ ALU operation
Instruction [5— 0]
[Based on original figure from P&H CO&D, COPYRIGHT 1 o)




Branch Taken

Instruction [25-0] \ [ Shift \\

PCSrc,=Ju

Jump address [31-0]
\ AY
26 left 2 08 5 | 7
PC+4 [31-28] 2 S ¢ '\lj'
100ps .
P s A
Add Shift PCSrc,=Br Taken
Jump left 2
4 ——
Instruction [31—-26]
Control
Instruction [25-21] Road 3 p S
Read ;
register 1 Read
2() J Igstruction [20— 16 data 1 ot
‘ 2 S bcond
In n 0 Regi ALU
[ ) gisters ALU Read
i M Write data 2 Address eadl 4
Instruction u register data M
memory Instruction [15—11] X . u
Write X
OF e b 1 L
Write
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [ ¥ ALU operation
Instruction [5— 0] r
[Based on original figure from P&H CO&D, COPYRIGHT 1 o)
2004 Elsevier. ALL RIGHTS RESERVED.]




200ps

Instructio

PC+4 [31-28]

./

ALU

=)

>Add result

\d

0

PCSrc,=Br Taken

. Instruction [25-21] Rond
register 1 Read
‘ 0 iruction [20—16] Read data 1
y | register 2 bcond
0 ~ Registers Read >ALU ALU
i M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15—11] X Write g u
1 d Data X
ata L memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{
N lextend [ ¥ ALU operation
Instruction [5—- 0] r
[Based on original figure from P&H CO&D, COPYRIGHT 1 o) 6

2004 Elsevier. ALL RIGHTS RESERVED.]




What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?

o Historical example:
CDC 5600: control store access too long...
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What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

Not easy to optimize/improve performance

o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
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(Micro)architecture Design Principles

Critical path design
o Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

a Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do
o Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work
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Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?
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Aside: System Design Principles

When designing computer systems/architectures, it is
important to follow good principles

Remember: “principled design” from our first lecture

o Frank Lloyd Wright: “architecture [...] based upon principle,
and not upon precedent”
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Aside: From Lecture 1

= architecture [...] based upon principle, and not upon
precedent”




Aside: System Design Principles

We will continue to cover key principles in this course
Here are some references where you can learn more

Yale Patt, "Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn's Bottleneck - Balanced design)

Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law - Common-case design)

Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

o http://research.microsoft.com/pubs/68221/acrobat.pdf
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A Key System Design Principle

= Keep it simple

= “Everything should be made as simple as possible,
but no simpler.” =

o Albert Einstein

= And, keep it low cost: “An engineer is a person who can
do for a dime what any fool can do for a dollar.”

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf
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Multi-Cycle Microarchitectures
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