Digital Desigh & Computer Arch.

Lecture 16a: Dataflow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zurich
Spring 2020
23 April 2020

Required Readings

= This week

o Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, “"Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Recall: OOO Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
o In other words, how can we have a large instruction window?
Can we do it efficiently with Tomasulo’s algorithm?

Recall: State of RAT and RS 1n Cycle 7

Cyce 1 2 3 4 5 6 7

MUL R1, R2 > R3 F D E E E3 Es Es
ADD R3, R4 > R5 F D - - - -
ADD R2, R6 > R7 F D E E E
ADD R8, R9 —-> R10 F D E B
MUL R7, R10 - R11 F D -
ADD R5, R11 > RS5 F D
Register | Valid | Tag | Value
R1 1 1 Source 1 Source 2 Source 1 Source 2
R2 1 > V Tag Value| V Tag Value V Tag Value| V Tag Value
R3 0 y al O X 1 ~ 4 x| 1 ~ 1 1 ~ 2
oa 1 4 b| 1 ~ 2 1 ~ 6 vl O b 0 C
RS 0 p c|l 1 ~ 8 1 ~ 9 z
RE) 5 d| O a 0 y t
o 1 N
R9 1 9 + *
R10 0 o
R11 0 y

Recall: Datatlow Graph

Da ot N
MuLs RJ ,R2.—= R (X) foflon) orap
AO0 RET Ry rg (o) Ncdee - opothions P forved o e
ADD R RE — RF (b) msirudsen
Ao R8,R9 — R10 () Acs : fouss i Temesolo's algofvmg
mobL. RF RI0 — R [Y) - ke
APD RS,RA — RS (d) Rr2-
A3 R10 (&)
x)
==
RS
(a)

RS [(dY

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

Review: Data Flow:
Exploiting Irregular Parallelism

Data Flow Summary

= Availability of data determines order of execution
= A data flow node fires when its sources are ready
= Programs represented as data flow graphs (of nodes)

= Data Flow at the ISA level has not been (as) successful

= Data Flow implementations at the microarchitecture level
(while preserving Von Neumann semantics) have been very
successful

o Out of order execution is the prime example

10

Pure Data Flow Advantages/Disadvantages

Advantages

o Very good at exploiting irregular parallelism

o Only real dependencies constrain processing

o More parallelism can be exposed than Von Neumann model

Disadvantages

o No precise state semantics
Debugging very difficult

Interrupt/exception handling is difficult (what is precise state
semantics?)

o Too much parallelism? (Parallelism control needed)
o High bookkeeping overhead (tag matching, data storage)

Q ...
11

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

12

Superscalar Execution

Superscalar Execution

Idea: Fetch, decode, execute, retire multiple instructions
per cycle
o N-wide superscalar = N instructions per cycle

Need to add the hardware resources for doing so

Hardware performs the dependence checking between
concurrently-fetched instructions

Superscalar execution and out-of-order execution are
orthogonal concepts

o Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]

14

In-Order Superscalar Processor Example

m Multiple copies of datapath: Can fetch/decode/execute
multiple instructions per cycle

m Dependencies make it tricky to issue multiple instructions
at once

CLK CLK CLK CLK

CLK

RD Y

4 ES]A | A2
A3 RD1
Ad RD4

[[T

A1l RD1
A2 RD2 J_
Data
Memory

WD1
wWD2

Instruction A5 Register

A6 File RD2
Memory RD5

el /f

WD3
WD6

Here: Ideal IPC = 2

In-Order Superscalar Performance Example

lw $t0, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)

1 2 3 4 5 6 7 8
|
Time (cycles)
N SsOM Y M
lw $t0, 40($s0) — 10 :B— —
M RF [ss1 DM ool
add $t1, sl, Ss2 add 552 :B— ||
M —— S51N v Moo
sub $t2, $sl, $s3 o oo o —
M RF [ss3 DM - RF
and $t3, $s3, $s4 nd -[Ss4 :B— -
M 5510 v Ve
or $td4, S$sl, $s5 -[$s5 :D— — =
M RF 1ss0 E'Vé RF
S
sw $s5, 80($s0) SY -[80 :B— ||

Actual IPC = 2 (6 instructions issued in 3 cycles)

Superscalar Performance with Dependencies

lw $t0, 40($s0) Ideal IPC = 2
add $t1, $to, $s1

sub $t0, $s2, $s3
and $t2, $s4, $to
or $t3, $s5, $s6
sw $s7, 80(%$t3)

1 2 3 4 5 6 7 8 9
>
Time (cycles)
M
lw $t0, 40($s0) L |]5t0
IM DM RF

SO Y Moo

add $t1, , $s1 - 5o1 E— —
@ s {RF s52 DM ool BF

sub $t0, $s2, $s3 s -[s3 :B— —

andv $S4< v v$t2
and $t2, $s4, @ '[$t0 & -

IM RF [5s5 DM ool B
or $t3, $s5, S$s6 o oL -[$s6 E\I —
/

<) L

sw N SE3R v ss71] M

sw $s%) 80 —
M { RF DM RF

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

=

Superscalar Execution Tradeoffs

Advantages
o Higher IPC (instructions per cycle)

Disadvantages
o Higher complexity for dependency checking

Require checking within a pipeline stage

Renaming becomes more complex in an OoO processor
o More hardware resources needed

18

Digital Desigh & Computer Arch.

Lecture 16a: Dataflow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zurich
Spring 2020
23 April 2020

