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Required Readings

= This week

o Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, “"Combining Branch Predictors,” DEC WRL Technical
Report, 1993.




Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms




Recall: OOO Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
o In other words, how can we have a large instruction window?
Can we do it efficiently with Tomasulo’s algorithm?
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Recall: Datatlow Graph
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Other Approaches to Concurrency

(or Instruction Level Parallelism)




Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays




Review: Data Flow:
Exploiting Irregular Parallelism




Data Flow Summary

= Availability of data determines order of execution
= A data flow node fires when its sources are ready
= Programs represented as data flow graphs (of nodes)

= Data Flow at the ISA level has not been (as) successful

= Data Flow implementations at the microarchitecture level
(while preserving Von Neumann semantics) have been very
successful

o Out of order execution is the prime example
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Pure Data Flow Advantages/Disadvantages

Advantages

o Very good at exploiting irregular parallelism

o Only real dependencies constrain processing

o More parallelism can be exposed than Von Neumann model

Disadvantages

o No precise state semantics
Debugging very difficult

Interrupt/exception handling is difficult (what is precise state
semantics?)

o Too much parallelism? (Parallelism control needed)
o High bookkeeping overhead (tag matching, data storage)

Q ...
11



Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays
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Superscalar Execution




Superscalar Execution

Idea: Fetch, decode, execute, retire multiple instructions
per cycle
o N-wide superscalar = N instructions per cycle

Need to add the hardware resources for doing so

Hardware performs the dependence checking between
concurrently-fetched instructions

Superscalar execution and out-of-order execution are
orthogonal concepts

o Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]
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In-Order Superscalar Processor Example

m Multiple copies of datapath: Can fetch/decode/execute
multiple instructions per cycle

m Dependencies make it tricky to issue multiple instructions
at once
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Here: Ideal IPC = 2



In-Order Superscalar Performance Example

lw  $t0, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)
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Actual IPC = 2 (6 instructions issued in 3 cycles)



Superscalar Performance with Dependencies

lw  $t0, 40($s0) Ideal IPC = 2
add $t1, $to, $s1

sub $t0, $s2, $s3
and $t2, $s4, $to
or $t3, $s5, $s6
sw $s7, 80(%$t3)
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Actual IPC = 1.2 (6 instructions issued in 5 cycles)
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Superscalar Execution Tradeoffs

Advantages
o Higher IPC (instructions per cycle)

Disadvantages
o Higher complexity for dependency checking

Require checking within a pipeline stage

Renaming becomes more complex in an OoO processor
o More hardware resources needed
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