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Required Readings
n This week

q Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993.
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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Recall: OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired 

instructions

n Can we do it for the whole program? 
q In other words, how can we have a large instruction window?

n Can we do it efficiently with Tomasulo’s algorithm?
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Recall: State of RAT and RS in Cycle 7
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MUL R1, R2 à R3
ADD R3, R4 à R5
ADD R2, R6 à R7
ADD R8, R9 à R10
MUL R7, R10 à R11
ADD R5, R11 à R5

Register Valid Tag Value
R1 1 1
R2 1 2
R3 0 x
R4 1 4
R5 0 a
R6 1 6
R7 0 b
R8 1 8
R9 1 9
R10 0 c
R11 0 y

Source 1 Source 2

V Tag Value V Tag Value

a 0 x 1 ~ 4
b 1 ~ 2 1 ~ 6
c 1 ~ 8 1 ~ 9
d 0 a 0 y

0 d

Source 1 Source 2

V Tag Value V Tag Value

x 1 ~ 1 1 ~ 2
y 0 b 0 c
z

t



Recall: Dataflow Graph

6



Other Approaches to Concurrency 
(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Review: Data Flow:
Exploiting Irregular Parallelism



Data Flow Summary
n Availability of data determines order of execution
n A data flow node fires when its sources are ready
n Programs represented as data flow graphs (of nodes)

n Data Flow at the ISA level has not been (as) successful

n Data Flow implementations at the microarchitecture level 
(while preserving Von Neumann semantics) have been very 
successful
q Out of order execution is the prime example
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Pure Data Flow Advantages/Disadvantages

n Advantages
q Very good at exploiting irregular parallelism
q Only real dependencies constrain processing
q More parallelism can be exposed than Von Neumann model

n Disadvantages
q No precise state semantics

n Debugging very difficult
n Interrupt/exception handling is difficult (what is precise state 

semantics?)
q Too much parallelism? (Parallelism control needed)
q High bookkeeping overhead (tag matching, data storage)
q …
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Superscalar Execution



Superscalar Execution
n Idea: Fetch, decode, execute, retire multiple instructions 

per cycle 
q N-wide superscalar à N instructions per cycle

n Need to add the hardware resources for doing so

n Hardware performs the dependence checking between 
concurrently-fetched instructions

n Superscalar execution and out-of-order execution are 
orthogonal concepts
q Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
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Carnegie Mellon
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In-Order Superscalar Processor Example
¢ Multiple copies of datapath: Can fetch/decode/execute 

multiple instructions per cycle

¢ Dependencies make it tricky to issue multiple instructions 
at once
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Here: Ideal IPC = 2



Carnegie Mellon
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In-Order Superscalar Performance Example
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw  $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or  $t4, $s1, $s5

sw  $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)



Carnegie Mellon
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Superscalar Performance with Dependencies
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8
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40

$s0

RF

$t0
+

DMIM

lwlw  $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw  $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror  $t3, $s5, $s6

IM

Ideal IPC = 2

Actual IPC = 1.2 (6 instructions issued in 5 cycles)



Superscalar Execution Tradeoffs
n Advantages

q Higher IPC (instructions per cycle)

n Disadvantages
q Higher complexity for dependency checking

n Require checking within a pipeline stage
n Renaming becomes more complex in an OoO processor

q More hardware resources needed
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