Digital Design & Computer Arch.

Lecture 12: Microarchitecture 11

Prof. Onur Mutlu

ETH Zurich
Spring 2020
27 March 2020

Readings

This week
o Introduction to microarchitecture and single-cycle
microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Next week
o Pipelining
H&H, Chapter 7.5
= Pipelining Issues
H&H, Chapter 7.8.1-7.8.3

Agenda for Today & Next Few Lectures

= Instruction Set Architectures (ISA): LC-3 and MIPS
= Assembly programming: LC-3 and MIPS

= Microarchitecture (principles & single-cycle uarch)
= Multi-cycle microarchitecture

= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution

Recall: Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
x\left2 [}
26 UZS 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ 0
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 Read
address) ea
Instruction [20— 16] Read data 1
. register 2 bcond
|nStI‘[l§Cthl’1 l—v 0 _ Registers Read 0 >ALU ALU Read
, M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 LR
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitteé

Single-Cycle Control Logic

Recall: Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]
31 26 25 2 20 16 15 11 10 6 5 0
0 rs rt rd | shamt | funct R‘TYPC
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

31 26 25 21 20 16 15 0

opcode | rs rt immediate I—Type
6 bits 5 bits 5 bits 16 bits
31 % 25 0
opcode immediate J—Type
6 bits 26 bits
Consider
o All R-type and I-type ALU instructions

o lw and sw
a beq, bne, blez, bgtz
a j, jr, jal, jalr

Recall: Single-Bit Control Signals (1)

When De-asserted When asserted Equation
GPR write select GPR write select opcode==0
according to rt, i.e., according tord, i.e.,
inst[20:16] inst[15:11]

2" ALU input from 2" | 2" ALU input from sign- | (opcode!=0) &&

GPR read port extended 16-bit (opcode!=BEQ) &&

immediate (opcodel=BNE)

Steer ALU result to GPR | steer memory load to opcode==LW

write port GPR write port

GPR write disabled GPR write enabled (opcode!=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg optiohs

Single-Bit Control Signals (11)

When De-asserted When asserted Equation

Memory read disabled | Memory read port opcode==LW
return load value

Memory write disabled | Memory write enabled | opcode==SW

According to next PCis based on 26- | (opcode==J) ||
bit immediate jump (opcode==JAL)
target

next PC=PC+4 next PCis based on 16- | (opcode==Bxx) &&
bit immediate branch “bcond is satisfied”
target

JR and JALR require additional PCSrc optichs

ALU Control

case opcode
‘0" = select operation according to funct

‘ALUI"’ = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
= don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.
o bcond on equal, not equal, LE zero, GT zero, etc.

| —

_et’s Control The Single-Cycle MIPS Datapath

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> ;
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 e |
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittég

R-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
I Read register 1 O
address) Read
Instruction [20—-16] Read data 1
) register 2 beond
Instr[gﬁtlog N " Registers Read >ALU ALU
. Write data 2 result Address Read|
Instruction register data
memory Instruction [15—11] ‘ Write
data | R Data d
. memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

N |extend

ALU operation O

unet

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT

Pt

2004 Elsevier. ALL RIGHTS RESERVED.]

[-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
—>|PC aRggr%ss register 1 Read O
Instruction [20—16] Read data 1
) register 2 bcond
IHStEgCtlon Registers Read > ALU ALU
) Write data 2 0 result Address Read{
Instruction u register M data
memory Instruction [15—11] X Write p
1 data Data d
) memory
Write
data
Instruction [15-0] 1\6 Sign ?{2
N "lextend

?pcod éLU operation O

Instruction [5—- 0]

Pt

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

LW

Instruction [25-0] \ [Shift \\

Jump address [31-0]

PCSrci=Jump

\ \
2 @2&

PC+4 [31-28]

>Add

Read
address

Instruction
[3

Instruction
memory

./

ALU

L.

>Add result

\d

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
register 1 Read
Instruction [20— 16] Read data 1
register 2 beond
~ Registers Read > ALU ALU
Write data 2 0 result
u register M
Instruction [15—11] X Write 4
1 data
Instruction [15-0] 1\6 Sign ?{
N Tlextend| M

Instruction [5—- 0]

Read
Address data
Data
memo
Write v
data

Add ALU operation 1
I_,

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

N

SW

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
I Read register 1 1
address . Read
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[gti‘tlog l—; 0 Registers Read " >A|—U ALU Read
M Write data 2 Add cadl .,
nstruction ! register ata M result ress data
memory Instruction [15—11] Write 4
! data o /\
memory Q'
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V I"Add ALU operation O

Instruction [5—- 0]

Pt

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Branch (Not Taken)

Some control signals are dependent
on the processing of data

ALU L
>Add result 1 @

Instruction [25-0] \ [Shift \\
\ \
2% left 2 28

PC+4 [31-28]

Jump address [31-0]

./

>Add

Jump

\d

Instruction [31—-26]

Control

0

Instruction [15-0]

Instruction [25—21] Read
—(PC aRggr%ss register 1 Read O
Instruction [20—-16] Read data 1
reqi bcond
: I gister 2
Instlil:;ctlon 0 Registers Read > ALU ALU
. M Write data 2 result Address Read{
Instruction u register data
memory Instruction [15—11] Write
data mgritgry X
Write Q’
data
16) 32
\ Sign |\
N

cond 0

| @

Instruction [5—- 0]

Pt
U1

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Branch (Taken)

Some control signals are dependent
on the processing of data

Instruction [25-0] \ { Shift \\ Jump address [31- 0]

\ AY
26 left 2 28 5 |
PC+4 [31-28] I\JI
\ ;
i ALU
>Add result

>Add

./

\d

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
I Read register 1 O
address] Read
Instruction [20—-16] Read data 1
) register 2 beond
Instr[gﬁtlog Nz " Registers Read >ALU ALU
. M Write data 2 result Address Read{
Instruction QU register data
memory Instruction [15—11] Write
data — mlg;tgry }Q'
Write
data
Instruction [15-0] 1\6 Sign %2

()] fpcond 0

Instruction [5—- 0]

Pt
(@

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Jump

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og o |

PC+4 [31-28]

M
u

./

ALU
>Add result \1/

M
u
X

0

>Add

PCSrc,=Br Taken

\d

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
| PC aRggr(éss register 1 Read O
Instruction [20—-16] Read data 1
reqi bcond
: I gister 2
IHStEgCtlon 0 Registers Read >ALU ALU
i M Write data 2 0 result Address Read{
Instruction Lu register M data
memory Instruction [15—11] Write
2| X
Write Q'
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [¥ ALU operation O

Instruction [5—- 0] r X

Pt

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on
instruction

o Necessary in a single-cycle microarchitecture

Sequential Logic = Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store

18

Review: Complete Single-Cycle Processor

Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o \left2 [0 5 I_» /
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
> Add
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address cad (4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
1 1 e |
Write v
data
Instruction [15—0] 1° [gign |32

N Tlextend | N

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittéa

Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:
H&H, Chapter 7.1-7.3, 7.6

Another Complete Single-Cycle Processor

A RD Instr

31:26

MemtoReg

Control
Unit

MemWrite

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

Instruction
Memory

20:16

A2
A3

WD3

~ + PCPlus4

20:16

WE3

Register

RD1

SrcA

Zero

RD2

—_

U/

ALUResult

PCSrc

CI‘_K

WE

'B SrcB
—

WriteData

Data
Memory

WD

File

15:11

[0
1

WriteReg, ,

150 Sign Extend

Signlmm

<<2

PCBranch
+

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.

21

Example: Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $S§i 1&%9) # read memory word 1 into $s3

T TType

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signimm ,
Sign Extend

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIzz0
010

SrcA Zero
ALUResult

oy

ALU

SrcB

Signimm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite
1
CLK
|

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CI‘_K
PCy "V pc

)
PCPlus4
4

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Similarly, We Need to Design the Control Unit

= Control signals generated by the decoder in control unit

R-type 000000
w 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
addi 001000 1 0 1 0 0 0 00 0
j 000010 0 X X X 0 X XX 1

Single-cycle processor. Harris and Harris, Chapter 7.3. 28

Another Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSre

Op |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

) WE3 [~ Zero WE

-r0 PCl 7 |PC Instr P22 A1 RD1 S 0
1 A RD >3 ALUResult ReadData)
Instruction 20:16 N <C
A2 RD2 |0 ISch Dat
Memory ata
A3 - Memory

i WriteData
WD3 Relgillzter [WD

20:16 B
15:11 1
o WriteReg,

PCPlus4

= +
4 _l/ Signlmm <<?
= 150 Sign Extend .\ PCBranch

—_

Result

29

Your As signment

Please read the Lecture Slides and the Backup Slides

Please do your readings from the H&H Book
o H&H, Chapter 7.1-7.3, 7.6

30

Single-Cycle Uarch I (We Developed in Lectures)

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> ;
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 e |
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittééj

Single-Cycle Uarch II (In Your Readings)

A RD Instr

31:26

MemtoReg

Control
Unit

MemWrite

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

Instruction
Memory

20:16

A2
A3

WD3

~ + PCPlus4

20:16

WE3

Register

RD1

SrcA

Zero

RD2

—_

U/

ALUResult

PCSrc

CI‘_K

WE

'B SrcB
—

WriteData

Data
Memory

WD

File

15:11

[0
1

WriteReg, ,

150 Sign Extend

Signlmm

<<2

PCBranch
+

0
ReadData 1

Result

32

Evaluating the Single-Cycle
Microarchitecture

A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

34

Pertormance Analysis Basics

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

® The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

= Our program executes in
N x CPI x (1/f) =

N x CPI x T seconds

Pertormance Analysis Basics

= Execution time of an instruction

o {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of a program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

41

Performance Analysis of

Our Single-Cycle Design

A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
a CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Ciritical path of the design is determined by the processing
time of the slowest instruction

43

What is the Slowest Instruction to Process?

= Let's go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Fetch 1. Instruction fetch (IF)
Decode 2. Instruction decode and
Evaluate Address register operand fetch (ID/RF)

3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Fetch Operands
Execute
Store Result

o o 0O o 0O O

= Do each of the above phases take the same time (latency)
for all instructions?

44

Let’s Find the Critical Path

Instruction [5—- 0]

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left 2 /)
2 Uzs S B
PC+4 [31-28] \ M M
\ u u
X X
- ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 ——
Instruction [31—-26]
Control
Read Instruction [25—21] Read
register 1
—(PC address] g Read
Instruction [20—-16] Read data 1
) register 2 beond
IHStF[UCtlon I—» 0 Registers Read >ALU ALU
i M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X : Y u
[] 1 \éVnte X Data X
ata 1 Wit memory 0
rite
data
Instruction [15-0] 1\6 Sign ?{ -
N lextend [¥ ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Example Single-Cycle Datapath Analysis

Assume (for the design in the previous slide)
o memory units (read or write): 200 ps

o ALU and adders: 100 ps

o register file (read or write): 50 ps

a

other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200

Let’s Find the Critical Path

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left 2 /)
26 UZB 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
" ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Read Instruction [25—21] Read
ister 1
—>|PC address register Read
Instruction [20—16] Read data 1
reqi bcond
: gister 2
Instr[uctlon l—» 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X ; Y u
[] 1 \éVnte X Data X
ata ! memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V ALU operation

Instruction [5—- 0] r

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

Instruction [15-0]

Sign

3
A\

PCSrc,=Br Taken

Instruction [5-0]

N |extend

\

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ AY
26 left 2 08 | .
PC+4 [31-28] I\Lfl I\L/II
X
ALU
d result L
Add
Jump
4 —
Instruction [31—-26]
Control
Instruction [25—-21] Read
Read :
©a register 1 Read
2() J Igstruction [20— 16 data 1 ot
| h 2 bcond
n n .
0 ~ Registers ALU ALU
. [M Write data 2 Address Read
Instruction u data
memory Instruction [15—11] X Write 400 p 5
1 data 3 5 (§ Data
pJ | memory
Write
data

x

ALU operati

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

LW

100ps

Add

Read

Instruction
memory

PC+4 [31-28]

ALU
d result

bcond

ALU ALU
[t

35

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 \eft2 /g | 1

M
u

xcZ

PCSrc,=Br Taken

P

Jump

Instruction [31—-26]

Control
Instruction [25—-21] Read

register 1 Read

Igstruction [20—16 data 1 2 o

0 ~ Registers

M Write data 2

u
Instruction [15—11] 1X i
Instruction [15-0] 1\6 Sign

N Tlextend| M

Instruction [5— 0]

Addres:
; Data
memo
Write v
data

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

SW

100ps

Add

Read

Instruction
memory

PC+4 [31-28]

ALU
d result

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 \eft2 /g | 1

M
u

xcZ

PCSrc,=Br Taken

Addrass Read
; ata
Writ5 5 IS
data

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
register 1 Read
Igstruction [20—16 data 1 o
2 bcond
0 Registers ALU ALU
M Write data 2
u register
Instruction [15—11] X Write
1 data 3 5 p \
-
Instruction [15-0] 1\6 Sign ?{
N lextend [¥ ALU operation

Instruction [5— 0]

Oxec=z—

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

Branch Taken

Instruction [25-0] \ [Shift \\

PCSrc,=Ju

Jump address [31-0]
\ AY
26 left 2 28
PC+4 [31-28]
Add
Jump
4 m—
Instruction [31—-26]
Control
Instruction [25—-21] Read
Read register 1 Read
2() J Igstruction [20—16 data 1
In [ol 0 Registers
M Write data 2
Instruction u register
memory Instruction [15—11] X Write
1 data
Instruction [15-0] 1\6 Sign ?{2

Shift
left 2

2 S u I\ljl

25

0 |—>1

X

>
>

PCSrc,=Br Taken

350ps

Instruction [5— 0]

N Tlextend| M

bcond
ALU ALU
Address %Z?ad (1
M
u
Data X
memo
Write i 0
data

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps

L B

Instruction
memory

Instructio

PC+4 [31-28]

{

./

ALU

=)

>Add result

\d

0

PCSrc,=Br Taken

Instruction [5—- 0]

Write
data

Read
data

Data
memory

Oxec=z—

Instruction [25—-21] Read
register 1 Read
i) @ ruction [20—16] Read data 1
= [register 2 beond
0 ~ Registers Read > ALU ALU
M Write data 2 0 result Address
u register M
Instruction [15—11] X Write g
1 data 1
Instruction [15-0] 1\6 Sign ?{
N lextend [¥ ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?
o Historical example:

CDC 5600: control store access too long...

53

What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?

54

Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

Not easy to optimize/improve performance

o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
55

(Micro)architecture Design Principles

Critical path design
o Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

a Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do
o Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work

56

Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?

57

Aside: System Design Principles

When designing computer systems/architectures, it is
important to follow good principles

Remember: “principled design” from our first lecture

o Frank Lloyd Wright: “architecture [...] based upon principle,
and not upon precedent”

58

Aside: From Lecture 1

= architecture [...] based upon principle, and not upon
precedent”

Aside: System Design Principles

We will continue to cover key principles in this course
Here are some references where you can learn more

Yale Patt, "Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn's Bottleneck - Balanced design)

Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law - Common-case design)

Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

o http://research.microsoft.com/pubs/68221/acrobat.pdf

60

http://research.microsoft.com/pubs/68221/acrobat.pdf

A Key System Design Principle

= Keep it simple

= “Everything should be made as simple as possible,
but no simpler.” =

o Albert Einstein

= And, keep it low cost: “An engineer is a person who can
do for a dime what any fool can do for a dollar.”

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf

61

http://research.microsoft.com/pubs/68221/acrobat.pdf

Multi-Cycle Microarchitectures

62

Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

o Determine clock cycle time independently of instruction
processing time

a Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

03

Remember: The “Process instruction” Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification

o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’

o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to AS) o

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

&

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

65

Benefits of Multi-Cycle Design

Critical path design

o Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design

o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X's to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

06

Downsides of Multi-Cycle Design

Need to store the intermediate results at the end of each
clock cycle
o Hardware overhead for registers

o Register setup/hold overhead paid multiple times for an
instruction

67

Remember: Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single cycle microarchitecture performance
2 CPI =1 Not easy to optimize design
o Clock cycle time = long

= Multi-cycle microarchitecture performance

a CPI = different for each instruction We have
= Average CPI = hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently

068

A Multi-Cycle Microarchitecture
A Closer ook

How Do We Implement This?

Maurice Wilkes, "The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

THE BEST WAY TO DESIGN AN AUTOMATIC
CALCULATING MACHINE

By M. V. Wilkes, M.A., Ph.D., F.R.A.S. vmg;

)
. ;"0

An elegant implementation:
o The concept of microcoded/microprogrammed machines

70

Multi-Cycle uArch

Key Idea for Realization

o One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it

o Control signals for the next state are determined in
current state

71

The Instruction Processing Cycle

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o o o o o O

72

A Basic Multi-Cycle Microarchitecture

Instruction processing cycle divided into “states”
A stage in the instruction processing cycle can take multiple states

A multi-cycle microarchitecture sequences from state to
state to process an instruction

The behavior of the machine in a state is completely determined by
control signals in that state

The behavior of the entire processor is specified fully by a
finite state machine

In a state (clock cycle), control signals control two things:
How the datapath should process the data
How to generate the control signals for the (next) clock cycle

73

One Example Multi-Cycle
Microarchitecture

Remember: Single-Cycle MIPS Processor

27:.0

Jump

MemtoReg

CLK

-F)
0 '
1 PC PC A RD

Instr

31:26

Unit

Op
Funct

25:21

CLK
|

Control

—

MemWrite

Branch

ALUControl,,,

IALUSrc

RegDst

RegWrite

A1

PCJump

| 31:28

Instruction
Memory

~ + PCPlus4

20:16

A2

A3

WD3

20:16

WE3

SrcA

Zero

RD1

RD2

Register
File

'ﬁ] SrcB

N

ALUResult

PCSrc

CLK
|

WE

\Lal

WriteData

Data
Memory

15:11

WriteReg,.,

150 Sign Extend

Signlmm

<<2

PCBranch
+

wD

0
ReadData 1

Result

Multi-cycle MIPS Processor

m Single-cycle microarchitecture:
- cycle time limited by longest instruction (1w) = low clock frequency
- three adders/ALUs and two memories = high hardware cost

m Multi-cycle microarchitecture:
+ higher clock frequency
+ simpler instructions run faster
+ reuse expensive hardware across multiple cycles
- sequencing overhead paid many times
- hardware overhead for storing intermediate results

m Same design steps: datapath & control

What Do We Want To Optimize

m Single Cycle Architecture uses two memories

®= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

What Do We Want To Optimize

m Single Cycle Architecture uses two memories

®= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

m Single Cycle Architecture needs three adders
= ALU, PC, Branch address calculation

= We want to use the ALU for all operations (smaller size)

What Do We Want To Optimize

m Single Cycle Architecture uses two memories

®= One memory stores instructions, the other data

= We want to use a single memory (Smaller size)

m Single Cycle Architecture needs three adders
= ALU, PC, Branch address calculation

= We want to use the ALU for all operations (smaller size)

m In Single Cycle Architecture all instructions take one cycle
" The most complex operation slows down everything!
= Divide all instructions into multiple steps

= Simpler instructions can take fewer cycles (average case may be
faster)

Consider the lw instruction

m For aninstruction such as: 1w $t0, 0x20(%$t1l)

= We need to:
= Read the instruction from memory
" Then read $t1 from register array
= Add the immediate value (0x20) to calculate the memory address
= Read the content of this address
= Write to the register $t0 this content

Multi-cycle Datapath: instruction fetch

m First consider executing Iw
= STEP 1: Fetch instruction

IRWrite

CLK

PC M Instr
_\—) EN

read from the memory location [rs]+imm to location [rt]

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w register read

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w immediate

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w address

ALUControl,.,

Signlmm

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w memory read

Ad
r ALUOu

CLK
Data

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: 1w write register

RegWrite

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Multi-cycle Datapath: increment PC

PCWrite ALUSrcA ALUSrcB,,,

i

Multi-cycle Datapath: sw

m Write data in rt to memory

rite
l CLK
20:16

Multi-cycle Datapath: R-type Instructions

m Read fromrs and rt

= Write ALUResult to register file
= Write to rd (instead of rt)

RegDst MemtoReg

Multi-cycle Datapath: beq

m Determine whether values in rs and rt are equal

® Calculate branch target address:
BTA = (sign-extended immediate << 2) + (PC+4)

PCEn
Branch PCSrc

Zero

PC}
*

g

Complete Multi-cycle Processor

15.0

__—

| Sign Extend

CLK
(—%_\ PCWrite
Branch PCEn
lorD| Control | PCSrc
MemWrite| Unit |ALUControl,
IRWrite ALUSrcB,
31:26 Op ALUSrcA
50 | Funct RegWrite
\ J
2 5
CLK 3 3 CLK CLK
WE . - a WE3 A Zero CLK
0 RD Instr =2 <1 A1 RD1 5
:|1 IAdr A EN — A2 RD2 B aLuResult | [Macuoud],
Instr / Data 2016 [
—-0
Memory 15141 j A3 _
WD CLK Reg_lster
0 File
Data 1 WD3
<<2
Signlmm

Control Unit

--

— MemtoReg
RegDst
— lorD
— PCSrc
Main 1 AlusreB,,
Controller
Opcode,. .— (FSM) — ALUSIrcA
— IRWrite
— MemWrite
— PCWrite
— Branch

_)—RegWrite

Unit

ALUOp, ,

Decoder ALUControl,,

--

O M E W M W W W M M M O M M M M M M M M M M M M M M M MMM MW WM EEEEEEEEEmESs=?

Main Controller FSM: Fetch

S0: Fetch

Reset

PC.

—

CLK
‘ PCWrite
Branch PCEn
lorD | Control [PCSrc
MemWrite| Unit |ALUControl,,
IRWrite ALUSIrcB,
31:26 op ALUSrc.:A
50 | Funct RegWrite
r---------------;-%-------C:K--- 0
I .0 CLK < ;%U ‘ 0
WE . % |8 WE3
. RE Instr 22 21 A1 RD1 A
- == EN 20:16 - A2 RD2 B
Instr / Data 1 2016 \\I
Memory]
WD CLK — ﬂ X Register
0 File
Data] WwD3
<<2
l/ Signimm
120 Sign Extend

Main Controller FSM: Fetch

Reset AluSrcA =0
ALUSIrcB = 01
ALUOp = 00

PCSrc=0
IRWrite
PCWrite

CLK

: PCWrite 1
Branch 0 PCEn

lorD | Control [PCSrc
MemWrite| Unit |ALUControl,,

IRWrite ALUSrcB,
31:26 op ALUSrc.:A
50 | Funct RegWrite
e || B OF e
o CLK i) %
[}
WE Instr 222! - &
- = =RE [EN 20:16 \l
X
Instr / Data 1 2016 ~\I 1
Memory . 10
WD CLK 1 ﬂ X Register M
0 File
Data 1 WwD3
<<2

|/ Signimm
15:0 Si

1 gn Extend

Main Controller FSM: Decode

S1: Decode

lorD=0
AluSrcA =0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite
PCWrite

Reset

—

CLK
‘ PCWrite 0
Branch 0 PCEn
lorD | Control [PCSrc
MemWrite| Unit |ALUControl,,
IRWrite ALUSIcB,
31:26 op ALUSrcA
50 | Funct RegWrite
CLK F T cx CLK X
CLK 0 CLK S |2 7 0
@ X 0 SrcA XXX
X WE bso1 |7 S WE3 A ., Zero CLK
0 RD Instr J== Ad === RD4 - 1 >
1 2 A EN . AR === roz [B = | ALUResuilt Luouy ,
X
Instr / Data 0 2016 \\I 4 — <
Memory
15:11 1 .
WD CLK J X Regllster
0 File
Data] WwD3
<<2
/ Signimm
= sigh EXtShd”

Main Controller FSM: Address Calculation

lorD=0
AluSrcA =0
ALUSIrcB = 01
ALUOp =00
PCSrc=0
IRWrite

Reset

S2: MemAdr CLK
: PCWrite 0
Branch 0 PCEn
lorD | Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSTrcB,
3126 | ALUSrcA
P -
59 | Funct RegWrite
- J
CLK 2 1§ o CLK 1
L0 CLK i) % ‘ 0 .
X WE U L WE3 A X
PC' 5 RD Instr |2 =] A1 RD1 ? >
:|1 IAdr A EN 2016 A2 RD2 B ALUResult P
X
Instr / Data 0 2016 \\l 4 —
Memory A3
15:11 1 .
WD CLK J X Reg_lster
0 File
Data 1 WD3
<<2
/ Signimm
150 {_Sign Extend

Main Controller FSM: Address Calculation

lorD=0
AluSrcA =0
ALUSIrcB = 01
ALUOp =00
PCSrc=0
IRWrite
PCWrite

Reset

Op=1LWw
or
S2: MemAdr Op = sw CLK
‘ PCWrite 0
Branch 0 PCEn
ALUSrcA =1 lorD | Control |PCSrc
ALUSrcB =10 MemWrite| Unit [ALUControl,,
ALUOp =00 IRWrite ALUSrcB,
3126 | ALUSrcA
P -
59 | Funct RegWrite
. J
CLK 2 1§ o CLK 1
3
| 0 CLK ‘;,’ 5 0 ~
X WE . -~ o WE3 A X
PC T Ad RD Instr [P = RD1 - ? 5
A EN oute A2 RD2 ALUResult P
X
Instr / Data 0 2016 \\l 4 —
Memory] A3
WD CLK 1511 ﬂ X Register
0 File
Data 1 wD3
<<2
/ Signlmm
150 {_Sign Extend

Main Controller FSM: 1w

lorD=0
AluSrcA =0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSIrcA =1
ALUSIrcB =10
ALUOp =00

S4: Mem
Writeback

RegDst =0

MemtoReg = 1
RegWrite

Main Controller FSM: sw

lorD=0
AluSrcA =0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSIrcA =1
ALUSrcB =10
ALUOp =00

Op =sw

S5: MemWrite

lorD =1
MemWrite

RegDst =0

MemtoReg = 1
RegWrite

Main Controller FSM: R-Type

lorD=0

Reset AluSrcA =0
ALUSIrcB = 01
ALUOp =00
PCSrc=0
IRWrite
Op=1Ww
or
Op =sw

ALUSIrcA =1
ALUSrcB = 10

ALUOp = 00

Op = sw
Op=1w

lorD =1

MemWrite

RegDst =0

Op = R-type

ALUSIcA =1

ALUSIcB = 00
ALUOp = 10

S7: ALU
Writeback

RegDst =1
MemtoReg = 0

RegWrite

MemtoReg = 1
RegWrite

Main Controller FSM: beq

lorD=0

Reset AluSrcA =0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite
Op=1Ww
or
Op =sw

ALUSIcA =1
ALUSrcB = 10

ALUOp = 00

Op = sw
Op=1w

lorD =1

MemWrite

RegDst=0
MemtoReg = 1

ALUSIrcA=0
ALUSrcB = 11

ALUOp = 00

Op = BEQ
Op = R-type
S8: Brancl

ALUSrcA =1
ALUSIrcA =1 ALUSIrcB =00
ALUSrcB =00 ALUOp =01
ALUOp =10 PCSrc =1

Branch

RegDst = 1

MemtoReg = 0
RegWrite

RegWrite

Complete Multi-cycle Controller FSM

S0: Fetch
lorD=0
Reset AluSrcA =0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite
Op=1Ww
or
S2: MemAdr Op = sy
ALUSIrcA =1
ALUSIrcB =10
ALUOp =00
Qp = SW
Op=1w
P S5: MemWrite
S3: MemRead
MemWrite
S4: Mem
Writeback
RegDst =0
MemtoReg = 1

S1: Decode

ALUSrcA=0
ALUSIrcB = 11
ALUOp =00

ALUSIcA =1
ALUSrcB = 00
ALUOp =10

RegDst =1

MemtoReg = 0
RegWrite

Op = BEQ

S8: Brancl
ALUSrcA =1
ALUSrcB =00
ALUOp =01
PCSrc =1
Branch

RegWrite

Main Controller FSM: add1i

lorD=0
AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSTIrcA =1
ALUSrcB = 10

ALUOp = 00

Qp = sw
Op=1w

lorD =1

MemWrite

RegDst=0

ALUSrcA=0
ALUSIcB = 11

ALUOp = 00

Op = R-type

ALUSIcA = 1
ALUSIcB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ P

ALUSrcA =1
ALUSrcB =00
ALUOp =01
PCSrc =1
Branch

MemtoReg = 1
RegWrite

Main Controller FSM: add1i

lorD=0
AluSrcA=0
ALUSrcB = 01
ALUOp =00
PCSrc=0
IRWrite

Reset

ALUSIrcA =1
ALUSrcB = 10

ALUOp = 00

Qp = sw
Op=1w

lorD =1

MemWrite

RegDst =0

ALUSrcA=0
ALUSrcB = 11
ALUOp =00
Op = ADDI
Op = BEQ P
Op = R-type
ALUSIcA =1
ALUSIcA =1 ALUSrcB = 00
ALUSrcB = 00 ALUOp =01
ALUOp =10 PCSrc =1
Branch

RegDst = 1
MemtoReg =0
RegWrite

ALUSIcA = 1
ALUSIcB = 10
ALUOp = 00

RegDst =0
MemtoReg = 0
RegWrite

MemtoReg = 1
RegWrite

Extended Functionality: j

PC'

25:0 (jump)

PCJump

PCSrc,,

00
01
10

Control FSM: j

lorD=0

Reset AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc =00
IRWrite
Op=1w
or
Op =su

ALUSTIrcA =1
ALUSrcB = 10

ALUOp = 00

Qp = sw
Op=1w

lorD =1

MemWrite

RegDst=0

ALUSrcA=0
ALUSIcB = 11

ALUOp = 00

Op = R-type

ALUSIcA = 1
ALUSIcB = 00
ALUOp = 10

RegDst =1
MemtoReg = 0
RegWrite

Op=14J

Op = ADDI
Op = BEQ P

ALUSrcA =1
ALUSrcB =00
ALUOp =01
PCSrc = 01
Branch

ALUSIcA = 1
ALUSIcB = 10
ALUOp = 00

RegDst=0
MemtoReg = 0
RegWrite

MemtoReg = 1
RegWrite

Control FSM: j

lorD=0
AluSrcA=0

Reset
ALUSIrcB = 01 ALUSrcA =0 B
ALUOp = 00 ALUSIcB = 11 Op=J
PCSrc = 00 ALUOp = 00 PCSrc =10
IRWrite PCWrite
_ Op = ADDI
Op = LW Op =BEQ
or Op = R-type
Op =suw
ALUSIrcA =1
ALUSrcA =1 ALUSrcA =1 ALUSrcB = 00 ALUSIrcA =1
ALUSIrcB =10 ALUSrcB = 00 ALUOp = 01 ALUSrcB =10
ALUOp =00 ALUOp =10 PCSrc = 01 ALUOp =00
Branch
Qp = swW
Op=1w
lorD = 1 RegDst =1 RegDst=0
MemWrite MemtoReg = 0 MemtoReg =0
RegWrite RegWrite
RegDst =0
MemtoReg = 1

RegWrite

Review: Single-Cycle MIPS Processor

27:0

Jump

MemtoReg

PC'

PCJump

31:28

CLK

PC

A RD

Instruction
Memory

Instr

31:26

Unit

Op

25:21

Funct

CLK
|

Control

—

MemWrite

Branch

ALUControl,.,

ALUSrc

RegDst

RegWrite

A1

20:16

A2

A3

20:16

WD3

WE3
RD1

SrcA

Zero

RD2

Register
File

ALUResult

PCSrc

CLK
|

WE

Hlo Jes

-

\Lal

WriteData

Data
Memory

wD

1511

WriteReg, .,

[0
1

=+

PCPlus4

Signlmm

- Sign Extend

<<2

PCBranch
+

ReadData Result

108

Review: Multi-Cycle MIPS Processor

CLK

CLK
/‘%ﬁPCWrite
Branch PCEn
lorD Control PCSrc
MemWrite Unit ALUCOHtI‘OlZ0
IRWrite ALUSTrcB,
31:26 Op ALUSrC.:A
50| Funct RegWrite
. J/
Pl =
& |32
«Q
CLK CLK CLK
| CLK ‘
WE ! WES3 A 3128 Zero CLK |
0 RD Instr P2& A1 RD1)
) Add A EN 2016 A2 RD2 B ALUResult Luout |,
Instr / Data 20416 \\l |_| 10
Memory A3
15:11 .
WD CLK ﬂ Register PCJump
0 File
Data 1 WD3
i <<;\ 27:0
/ ImmExt
= | Sign Extend
25:0 (Addr)

109

Review: Multi-Cycle MIPS FSM

lorD=0
AluSrcA=0
ALUSrcB = 01
ALUOp =00
PCSrc =00

IRWrite

Reset

ALUSIrcA =1
ALUSrcB =10

ALUOp = 00

Qp = Sw
Op=1w

lorD =1

MemWrite

RegDst =0

ALUSrcA=0
ALUSIrcB = 11

ALUOp = 00

Op = R-type

ALUSIcA =1
ALUSrcB =00
ALUOp =10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ P

ALUSIrcA =1
ALUSrcB =00
ALUOp =01
PCSrc =01
Branch

PCSrc =10
PCWrite

ALUSIcA =1
ALUSrcB =10

ALUOp = 00

RegDst=0
MemtoReg =0
RegWrite

MemtoReg = 1
RegWrite

What is the
shortcoming of
this design?

What does

this design
assume

about memory?

110

What If Memory Takes > One Cycle?

Stay in the same "memory access” state until memory
returns the data

“Memory Ready?” bit is an input to the control logic that
determines the next state

111

Digital Design & Computer Arch.

Lecture 12: Microarchitecture 11

Prof. Onur Mutlu

ETH Zurich
Spring 2020
27 March 2020

We did not cover the following slides in lecture.
These are to reinforce your understanding.
The slides are mainly based on your textbook.

More on Performance Analysis

Single-Cycle Performance

Tc is limited by the critical path (1w)

——\MemtoReg
Controll 1o mwrite

Unit
Branch 0

0
ALUControl,,, 1 —Pesre

Op [ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

CLK CLK
010 *
1 v _N_E(_3 CRB1- SrcA [T~ Zero WE -
)] ALUResult A - -RD | ReadData | .
Data
Memory

WD

'F PC' PC A = = =RB Instr
1

Instruction 2016
Memory

A2 RD2

Register WriteData

File

0
20:16 0
15:11 1
o WriteReg, ,

PCPlus4

= +
_I‘/ Signimm <<2
4 = 150 Sign Extend N PCBranch

»{ WD3

Result

115

Single-Cycle Performance

Single-cycle critical pat

J Tc = tpcq_PC + tmem + max(tRFreadl tsext + tmux) + tALU +

h:

tmem + tmux + tRFsetup
In most implementations, limiting paths are:

o memory, ALU, register file.

J Tc = tpcq_PC + 21:mem + tRFread + tmux + tALU + tRFsetup

MemtoReg
Cont_rol MemWrite
Unit
Branch 0 0
IALUControl o PCSrc
31:26
——Op JALUSrc
2 Funct |RegDst
RegWrite
W
CLK CLK
CLK \ 1 010 L0 ;
. WE3 SrcA Zero WE
e o R |instr_ [FEH Al = = = = -RB- . o
— BN 1 ~J| ALUResult A - -RD ReadData| .
Instruction . = -1 Pr ==
Memory 2016f A2 RD2 Nsre[< Data
A3 ; ! WriteData Memory
»| wp3 Regillseter WD

WriteReg,

15:11
—|15:° Sign Extend

Signimm <<
PCBranch
+

Result

116

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q theq pc 30

Register setup (S 20
Multiplexer tnux 25

ALU taLu 200
Memory read tem 250
Register file read trFread 150
Register file setup trrsetup 20

Tc=

117

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q theq pc 30

Register setup (S 20
Multiplexer tnux 25

ALU taLu 200
Memory read tem 250
Register file read trFread 150
Register file setup trrsetup 20

Tc = pcq PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

118

Single-Cycle Performance Example

Example:

For a program with 100 billion instructions executing on a
single-cycle MIPS processor:

119

Single-Cycle Performance Example

Example:

For a program with 100 billion instructions executing on a
single-cycle MIPS processor:

Execution Time = # instructions x CPI x T,

= (100 x 109)(1)(925 x 10125s)
= 92.5 seconds

120

Multi-Cycle Pertormance: CPI

Instructions take different number of cycles:
o 3 cycles: beq, j

o 4 cycles: R-Type, sw, addi

a Realistic?

CPI is weighted average, e.g. SPECINT2000 benchmark:
a 25% loads

o 10% stores

o0 11% branches

o 2% jumps

0 52% R-type

Average CPI = (0.11 + 0.02) 3 +(0.52 + 0.10) 4 +(0.25) 5
=4.12

121

C

Multi-cycle critical path:

Multi-cycle Performance:

Cycle Time

15:0

| Sign Extend

CLK
/—%PCWrite
Branch PCEn
lorD Control PCSrc
MemWrite| Unit |ALUControl, .
IRWrite ALUSrcB,
31:26 Op ALUSr(T,A
50 | Funct RegWrite
\ J/
o |5
CLK 8 3 CLK CLK
| CLK O 3 | P — .
@ 2 SrcA ' CLK i
WE 2621 | S A1 WE3 RD1 A_____ e Zero i !
RD) B > : =10
A 2016 A2 RD2 = ALUResult Luoutt, T3
Instr / Data 2016 [4 — < |
Memory _ A3 l
WD 15:11 ﬂ Reg_ister !
0 File i
WD3 1
1 1
<<2 :
1
1
1
1
1
1
1

Multi-cycle Pertformance: Cycle Time

Multi-cycle critical path:

Tc = tpcq + tmux + maX(tALU + tmuxr tmem) + tsetup

| Sign Extend

CLK
/—%PCWrite
Branch PCEn
lorD | Control |PCSrc
MemWrite| Unit |ALUControl, .
IRWrite ALUSrcB,
31:26 Op ALUSr(T,A
50 | Funct RegWrite
\ J/
CLK 2§ o
\ CLK i) % ‘ — .
WE) 2 o WE3 CLK 1
D RD J] Instr 2= <1 A1 RD1 : ! v
_Déclr A - EN 20:16 A2 RD2 ! LUon 1
Instr / Data 2016 \\I
Memory A3
15:11 1 .
WD CLK J Reg_lster
0 File
r Data -D- WD3
15:0

Multi-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q theq pc 30

Register setup (S 20
Multiplexer tnux 25

ALU taLu 200
Memory read tem 250
Register file read trFread 150
Register file setup trrsetup 20

T, =

18

Multi-Cycle Performance Example

Te

Element Parameter
Register clock-to-Q theq_pc
Register setup Cetup
Multiplexer Cnux

ALU taLu
Memory read -
Register file read trFread
Register file setup tREsetup

Delay (ps)
30

20
25
200
250
150

20

= tpcq_PC + thX + maX(tALU + thX' tmem) + tsetup

=[30 + 25 + 250 + 20] ps
=325 ps

19

Multi-Cycle Performance Example

For a program with 100 billion instructions executing on a
multi-cycle MIPS processor

a CPI =4.12
o T.=325ps
Execution Time = (# instructions) x CPI x T

= (100 x 10°)(4.12)(325 x 1012
= 133.9 seconds

This is slower than the single-cycle processor (92.5
seconds). Why?

Did we break the stages in a balanced manner?

= Overhead of register setup/hold paid many times
= How would the results change with different assumptions

on memory latency and instruction mix?

126

Review: Single-Cycle MIPS Processor

27:0

Jump

MemtoReg

PC'

PCJump

31:28

CLK

PC

A RD

Instruction
Memory

Instr

31:26

Unit

Op

25:21

Funct

CLK
|

Control

—

MemWrite

Branch

ALUControl,.,

ALUSrc

RegDst

RegWrite

A1

20:16

A2

A3

20:16

WD3

WE3
RD1

SrcA

Zero

RD2

Register
File

ALUResult

PCSrc

CLK
|

WE

Hlo Jes

-

\Lal

WriteData

Data
Memory

wD

1511

WriteReg, .,

[0
1

=+

PCPlus4

Signlmm

- Sign Extend

<<2

PCBranch
+

ReadData Result

127

Review: Multi-Cycle MIPS Processor

CLK

CLK
/‘%ﬁPCWrite
Branch PCEn
lorD Control PCSrc
MemWrite Unit ALUCOHtI‘OlZ0
IRWrite ALUSTrcB,
31:26 Op ALUSrC.:A
50| Funct RegWrite
. J/
Pl =
& |32
«Q
CLK CLK CLK
| CLK ‘
WE ! WES3 A 3128 Zero CLK |
0 RD Instr P2& A1 RD1)
) Add A EN 2016 A2 RD2 B ALUResult Luout |,
Instr / Data 20416 \\l |_| 10
Memory A3
15:11 .
WD CLK ﬂ Register PCJump
0 File
Data 1 WD3
i <<;\ 27:0
/ ImmExt
= | Sign Extend
25:0 (Addr)

128

Review: Multi-Cycle MIPS FSM

lorD=0
AluSrcA=0
ALUSrcB = 01
ALUOp =00
PCSrc =00

IRWrite

Reset

ALUSIrcA =1
ALUSrcB =10

ALUOp = 00

Qp = Sw
Op=1w

lorD =1

MemWrite

RegDst =0

ALUSrcA=0
ALUSIrcB = 11

ALUOp = 00

Op = R-type

ALUSIcA =1
ALUSrcB =00
ALUOp =10

RegDst =1
MemtoReg = 0
RegWrite

Op = ADDI
Op = BEQ P

ALUSIrcA =1
ALUSrcB =00
ALUOp =01
PCSrc =01
Branch

PCSrc =10
PCWrite

ALUSIcA =1
ALUSrcB =10

ALUOp = 00

RegDst=0
MemtoReg =0
RegWrite

MemtoReg = 1
RegWrite

What is the
shortcoming of
this design?

What does

this design
assume

about memory?

129

What If Memory Takes > One Cycle?

Stay in the same "memory access” state until memory
returns the data

“Memory Ready?” bit is an input to the control logic that
determines the next state

130

Backup Slides on Single-Cycle
Uarch for Your Own Study

Please study these to reinforce the concepts
we covered in lectures.

Please do the readings together with these slides:
H&H, Chapter 7.1-7.3, 7.6

Another Single-Cycle
MIPS Processor (from H&H)

These are slides for your own study.
They are to complement your reading
H&H, Chapter 7.1-7.3, 7.6

What to do with the Program Counter?

m The PC needs to be incremented by 4 during each cycle
(for the time being).

m Initial PC value (after reset) is 9x00400000

reg [31:0] PC_p, PC n; // Present and next state of PC
7 |l
assign PC n <= PC p + 4; // Increment by 4;

always @ (posedge clk, negedge rst)

begin
if (rst == 0°) PC_p <= 32°h00400000; // default
else PC_p <= PC_n; // when clk

end

We Need a Register File

m Store 32 registers, each 32-bit
= 2> ==132, we need 5 bits to address each

m Every R-type instruction uses 3 register

= Two for reading (RS, RT)
® One for writing (RD)

m We need a special memory with:

= 2 read ports (address x2, data out x2)
= 1 write port (address, data in)

Register File

input [4:0] ars, art, ard;
input [31:0] di_rd;

input we_rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs
// Circuit description
assign do rs = R_arr[a_rs]; // Read RS

assign do rt = R_arr[a_rt]; // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD

Register File

input [4:0] ars, art, ard;
input [31:0] di_rd;

input we_rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0

assign do rs = (a_rs != 5°b00000)? // is address
R_arr[a_rs] : 0; // Read RS or

assign do rt = (a_rt != 5°b00000)? // is address
R_arr[a_rt] : 0; // Read RT or

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD

Data Memory Example

m Will be used to store the bulk of data

input [15:0] addr; // Only 16 bits in this example
input [31:0] di;
input we;
output [31:0] do;

reg [31:0] M _arr [0©:65535]; // Array for Memory

// Circuit description
assign do = M _arr[addr]; // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di; // write memory

Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $S§i 1&%9) # read memory word 1 into $s3

\IQ.FWPE\,

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signimm ,
Sign Extend

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIzz0
010

SrcA Zero
ALUResult

oy

ALU

SrcB

Signimm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite
1
CLK
|

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CI‘_K
PCy "V pc

)
PCPlus4
4

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: sw

m Write data in rt to memory

MemWrite

1
CLK i
l

N

20:16

WriteData

>

sw $t7, 44($0) # write t7 into memory address 44

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: R-type Instructions

m Read from rs and rt, write ALUResult to register file

RegDst ALUSrc MemtoReg
1 0 0

0
ALUResult

— 01SrcB
——) 1

20:16 0
15:11
WriteReg .y

Result

add t, b, ¢ #t =b +
R-Type

op rs rt rd [shamt| funct
6 bits 5bits 5bits 5bits 5 bits 6 bits

Single-Cycle Datapath: beq

PCSrc

Branch
1

Zero

0 PC'
1

= = PCBranch

beq $s0, $s1, target # branch is taken

m Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

Complete Single-Cycle Processor

MemtoReg
MemWrite

Control
Unit

Branch
ALUControl,., D PCSre

Op ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

_ WE3 SrcA [T
-rO pc|™|ec IS s Y RD1
1

Zero WE

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 0 <
A2 RD2 0]srcB Dat
Memory e
A3 -|] M
Register — WriteData emory

WD3 File WD

20:16 B
1511 1
o WriteReg,

PCPlus4

= +
4 _I/ Signlmm <<?
= 150 Sign Extend N PCBranch

—_

Result

Our MIPS Datapath has Several Options

m ALU inputs
= Either RT or Immediate (MUX)

m Write Address of Register File
= Either RD or RT (MUX)

m Write Data In of Register File
= Either ALU out or Data Memory Out (MUX)

m Write enable of Register File
= Not always a register write (MUX)

m Write enable of Memory
®= Only when writing to memory (sw) (MUX)

All these options are our control signals

Control Unit

Decoder

5' Control ‘5

i Unit ' }— MemtoReg i

— MemWrite |

— Branch '

EOPCOdGS:U Main | ALUS '

E Decoder re ' ALUOp Meaning
5 — RegDst ' 4

. - RegWrite ! 00 a

i ' 01 subtract
E ALUOp1,0 '

E E 10 look at funct field
i 11 n/

v Functs.g ALU ALUControly, } 4

ALU Does the Real Work in a Processor

000 A&B
A B

N AN

\/ 010 A+B
ALU 3 F 011 not used

001 AlB

)(N 100 A& ~B
Y 101 A|~B
110 A-B

111 SLT

ALU Internals

L Fao Function
N N
000 A&B
N
L o0 AlB
- © 010 A+B
RLJ tj 011 not used
Cout {YJ/ 100 A&~B
N-1]]|S
: 101 A|~B
STl IO VR N 110 A-B
w N - (@)
\ /LZLFm 111 SLT
J(N

Control Unit: ALU Decoder

§' Control

i Unit ' — MemtoReg
— MemWrite

: ~ |—Branch

EOPCOde&O— Dx:ilger — ALUSrc
— RegDst
—— RegWrite

ALUOp1

ALU

Functso Decoder

--

ALUControls.g f

ALUOp, ., Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp,., |Funct ALUControl,.,
00 X 010 (Add)

X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (s1t) 111 (SLT)

Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

= RegWrite: Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

= RegWrite: Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add

= RegWrite: Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add
sw 101011 0 X 1 1 X add

= RegWrite: Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

More Control Signals

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 %)) 0 funct
lw 100011 1 0 1 0 0 1 add
sw 101011 ¢ X 1 0 1 X add

beq 000100 ¢ X) 1 0 X sub

m New Control Signal

= Branch: Are we jumping or not ?

Control Unit: Main Decoder

Instruction 0p:., RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,
R-type 000000 1 1 %) %) %) 10
lw 160011 1 0 1 0 5 1 00
SW 101011 @ X 1 0 1 X 00
beg 000100 @ X 0 1 0 X 01

—\MemtoReg
irul MemWrite

Branch
IALUControl, .,

31:26
—Op |ALUSrc
2 Funct |RegDst

egWrite
—
CI‘.K

y WE3
B A1 RD1

Single-Cycle Datapath Example: or

Ay = =R

Instruction
Memory

PCPlus4

Instr

31:26

MemtoReg

)
Control

Unit MemWrite

Branch

ALUControl

2:0

5.0

Op ALUSrc

Funct [RegDst

RegWrite
—
CLK

l 1

I25'.21

WE3
'\t = R

2016

Afs = = mRE?

001

1)»—'pcsrc

Zero]

-

P A3

Register

WD3 File

ALUResult

WriteData

20:16

15:11

WriteReg,

150 Sign Extend

Signimm

<<2

Data
Memory

WD

PCBranch
+

0

ReadData

Result

Extended Functionality: addi

——\MemtoReg

Control .
Unit MemWrite

Branch

ALUControl,,, Dﬁ PCSre

Op |ALUSrc
Funct |RegDst

RegWrite

31:26

5:.0

—
CLK CLK
| |

CLK

. WE3 A T~ Zero WE
0]pc PC Instr 2211 A1 RD1 Sre
D 0
1 A R ALUResult ReadData 1

Instruction 20:16 ' <C
A2 RD2 SrcB Dat.
Memory | I_ ata
A3 1 Memo
— WriteData 24

WD3 Reg_lster WD
File

20:16)
15:11 1
o WriteReg, ,

PCPlus4

= + Sianl
ignlmm
4 = 150 Sign Extend <<2
g + PCBranch

()

Result

m No change to datapath

Control Unit: add1i

Instruction Op.,, RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,

R-type 000000 1 1 (%] %] %) %) 10

1w 100011 1 %) 1 %) %) 1 00
sw 101011 0O X 1 %) 1 X 00
beq 000100 O X %) 1 %) X 01
addi 001000 1 (%) 1 (%) (%) (%) (5]

Extended Functionality: j

Jump

PCJump

Control Unit: Main Decoder

Instruction ~~~ Op, RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,, Jump
R-type 000000 1 1 © o0 %) %) 10 ©
1w 100011 1 O 1 o© %) 1 ko 0O
sw 101011 © X 1 © 1 X ko 0O
beg 000100 O X 0 1 %) X 1 ©
Jj 000100 O X X X (%) X XX 1

Review: Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSrc

Op |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

) WE3 [~ Zero WE

-r0 PCl 7 |PC Instr P22 A1 RD1 S 0
1 A RD >3 ALUResult ReadData)
Instruction 20:16 N <C
A2 RD2 |0 ISch Dat
Memory ata
A3 - Memory

i WriteData
WD3 Relgillzter [WD

20:16 B
15:11 1
o WriteReg, ,

PCPlus4

= +
4 _l/ S|qn|mm <<2
. 150 Slgn Extend N PCBranch

—_

Result

164

A Bit More on
Pertormance Analysis

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

® The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program

a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

169

Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program will execute in

N x CPI x (1/f) = N x CPI x T seconds

How can | Make the Program Run Faster?

N x CPI x (1/f)

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions

= Make instructions that ‘do’” more (CISC)
= Use better compilers

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions

= Make instructions that ‘do’” more (CISC)
= Use better compilers

m Use less cycles to perform the instruction
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions

= Make instructions that ‘do’” more (CISC)
= Use better compilers

m Use less cycles to perform the instruction
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

m Increase the clock frequency

"= Find a ‘newer’ technology to manufacture
= Redesign time critical components
= Adopt pipelining

Single-Cycle Performance

m T.is limited by the critical path (1w)

A== =RB

Instruction
Memory

Instr

31:26

——\MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,

5:0

Op

ALUSrc

Funct

RegDst

RegWrite

= +

PCPlus4

20:16

A3

>

WD3

Register

010
SrcA [T

Zero

RD2

File

20:16

ALUResult

PCSrc

CLK
|

WriteData

15:11

WriteReg,

150 Sign Extend

Signimm

<<2

PCBranch
+

WE

=h = =RDB 1
Data
Memory

WD

0
ReadData | .

Result

Single-Cycle Performance

m Single-cycle critical path:

" Tc = tpcq_PC + tmem + max(tRFreadl tsext + tmux) + tALU + tmem + tmux + tRFsetup

m In most implementations, limiting paths are:
= memory, ALU, register file.

" Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

MemtoReg
MemWrite
Branch 0 0

Control
Unit

IALUControl o PCSre

——Op JALUSrc
=—{ Funct [RegDst
RegWrite

CI‘_K

0
01OZero WE 1
e o R Jinstr_ [EH A = === - RDB- . o
BN 1 ~J| ALUResult A - -RD ReadData| .
Instruction ! — A==

2016f A2 RD2 Mses [< Data

Memory
1 Memory

A3
i WriteData
»| wD3 Reg_lster | WD
File 0

20:16 0
15:11 1
WriteReg,
Signimm
: <<2
—|15'° Sign Extend PCBranch

+

PCPlus4

Result

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq Pc 30
Register setup Ut 20
Multiplexer trux 25

ALU tau 200
Memory read tiem 250
Register file read taFread 150
Register file setup tREsetup 20

T =

C

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq Pc 30
Register setup Ut 20
Multiplexer trux 25

ALU tau 200
Memory read tiem 250
Register file read taFread 150
Register file setup tREsetup 20

7-c = pcq PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Execution Time = # instructions x CPI x TC
= (100 x 10°)(1)(925 x 1012 5s)
= 92.5 seconds

