
Digital Design & Computer Arch.
Lecture 16b: Branch Prediction I

Prof. Onur Mutlu

ETH Zürich
Spring 2020
23 April 2020



Required Readings
n This week

q Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993.

2



Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

3



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

4



Control Dependence Handling

5



Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?

6



Branch Types
Type Direction at 

fetch time
Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)

7

Different branch types can be handled differently



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
8



Stall Fetch Until Next PC is Known: Good Idea?

9

IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID
IFIF

IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
IFIF

IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

IF
IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

IF
IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

MEM
ID
IF

IF
IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

MEM
ID
IF

WB
ALU
IF

IF
t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth

This is the case with non-control-flow and unconditional br instructions!



The Branch Problem
n Control flow instructions (branches) are frequent

q 15-25% of all instructions

n Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor
q N cycles: (minimum) branch resolution latency

n If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide)
q A branch misprediction leads to N x W wasted instruction slots 

10



Importance of The Branch Problem
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch 
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions? 
q 100% accuracy 

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 99% accuracy
n 100 (correct path) + 20 * 1 (wrong path) = 120 cycles
n 20% extra instructions fetched; IPC = 500/120

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles  
n 200% extra instructions fetched; IPC = 500/300

q 60% accuracy
n 100 (correct path) + 20 * 40 (wrong path) = 900 cycles  
n 800% extra instructions fetched; IPC = 500/900

11



Branch Prediction

12



0x00040x00050x00060x00070x0008

I-$ RF
LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO  0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R30x0005

0x0006

LD R0, MEM[R2]0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

Stall fetch



LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO  0x0001

Misprediction Penalty

I-$ RF
LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R30x0005

0x0006

Flush!! 

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB



Simplest: Always Guess NextPC = PC + 4 
n Always predict the next sequential instruction is the next 

instruction to be executed
n This is a form of next fetch address prediction (and branch 

prediction)

n How can you make this more effective?

n Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed
q Software: Lay out the control flow graph such that the “likely 

next instruction” is on the not-taken path of a branch
n Profile guided code positioning à Pettis & Hansen, PLDI 1990.

q Hardware: ??? (how can you do this in hardware…) 
n Cache traces of executed instructions à Trace cache

15



Guessing NextPC = PC + 4
n How else can you make this more effective?

n Idea: Get rid of control flow instructions (or minimize their 
occurrence)

n How?
1. Get rid of unnecessary control flow instructions à
combine predicates (predicate combining)
2. Convert control dependences into data dependences à
predicated execution

16



Branch Prediction: Always PC+4

17

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth
IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
ID
IFPC+8

ALU
ID
IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called “wrong-path”
instructions) must be flushedInsth is a branch



Pipeline Flush on a Misprediction

18

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

ALU
ID
IF

ALU
ID
IF

WB

Insth is a branch



Performance Analysis
n correct guess Þ no penalty ~86% of the time
n incorrect guess Þ 2 bubbles
n Assume

q no data dependency related stalls
q 20% control flow instructions
q 70% of control flow instructions are taken
q CPI = [ 1 + (0.20*0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 

19

penalty for
a wrong guess

probability of 
a wrong guess

Can we reduce either of the two penalty terms?



Reducing Branch Misprediction Penalty
n Resolve branch condition and target address early 

20

PC Instruction 
memory

4

Registers

M 
u 
x

M 
u 
x

M 
u 
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data 
memory

M 
u 
x

Hazard 
detection 

unit

Forwarding 
unit

IF.Flush

IF/ID

Sign 
extend

Control

M 
u 
x

=

Shift 
left 2

M 
u 
x

CPI = [ 1 + (0.2*0.7) * 1 ] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?



Branch Prediction (A Bit More Enhanced)
n Idea: Predict the next fetch address (to be used in the next 

cycle)

n Requires three things to be predicted at fetch stage:
q Whether the fetched instruction is a branch
q (Conditional) branch direction
q Branch target address (if taken)

n Observation: Target address remains the same for a 
conditional direct branch across dynamic instances
q Idea: Store the target address from previous instance and access 

it with the PC
q Called Branch Target Buffer (BTB) or Branch Target Address 

Cache
21



22

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the 
current branch



23

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

Global branch 
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the 
current branch



Three Things to Be Predicted
n Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch
2. (Conditional) branch direction
3. Branch target address (if taken)

n Third (3.) can be accomplished using a BTB
q Remember target address computed last time branch was 
executed

n First (1.) can be accomplished using a BTB
q If BTB provides a target address for the program counter, then it 
must be a branch
q Or, we can store “branch metadata” bits in instruction 
cache/memory à partially decoded instruction stored in I-cache

n Second (2.): How do we predict the direction?
24



Simple Branch Direction Prediction Schemes

n Compile time (static)
q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)

25



More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based  (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons)

26



Static Branch Prediction (I)
n Always not-taken

q Simple to implement: no need for BTB, no direction prediction
q Low accuracy: ~30-40% (for conditional branches)
q Remember: Compiler can layout code such that the likely path 

is the “not-taken” path à more effective prediction

n Always taken
q No direction prediction
q Better accuracy: ~60-70% (for conditional branches)

n Backward branches (i.e. loop branches) are usually taken
n Backward branch: target address lower than branch PC

n Backward taken, forward not taken (BTFN)
q Predict backward (loop) branches as taken, others not-taken

27



Static Branch Prediction (II)
n Profile-based

q Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide) à accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN à 50% accuracy 
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

-- Accuracy depends on the representativeness of profile input 
set

28



Static Branch Prediction (III)
n Program-based (or, program analysis based)

q Idea: Use heuristics based on program analysis to determine statically-
predicted direction

q Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs)

q Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop)

q Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support (ditto for other static methods)

n Ball and Larus, ”Branch prediction for free,” PLDI 1993.
q 20% misprediction rate

29



Static Branch Prediction (IV)
n Programmer-based

q Idea: Programmer provides the statically-predicted direction
q Via pragmas in the programming language that qualify a branch as 

likely-taken versus likely-not-taken

+ Does not require profiling or program analysis
+ Programmer may know some branches and their program better than 

other analysis techniques
-- Requires programming language, compiler, ISA support
-- Burdens the programmer? 

30



Pragmas
n Idea: Keywords that enable a programmer to convey hints 

to lower levels of the transformation hierarchy

n if (likely(x)) { ... }
n if (unlikely(error)) { … }

n Many other hints and optimizations can be enabled with 
pragmas
q E.g., whether a loop can be parallelized
q #pragma omp parallel
q Description

n The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.

31



Static Branch Prediction
n All previous techniques can be combined

q Profile based
q Program based
q Programmer based

n How would you do that?

n What is the common disadvantage of all three techniques?
q Cannot adapt to dynamic changes in branch behavior 

n This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…)

n What is a Dynamic Compiler? 
q A compiler that generates code at runtime
q Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)

32



More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based  (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons)

33



Dynamic Branch Prediction
n Idea: Predict branches based on dynamic information 

(collected at run-time)

n Advantages
+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior
+ No need for static profiling: input set representativeness 

problem goes away

n Disadvantages
-- More complex (requires additional hardware)

34



Last Time Predictor
n Last time predictor

q Single bit per branch (stored in BTB)
q Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN à 90% accuracy

n Always mispredicts the last iteration and the first iteration 
of a loop branch
q Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)
-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN à 0% accuracy

35



Digital Design & Computer Arch.
Lecture 16b: Branch Prediction I

Prof. Onur Mutlu

ETH Zürich
Spring 2020
23 April 2020



We did not cover the following slides. 
They are for your preparation for the 

next lecture.

37



Implementing the Last-Time Predictor

38

BTB: one target
address per entry 

BTB index

N-bit
tag
table

1         0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with 
the correct outcome after each execution of a branch

tag

BHT:
One
Bit
per 
entry

taken?



State Machine for Last-Time Prediction

39

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken



Improving the Last Time Predictor
n Problem: A last-time predictor changes its prediction from 

TàNT or NTàT too quickly 
q even though the branch may be mostly taken or mostly not 

taken

n Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome
q Use two bits to track the history of predictions for a branch 

instead of a single bit 
q Can have 2 states for T or NT instead of 1 state for each

n Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981.

40



Two-Bit Counter Based Prediction
n Each branch associated with a two-bit counter
n One more bit provides hysteresis
n A strong prediction does not change with one single 

different outcome

n Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

41



State Machine for 2-bit Saturating Counter
n Counter using saturating arithmetic

q Arithmetic with maximum and minimum values

42

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken



Hysteresis Using a 2-bit Counter

43

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”



Is This Good Enough?
n ~85-90% accuracy for many programs with 2-bit counter 

based prediction (also called bimodal prediction)

n Is this good enough?

n How big is the branch problem?

44



Let’s Do the Exercise Again
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch 
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions? 
q 100% accuracy 

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles 
n 200% extra instructions fetched; IPC = 500/300

q 85% accuracy
n 100 (correct path) + 20 * 15 (wrong path) = 400 cycles
n 300% extra instructions fetched; IPC = 500/400

q 80% accuracy
n 100 (correct path) + 20 * 20 (wrong path) = 500 cycles 
n 400% extra instructions fetched; IPC = 500/500

45



Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit “last-time” 

predictability

n Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes
q Global branch correlation 

n Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)
q Local branch correlation

46Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Global Branch Correlation (I)
n Recently executed branch outcomes in the execution path 

are correlated with the outcome of the next branch

n If first branch not taken, second also not taken

n If first branch taken, second definitely not taken

47



Global Branch Correlation (II)

n If Y and Z both taken, then X also taken
n If Y or Z not taken, then X also not taken

48



Global Branch Correlation (III)
n Eqntott, SPEC’92: Generates truth table from Boolean expr.

if (aa==2) ;; B1
aa=0;

if (bb==2) ;; B2
bb=0;

if (aa!=bb) { ;; B3
….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken

49



Capturing Global Branch Correlation
n Idea: Associate branch outcomes with “global T/NT history” 

of all branches
n Make a prediction based on the outcome of the branch the 

last time the same global branch history was encountered

n Implementation:
q Keep track of the “global T/NT history” of all branches in a 

register à Global History Register (GHR)
q Use GHR to index into a table that recorded the outcome that 

was seen for each GHR value in the recent past à Pattern 
History Table (table of 2-bit counters)

n Global history/branch predictor
n Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Two Level Global Branch Prediction
n First level: Global branch history register (N bits)

q The direction of last N branches
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was 
seen

51

1 1 ….. 1 0

GHR
(global 
history 
register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table (PHT) 

previous
branch’s
direction

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



How Does the Global Predictor Work?

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

52

This branch tests i
Last 4 branches test j
History: TTTN
Predict taken for i
Next history: TTNT
(shift in last outcome) 



Intel Pentium Pro Branch Predictor
n Two level global branch predictor
n 4-bit global history register
n Multiple pattern history tables (of 2 bit counters)

q Which pattern history table to use is determined by lower 
order bits of the branch address

53



Improving Global Predictor Accuracy
n Idea: Add more context information to the global predictor to take into 

account which branch is being predicted
q Gshare predictor: GHR hashed with the Branch PC
+ More context information used for prediction
+ Better utilization of the two-bit counter array   
-- Increases access latency

n McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
54



55

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the 
current instruction



56

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

Global branch 
history PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the 
current instruction



57

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

Global branch 
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the 
current instruction



Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit only “last-time”

predictability for a given branch

n Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes
q Global branch correlation 

n Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed)
q Local branch correlation

58Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Local Branch Correlation

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

59



More Motivation for Local History
n To predict a loop 

branch “perfectly”, we 
want to identify the 
last iteration of the 
loop

n By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop

n Works for “short” 
loops

60

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHTLoop closing branch’s history



Capturing Local Branch Correlation
n Idea: Have a per-branch history register

q Associate the predicted outcome of a branch with “T/NT history” 
of the same branch

n Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered

n Called the local history/branch predictor
n Uses two levels of history (Per-branch history register + 

history at that history register value)

61



Two Level Local Branch Prediction
n First level: A set of local history registers (N bits each)

q Select the history register based on the PC of the branch
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was 
seen

62

1 1 ….. 1 0

Local history 
registers

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table (PHT) 

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



63

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the 
current instruction

Which directions earlier instances of *this branch* went



Can We Do Even Better?
n Predictability of branches varies

n Some branches are more predictable using local history
n Some using global
n For others, a simple two-bit counter is enough
n Yet for others, a single bit is enough 

n Observation: There is heterogeneity in predictability 
behavior of branches
q No one-size fits all branch prediction algorithm for all branches

n Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors

64



Hybrid Branch Predictors
n Idea: Use more than one type of predictor (i.e., multiple 

algorithms) and select the “best” prediction
q E.g., hybrid of 2-bit counters and global predictor

n Advantages:
+ Better accuracy: different predictors are better for different branches
+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

n Disadvantages:
-- Need “meta-predictor” or “selector”
-- Longer access latency

q McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
65



Alpha 21264 Tournament Predictor

n Minimum branch penalty: 7 cycles
n Typical branch penalty: 11+ cycles
n 48K bits of target addresses stored in I-cache
n Predictor tables are reset on a context switch

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
66



Are We Done w/ Branch Prediction?
n Hybrid branch predictors work well

q E.g., 90-97% prediction accuracy on average

n Some “difficult” workloads still suffer, though!
q E.g., gcc
q Max IPC with tournament prediction: 9
q Max IPC with perfect prediction: 35

67



Some Other Branch Predictor Types
n Loop branch detector and predictor

q Loop iteration count detector/predictor
q Works well for loops with small number of iterations, where 

iteration count is predictable
q Used in Intel Pentium M

n Perceptron branch predictor
q Learns the direction correlations between individual branches
q Assigns weights to correlations
q Jimenez and Lin, “Dynamic Branch Prediction with 

Perceptrons,” HPCA 2001.
n Hybrid history length based predictor

q Uses different tables with different history lengths
q Seznec, “Analysis of the O-Geometric History Length branch 

predictor,” ISCA 2005.
68



Intel Pentium M Predictors

69

Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Perceptrons for Learning Linear Functions

n A perceptron is a simplified model of a biological neuron
n It is also a simple binary classifier

n A perceptron maps an input vector X to a 0 or 1
q Input = Vector X
q Perceptron learns the linear function (if one exists) of how 

each element of the vector affects the output (stored in an 
internal Weight vector)

q Output = Weight.X + Bias > 0

n In the branch prediction context
q Vector X: Branch history register bits
q Output: Prediction for the current branch

70



Perceptron Branch Predictor (I)
n Idea: Use a perceptron to learn the correlations between branch history 

register bits and branch outcome
n A perceptron learns a target Boolean function of N inputs

n Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
n Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

71

Each branch associated with a perceptron

A perceptron contains a set of weights wi
à Each weight corresponds to a bit in 

the GHR 
àHow much the bit is correlated with the 

direction of the branch
à Positive correlation: large + weight
à Negative correlation: large - weight

Prediction:
à Express GHR bits as 1 (T) and -1 (NT)
à Take dot product of GHR and weights
à If output > 0, predict taken



Perceptron Branch Predictor (II)

72

Bias weight
(bias of branch, independent of 
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)
n Advantages

+ More sophisticated learning mechanism à better accuracy

n Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome

73



Prediction Using Multiple History Lengths
n Observation: Different 

branches require 
different history lengths 
for better prediction 
accuracy

n Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches

74

Seznec and Michaud, “A case for (partially) tagged Geometric History Length 
Branch Prediction,” JILP 2006.



State of the Art in Branch Prediction
n See the Branch Prediction Championship

q https://www.jilp.org/cbp2016/program.html

75

Andre Seznec, 
“TAGE-SC-L branch predictors,”
CBP 2014.

Andre Seznec,
“TAGE-SC-L branch predictors 
again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html


Branch Confidence Estimation
n Idea: Estimate if the prediction is likely to be correct 

q i.e., estimate how “confident” you are in the prediction 

n Why?
q Could be very useful in deciding how to speculate:

n What predictor/PHT to choose/use
n Whether to keep fetching on this path
n Whether to switch to some other way of handling the branch, 

e.g. dual-path execution (eager execution) or dynamic 
predication 

n …

n Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996.

76



Other Ways of Handling 
Branches

77



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
78



Delayed Branching (I)
n Change the semantics of a branch instruction

q Branch after N instructions
q Branch after N cycles

n Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

n Problem: How do you find instructions to fill the delay 
slots?
q Branch must be independent of delay slot instructions

n Unconditional branch: Easier to find instructions to fill the delay slot
n Conditional branch: Condition computation should not depend on 

instructions in delay slots à difficult to fill the delay slot
79



Delayed Branching (II)

80

A
B
C
BC X
D
E
F

if ex

A
AB
BC

CBC
BC

GX:
--

A

B

C
BC X

D
E
F
GX:

if ex

A
AC
CBC

BCB
BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles



Fancy Delayed Branching (III)
n Delayed branch with squashing

q In SPARC
q Semantics: If the branch falls through (i.e., it is not taken), 

the delay slot instruction is not executed
q Why could this help?

81

A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A



Delayed Branching (IV)
n Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 
1. Number of delay slots == number of instructions to keep the pipeline 

full before the branch resolves
2. All delay slots can be filled with useful instructions

n Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?

82



An Aside: Filling the Delay Slot

83

a.  From before b.  From target c.  From fall through
sub $t4, $t5, $t6 
 
… 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  sub $t4, $t5, $t6 
 

 
 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
   sub $t4, $t5, $t6

add $s1, $s2, $s3 
 
if $s2 = 0 then 
 
    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 
 
if $s2 = 0 then 
 
 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
84



Predicate Combining (not Predicated Execution)

n Complex predicates are converted into multiple branches
q if ((a == b) && (c < d) && (a > 5000))  { … }

n 3 conditional branches
n Problem: This increases the number of control 

dependencies
n Idea: Combine predicate operations to feed a single branch 

instruction instead of having one branch for each
q Predicates stored and operated on using condition registers
q A single branch checks the value of the combined predicate

+ Fewer branches in code à fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
n Condition registers exist in IBM RS6000 and the POWER architecture

85



Predication (Predicated Execution)
n Idea: Convert control dependence to data dependence

n Simple example: Suppose we had a Conditional Move 
instruction…
q CMOV condition, R1 ß R2
q R1 = (condition == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

n Code example with branches vs. CMOVs
if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;
CMOV condition, b ß 4;
CMOV !condition, b ß 3;

86



D D

Predication (Predicated Execution)
n Idea: Compiler converts control dependence into data 

dependence à branch is eliminated
q Each instruction has a predicate bit set based on the predicate computation
q Only instructions with TRUE predicates are committed (others turned into NOPs)

87

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1 
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code) 

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add   x, b, 1add   x, b, 1



Predicated Execution References
n Allen et al., “Conversion of control dependence to data 

dependence,” POPL 1983.

n Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.

88



Conditional Move Operations
n Very limited form of predicated execution

n CMOV R1 ß R2
q R1 = (ConditionCode == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

89



Predicated Execution (II)
n Predicated execution can be high performance and energy-

efficient

90

Fetch  Decode  Rename  Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch  Decode  Rename  Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE



Predicated Execution
n Eliminates branches à enables straight line code (i.e., 

larger basic blocks in code)

n Advantages
q Eliminates hard-to-predict branches
q Always-not-taken prediction works better (no branches)
q Compiler has more freedom to optimize code (no branches)

n control flow does not hinder inst. reordering optimizations
n code optimizations hindered only by data dependencies

n Disadvantages
q Useless work: some instructions fetched/executed but 

discarded (especially bad for easy-to-predict branches)
q Requires additional ISA (and hardware) support
q Can we eliminate all branches this way?

91



Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch 
behavior. Branch behavior changes based on input set, program 
phase, control-flow path.

92



Predicated Execution in Intel Itanium
n Each instruction can be separately predicated 
n 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
n An instruction is effectively a NOP if its predicate is false

93

cmp
br
else1
else2
br
then1
then2
join1
join2

p1 p2 ¬cmp

join1

join2

else1p2

then2p1
else2p2

then1p1



Conditional Execution in the ARM ISA
n Almost all ARM instructions can include an optional 

condition code. 
q Prior to ARM v8

n An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 

94



Conditional Execution in ARM ISA

95



Conditional Execution in ARM ISA

96



Conditional Execution in ARM ISA

97



Conditional Execution in ARM ISA

98



Conditional Execution in ARM ISA

99



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
100



Multi-Path Execution
n Idea: Execute both paths after a conditional branch

q For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

q For a hard-to-predict branch: Use dynamic confidence estimation

n Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

n Disadvantages:
-- What happens when the machine encounters another hard-to-predict 

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge

101



Dual-Path Execution versus Predication

102

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2 

C

D

E

F

B

path 1 path 2 

Dual-path Predicated Execution

CFMergeCFMerge



Handling Other Types of 
Branches

103



Remember: Branch Types
Type Direction at 

fetch time
Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)

104

How can we predict an indirect branch with many target addresses?



Call and Return Prediction
n Direct calls are easy to predict

q Always taken, single target
q Call marked in BTB, target predicted by BTB

n Returns are indirect branches 
q A function can be called from many points in code
q A return instruction can have many target addresses

n Next instruction after each call point for the same function
q Observation: Usually a return matches a call
q Idea: Use a stack to predict return addresses (Return Address Stack)

n A fetched call: pushes the return (next instruction) address on the stack
n A fetched return: pops the stack and uses the address as its predicted 

target
n Accurate most of the time: 8-entry stack à > 95% accuracy

105

Call X
…
Call X

…
Call X
…
Return

Return
Return



Indirect Branch Prediction (I)
n Register-indirect branches have multiple targets

n Used to implement 
q Switch-case statements
q Virtual function calls
q Jump tables (of function pointers)
q Interface calls 

106

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]
branch R1



Indirect Branch Prediction (II)
n No direction prediction needed
n Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 

between different targets

n Idea 2: Use history based target prediction 
q E.g., Index the BTB with GHR XORed with Indirect Branch PC
q Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

107



Intel Pentium M Indirect Branch Predictor

108

Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Issues in Branch Prediction (I)
n Need to identify a branch before it is fetched

n How do we do this?
q BTB hit à indicates that the fetched instruction is a branch
q BTB entry contains the “type” of the branch
q Pre-decoded “branch type” information stored in the 

instruction cache identifies type of branch

n What if no BTB?
q Bubble in the pipeline until target address is computed
q E.g., IBM POWER4

109



Latency of Branch Prediction
n Latency: Prediction is latency critical

q Need to generate next fetch address for the next cycle
q Bigger, more complex predictors are more accurate but slower

110

PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???


