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Required Readings
n This week

q Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993.
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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Control Dependence Handling
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Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Types
Type Direction at 

fetch time
Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Stall Fetch Until Next PC is Known: Good Idea?
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The Branch Problem
n Control flow instructions (branches) are frequent

q 15-25% of all instructions

n Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor
q N cycles: (minimum) branch resolution latency

n If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide)
q A branch misprediction leads to N x W wasted instruction slots 
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Importance of The Branch Problem
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch 
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions? 
q 100% accuracy 

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 99% accuracy
n 100 (correct path) + 20 * 1 (wrong path) = 120 cycles
n 20% extra instructions fetched; IPC = 500/120

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles  
n 200% extra instructions fetched; IPC = 500/300

q 60% accuracy
n 100 (correct path) + 20 * 40 (wrong path) = 900 cycles  
n 800% extra instructions fetched; IPC = 500/900
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Branch Prediction
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Simplest: Always Guess NextPC = PC + 4 
n Always predict the next sequential instruction is the next 

instruction to be executed
n This is a form of next fetch address prediction (and branch 

prediction)

n How can you make this more effective?

n Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed
q Software: Lay out the control flow graph such that the “likely 

next instruction” is on the not-taken path of a branch
n Profile guided code positioning à Pettis & Hansen, PLDI 1990.

q Hardware: ??? (how can you do this in hardware…) 
n Cache traces of executed instructions à Trace cache
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Guessing NextPC = PC + 4
n How else can you make this more effective?

n Idea: Get rid of control flow instructions (or minimize their 
occurrence)

n How?
1. Get rid of unnecessary control flow instructions à
combine predicates (predicate combining)
2. Convert control dependences into data dependences à
predicated execution
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Branch Prediction: Always PC+4
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Pipeline Flush on a Misprediction
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Performance Analysis
n correct guess Þ no penalty ~86% of the time
n incorrect guess Þ 2 bubbles
n Assume

q no data dependency related stalls
q 20% control flow instructions
q 70% of control flow instructions are taken
q CPI = [ 1 + (0.20*0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 
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Can we reduce either of the two penalty terms?



Reducing Branch Misprediction Penalty
n Resolve branch condition and target address early 
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Is this a good idea?



Branch Prediction (A Bit More Enhanced)
n Idea: Predict the next fetch address (to be used in the next 

cycle)

n Requires three things to be predicted at fetch stage:
q Whether the fetched instruction is a branch
q (Conditional) branch direction
q Branch target address (if taken)

n Observation: Target address remains the same for a 
conditional direct branch across dynamic instances
q Idea: Store the target address from previous instance and access 

it with the PC
q Called Branch Target Buffer (BTB) or Branch Target Address 

Cache
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Three Things to Be Predicted
n Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch
2. (Conditional) branch direction
3. Branch target address (if taken)

n Third (3.) can be accomplished using a BTB
q Remember target address computed last time branch was 
executed

n First (1.) can be accomplished using a BTB
q If BTB provides a target address for the program counter, then it 
must be a branch
q Or, we can store “branch metadata” bits in instruction 
cache/memory à partially decoded instruction stored in I-cache

n Second (2.): How do we predict the direction?
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Simple Branch Direction Prediction Schemes

n Compile time (static)
q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
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More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based  (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons)
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Static Branch Prediction (I)
n Always not-taken

q Simple to implement: no need for BTB, no direction prediction
q Low accuracy: ~30-40% (for conditional branches)
q Remember: Compiler can layout code such that the likely path 

is the “not-taken” path à more effective prediction

n Always taken
q No direction prediction
q Better accuracy: ~60-70% (for conditional branches)

n Backward branches (i.e. loop branches) are usually taken
n Backward branch: target address lower than branch PC

n Backward taken, forward not taken (BTFN)
q Predict backward (loop) branches as taken, others not-taken
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Static Branch Prediction (II)
n Profile-based

q Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide) à accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN à 50% accuracy 
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)
n Program-based (or, program analysis based)

q Idea: Use heuristics based on program analysis to determine statically-
predicted direction

q Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs)

q Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop)

q Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support (ditto for other static methods)

n Ball and Larus, ”Branch prediction for free,” PLDI 1993.
q 20% misprediction rate
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Static Branch Prediction (IV)
n Programmer-based

q Idea: Programmer provides the statically-predicted direction
q Via pragmas in the programming language that qualify a branch as 

likely-taken versus likely-not-taken

+ Does not require profiling or program analysis
+ Programmer may know some branches and their program better than 

other analysis techniques
-- Requires programming language, compiler, ISA support
-- Burdens the programmer? 
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Pragmas
n Idea: Keywords that enable a programmer to convey hints 

to lower levels of the transformation hierarchy

n if (likely(x)) { ... }
n if (unlikely(error)) { … }

n Many other hints and optimizations can be enabled with 
pragmas
q E.g., whether a loop can be parallelized
q #pragma omp parallel
q Description

n The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.
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Static Branch Prediction
n All previous techniques can be combined

q Profile based
q Program based
q Programmer based

n How would you do that?

n What is the common disadvantage of all three techniques?
q Cannot adapt to dynamic changes in branch behavior 

n This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…)

n What is a Dynamic Compiler? 
q A compiler that generates code at runtime
q Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
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More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based  (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons)
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Dynamic Branch Prediction
n Idea: Predict branches based on dynamic information 

(collected at run-time)

n Advantages
+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior
+ No need for static profiling: input set representativeness 

problem goes away

n Disadvantages
-- More complex (requires additional hardware)
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Last Time Predictor
n Last time predictor

q Single bit per branch (stored in BTB)
q Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN à 90% accuracy

n Always mispredicts the last iteration and the first iteration 
of a loop branch
q Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)
-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN à 0% accuracy
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We did not cover the following slides. 
They are for your preparation for the 

next lecture.

37



Implementing the Last-Time Predictor
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State Machine for Last-Time Prediction
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Improving the Last Time Predictor
n Problem: A last-time predictor changes its prediction from 

TàNT or NTàT too quickly 
q even though the branch may be mostly taken or mostly not 

taken

n Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome
q Use two bits to track the history of predictions for a branch 

instead of a single bit 
q Can have 2 states for T or NT instead of 1 state for each

n Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981.
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Two-Bit Counter Based Prediction
n Each branch associated with a two-bit counter
n One more bit provides hysteresis
n A strong prediction does not change with one single 

different outcome

n Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)
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State Machine for 2-bit Saturating Counter
n Counter using saturating arithmetic

q Arithmetic with maximum and minimum values
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Hysteresis Using a 2-bit Counter
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Is This Good Enough?
n ~85-90% accuracy for many programs with 2-bit counter 

based prediction (also called bimodal prediction)

n Is this good enough?

n How big is the branch problem?
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Let’s Do the Exercise Again
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch 
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions? 
q 100% accuracy 

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles 
n 200% extra instructions fetched; IPC = 500/300

q 85% accuracy
n 100 (correct path) + 20 * 15 (wrong path) = 400 cycles
n 300% extra instructions fetched; IPC = 500/400

q 80% accuracy
n 100 (correct path) + 20 * 20 (wrong path) = 500 cycles 
n 400% extra instructions fetched; IPC = 500/500
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Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit “last-time” 

predictability

n Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes
q Global branch correlation 

n Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)
q Local branch correlation

46Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Global Branch Correlation (I)
n Recently executed branch outcomes in the execution path 

are correlated with the outcome of the next branch

n If first branch not taken, second also not taken

n If first branch taken, second definitely not taken
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Global Branch Correlation (II)

n If Y and Z both taken, then X also taken
n If Y or Z not taken, then X also not taken
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Global Branch Correlation (III)
n Eqntott, SPEC’92: Generates truth table from Boolean expr.

if (aa==2) ;; B1
aa=0;

if (bb==2) ;; B2
bb=0;

if (aa!=bb) { ;; B3
….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken

49



Capturing Global Branch Correlation
n Idea: Associate branch outcomes with “global T/NT history” 

of all branches
n Make a prediction based on the outcome of the branch the 

last time the same global branch history was encountered

n Implementation:
q Keep track of the “global T/NT history” of all branches in a 

register à Global History Register (GHR)
q Use GHR to index into a table that recorded the outcome that 

was seen for each GHR value in the recent past à Pattern 
History Table (table of 2-bit counters)

n Global history/branch predictor
n Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Two Level Global Branch Prediction
n First level: Global branch history register (N bits)

q The direction of last N branches
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was 
seen
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How Does the Global Predictor Work?

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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Last 4 branches test j
History: TTTN
Predict taken for i
Next history: TTNT
(shift in last outcome) 



Intel Pentium Pro Branch Predictor
n Two level global branch predictor
n 4-bit global history register
n Multiple pattern history tables (of 2 bit counters)

q Which pattern history table to use is determined by lower 
order bits of the branch address
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Improving Global Predictor Accuracy
n Idea: Add more context information to the global predictor to take into 

account which branch is being predicted
q Gshare predictor: GHR hashed with the Branch PC
+ More context information used for prediction
+ Better utilization of the two-bit counter array   
-- Increases access latency

n McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit only “last-time”

predictability for a given branch

n Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes
q Global branch correlation 

n Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed)
q Local branch correlation

58Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Local Branch Correlation

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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More Motivation for Local History
n To predict a loop 

branch “perfectly”, we 
want to identify the 
last iteration of the 
loop

n By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop

n Works for “short” 
loops
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Capturing Local Branch Correlation
n Idea: Have a per-branch history register

q Associate the predicted outcome of a branch with “T/NT history” 
of the same branch

n Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered

n Called the local history/branch predictor
n Uses two levels of history (Per-branch history register + 

history at that history register value)
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Two Level Local Branch Prediction
n First level: A set of local history registers (N bits each)

q Select the history register based on the PC of the branch
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was 
seen
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Can We Do Even Better?
n Predictability of branches varies

n Some branches are more predictable using local history
n Some using global
n For others, a simple two-bit counter is enough
n Yet for others, a single bit is enough 

n Observation: There is heterogeneity in predictability 
behavior of branches
q No one-size fits all branch prediction algorithm for all branches

n Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors
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Hybrid Branch Predictors
n Idea: Use more than one type of predictor (i.e., multiple 

algorithms) and select the “best” prediction
q E.g., hybrid of 2-bit counters and global predictor

n Advantages:
+ Better accuracy: different predictors are better for different branches
+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

n Disadvantages:
-- Need “meta-predictor” or “selector”
-- Longer access latency

q McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

n Minimum branch penalty: 7 cycles
n Typical branch penalty: 11+ cycles
n 48K bits of target addresses stored in I-cache
n Predictor tables are reset on a context switch

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
66



Are We Done w/ Branch Prediction?
n Hybrid branch predictors work well

q E.g., 90-97% prediction accuracy on average

n Some “difficult” workloads still suffer, though!
q E.g., gcc
q Max IPC with tournament prediction: 9
q Max IPC with perfect prediction: 35
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Some Other Branch Predictor Types
n Loop branch detector and predictor

q Loop iteration count detector/predictor
q Works well for loops with small number of iterations, where 

iteration count is predictable
q Used in Intel Pentium M

n Perceptron branch predictor
q Learns the direction correlations between individual branches
q Assigns weights to correlations
q Jimenez and Lin, “Dynamic Branch Prediction with 

Perceptrons,” HPCA 2001.
n Hybrid history length based predictor

q Uses different tables with different history lengths
q Seznec, “Analysis of the O-Geometric History Length branch 

predictor,” ISCA 2005.
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Intel Pentium M Predictors

69

Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Perceptrons for Learning Linear Functions

n A perceptron is a simplified model of a biological neuron
n It is also a simple binary classifier

n A perceptron maps an input vector X to a 0 or 1
q Input = Vector X
q Perceptron learns the linear function (if one exists) of how 

each element of the vector affects the output (stored in an 
internal Weight vector)

q Output = Weight.X + Bias > 0

n In the branch prediction context
q Vector X: Branch history register bits
q Output: Prediction for the current branch
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Perceptron Branch Predictor (I)
n Idea: Use a perceptron to learn the correlations between branch history 

register bits and branch outcome
n A perceptron learns a target Boolean function of N inputs

n Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
n Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi
à Each weight corresponds to a bit in 

the GHR 
àHow much the bit is correlated with the 

direction of the branch
à Positive correlation: large + weight
à Negative correlation: large - weight

Prediction:
à Express GHR bits as 1 (T) and -1 (NT)
à Take dot product of GHR and weights
à If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight
(bias of branch, independent of 
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)
n Advantages

+ More sophisticated learning mechanism à better accuracy

n Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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Prediction Using Multiple History Lengths
n Observation: Different 

branches require 
different history lengths 
for better prediction 
accuracy

n Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches
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Seznec and Michaud, “A case for (partially) tagged Geometric History Length 
Branch Prediction,” JILP 2006.



State of the Art in Branch Prediction
n See the Branch Prediction Championship

q https://www.jilp.org/cbp2016/program.html
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Andre Seznec, 
“TAGE-SC-L branch predictors,”
CBP 2014.

Andre Seznec,
“TAGE-SC-L branch predictors 
again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html


Branch Confidence Estimation
n Idea: Estimate if the prediction is likely to be correct 

q i.e., estimate how “confident” you are in the prediction 

n Why?
q Could be very useful in deciding how to speculate:

n What predictor/PHT to choose/use
n Whether to keep fetching on this path
n Whether to switch to some other way of handling the branch, 

e.g. dual-path execution (eager execution) or dynamic 
predication 

n …

n Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996.
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Other Ways of Handling 
Branches
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Delayed Branching (I)
n Change the semantics of a branch instruction

q Branch after N instructions
q Branch after N cycles

n Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

n Problem: How do you find instructions to fill the delay 
slots?
q Branch must be independent of delay slot instructions

n Unconditional branch: Easier to find instructions to fill the delay slot
n Conditional branch: Condition computation should not depend on 

instructions in delay slots à difficult to fill the delay slot
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Delayed Branching (II)
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A
B
C
BC X
D
E
F

if ex

A
AB
BC

CBC
BC

GX:
--

A

B

C
BC X

D
E
F
GX:

if ex

A
AC
CBC

BCB
BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles



Fancy Delayed Branching (III)
n Delayed branch with squashing

q In SPARC
q Semantics: If the branch falls through (i.e., it is not taken), 

the delay slot instruction is not executed
q Why could this help?
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A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A



Delayed Branching (IV)
n Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 
1. Number of delay slots == number of instructions to keep the pipeline 

full before the branch resolves
2. All delay slots can be filled with useful instructions

n Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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a.  From before b.  From target c.  From fall through
sub $t4, $t5, $t6 
 
… 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  sub $t4, $t5, $t6 
 

 
 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
   sub $t4, $t5, $t6

add $s1, $s2, $s3 
 
if $s2 = 0 then 
 
    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 
 
if $s2 = 0 then 
 
 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Predicate Combining (not Predicated Execution)

n Complex predicates are converted into multiple branches
q if ((a == b) && (c < d) && (a > 5000))  { … }

n 3 conditional branches
n Problem: This increases the number of control 

dependencies
n Idea: Combine predicate operations to feed a single branch 

instruction instead of having one branch for each
q Predicates stored and operated on using condition registers
q A single branch checks the value of the combined predicate

+ Fewer branches in code à fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
n Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)
n Idea: Convert control dependence to data dependence

n Simple example: Suppose we had a Conditional Move 
instruction…
q CMOV condition, R1 ß R2
q R1 = (condition == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

n Code example with branches vs. CMOVs
if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;
CMOV condition, b ß 4;
CMOV !condition, b ß 3;
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D D

Predication (Predicated Execution)
n Idea: Compiler converts control dependence into data 

dependence à branch is eliminated
q Each instruction has a predicate bit set based on the predicate computation
q Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1 
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code) 

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add   x, b, 1add   x, b, 1



Predicated Execution References
n Allen et al., “Conversion of control dependence to data 

dependence,” POPL 1983.

n Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.
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Conditional Move Operations
n Very limited form of predicated execution

n CMOV R1 ß R2
q R1 = (ConditionCode == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)
n Predicated execution can be high performance and energy-

efficient
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Fetch  Decode  Rename  Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch  Decode  Rename  Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE



Predicated Execution
n Eliminates branches à enables straight line code (i.e., 

larger basic blocks in code)

n Advantages
q Eliminates hard-to-predict branches
q Always-not-taken prediction works better (no branches)
q Compiler has more freedom to optimize code (no branches)

n control flow does not hinder inst. reordering optimizations
n code optimizations hindered only by data dependencies

n Disadvantages
q Useless work: some instructions fetched/executed but 

discarded (especially bad for easy-to-predict branches)
q Requires additional ISA (and hardware) support
q Can we eliminate all branches this way?
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Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch 
behavior. Branch behavior changes based on input set, program 
phase, control-flow path.
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Predicated Execution in Intel Itanium
n Each instruction can be separately predicated 
n 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
n An instruction is effectively a NOP if its predicate is false
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cmp
br
else1
else2
br
then1
then2
join1
join2

p1 p2 ¬cmp

join1

join2

else1p2

then2p1
else2p2

then1p1



Conditional Execution in the ARM ISA
n Almost all ARM instructions can include an optional 

condition code. 
q Prior to ARM v8

n An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA

96



Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Multi-Path Execution
n Idea: Execute both paths after a conditional branch

q For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

q For a hard-to-predict branch: Use dynamic confidence estimation

n Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

n Disadvantages:
-- What happens when the machine encounters another hard-to-predict 

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2 

C

D

E

F

B

path 1 path 2 

Dual-path Predicated Execution

CFMergeCFMerge



Handling Other Types of 
Branches
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Remember: Branch Types
Type Direction at 

fetch time
Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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How can we predict an indirect branch with many target addresses?



Call and Return Prediction
n Direct calls are easy to predict

q Always taken, single target
q Call marked in BTB, target predicted by BTB

n Returns are indirect branches 
q A function can be called from many points in code
q A return instruction can have many target addresses

n Next instruction after each call point for the same function
q Observation: Usually a return matches a call
q Idea: Use a stack to predict return addresses (Return Address Stack)

n A fetched call: pushes the return (next instruction) address on the stack
n A fetched return: pops the stack and uses the address as its predicted 

target
n Accurate most of the time: 8-entry stack à > 95% accuracy
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Call X
…
Call X

…
Call X
…
Return

Return
Return



Indirect Branch Prediction (I)
n Register-indirect branches have multiple targets

n Used to implement 
q Switch-case statements
q Virtual function calls
q Jump tables (of function pointers)
q Interface calls 
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TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]
branch R1



Indirect Branch Prediction (II)
n No direction prediction needed
n Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 

between different targets

n Idea 2: Use history based target prediction 
q E.g., Index the BTB with GHR XORed with Indirect Branch PC
q Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses
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Intel Pentium M Indirect Branch Predictor
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Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Issues in Branch Prediction (I)
n Need to identify a branch before it is fetched

n How do we do this?
q BTB hit à indicates that the fetched instruction is a branch
q BTB entry contains the “type” of the branch
q Pre-decoded “branch type” information stored in the 

instruction cache identifies type of branch

n What if no BTB?
q Bubble in the pipeline until target address is computed
q E.g., IBM POWER4

109



Latency of Branch Prediction
n Latency: Prediction is latency critical

q Need to generate next fetch address for the next cycle
q Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???


