Digital Design & Computer Arch. Lecture 17: Branch Prediction II Prof. Onur Mutlu ETH Zürich Spring 2020 24 April 2020 # Required Readings ### This week - Smith and Sohi, "The Microarchitecture of Superscalar Processors," Proceedings of the IEEE, 1995 - H&H Chapters 7.8 and 7.9 - McFarling, "Combining Branch Predictors," DEC WRL Technical Report, 1993. ## Recall: How to Handle Control Dependences - Critical to keep the pipeline full with correct sequence of dynamic instructions. - Potential solutions if the instruction is a control-flow instruction: - Stall the pipeline until we know the next fetch address - Guess the next fetch address (branch prediction) - Employ delayed branching (branch delay slot) - Do something else (fine-grained multithreading) - Eliminate control-flow instructions (predicated execution) - Fetch from both possible paths (if you know the addresses of both possible paths) (multipath execution) ## Recall: Fetch Stage with BTB and Direction Prediction ## Recall: More Sophisticated Direction Prediction - Compile time (static) - Always not taken - Always taken - BTFN (Backward taken, forward not taken) - Profile based (likely direction) - Program analysis based (likely direction) - Run time (dynamic) - Last time prediction (single-bit) - Two-bit counter based prediction - Two-level prediction (global vs. local) - Hybrid - Advanced algorithms (e.g., using perceptrons) ### Recall: Last Time Predictor - Last time predictor - Single bit per branch (stored in BTB) - Always mispredicts the last iteration and the first iteration of a loop branch - \square Accuracy for a loop with N iterations = (N-2)/N - + Loop branches for loops with large N (number of iterations) - Loop branches for loops will small N (number of iterations) TNTNTNTNTNTNTNTNTNTNTN → 0% accuracy # Implementing the Last-Time Predictor The 1-bit BHT (Branch History Table) entry is updated with the correct outcome after each execution of a branch ## State Machine for Last-Time Prediction ## Improving the Last Time Predictor - Problem: A last-time predictor changes its prediction from T→NT or NT→T too quickly - even though the branch may be mostly taken or mostly not taken - Solution Idea: Add hysteresis to the predictor so that prediction does not change on a single different outcome - Use two bits to track the history of predictions for a branch instead of a single bit - Can have 2 states for T or NT instead of 1 state for each - Smith, "A Study of Branch Prediction Strategies," ISCA 1981. ### Two-Bit Counter Based Prediction - Each branch associated with a two-bit counter - One more bit provides hysteresis - A strong prediction does not change with one single different outcome ## State Machine for 2-bit Saturating Counter - Counter using saturating arithmetic - Arithmetic with maximum and minimum values # Hysteresis Using a 2-bit Counter ### Two-Bit Counter Based Prediction - Each branch associated with a two-bit counter - One more bit provides hysteresis - A strong prediction does not change with one single different outcome - Accuracy for a loop with N iterations = (N-1)/N TNTNTNTNTNTNTNTNTNTN → 50% accuracy (assuming counter initialized to weakly taken) - + Better prediction accuracy - -- More hardware cost (but counter can be part of a BTB entry) ## Is This Good Enough? - ~85-90% accuracy for **many** programs with 2-bit counter based prediction (also called bimodal prediction) - Is this good enough? - How big is the branch problem? ## Let's Do the Exercise Again - Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch) - Assume: 1 out of 5 instructions is a branch - Assume: Each 5 instruction-block ends with a branch - How long does it take to fetch 500 instructions? - □ 100% accuracy - 100 cycles (all instructions fetched on the correct path) - No wasted work; IPC = 500/100 - □ 90% accuracy - 100 (correct path) + 20 * 10 (wrong path) = 300 cycles - 200% extra instructions fetched; IPC = 500/300 - 85% accuracy - 100 (correct path) + 20 * 15 (wrong path) = 400 cycles - 300% extra instructions fetched; IPC = 500/400 - 80% accuracy - 100 (correct path) + 20 * 20 (wrong path) = 500 cycles - 400% extra instructions fetched; IPC = 500/500 ## Can We Do Better: Two-Level Prediction - Last-time and 2BC predictors exploit "last-time" predictability - Realization 1: A branch's outcome can be correlated with other branches' outcomes - Global branch correlation - Realization 2: A branch's outcome can be correlated with past outcomes of the same branch (other than the outcome of the branch "last-time" it was executed) - Local branch correlation ## Global Branch Correlation (I) Recently executed branch outcomes in the execution path are correlated with the outcome of the next branch ``` if (cond1) ... if (cond1 AND cond2) ``` If first branch not taken, second also not taken ``` branch Y: if (cond1) a = 2; ... branch X: if (a == 0) ``` If first branch taken, second definitely not taken ## Global Branch Correlation (II) ``` branch Y: if (cond1) ... branch Z: if (cond2) ... branch X: if (cond1 AND cond2) ``` - If Y and Z both taken, then X also taken - If Y or Z not taken, then X also not taken ## Global Branch Correlation (III) Eqntott, SPEC'92: Generates truth table from Boolean expr. If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. bb=0@B3) then B3 is certainly taken # Capturing Global Branch Correlation - Idea: Associate branch outcomes with "global T/NT history" of all branches - Make a prediction based on the outcome of the branch the last time the same global branch history was encountered - Implementation: - □ Keep track of the "global T/NT history" of all branches in a register → Global History Register (GHR) - Use GHR to index into a table that recorded the outcome that was seen for each GHR value in the recent past → Pattern History Table (table of 2-bit counters) - Global history/branch predictor - Uses two levels of history (GHR + history at that GHR) ### Two Level Global Branch Prediction - First level: Global branch history register (N bits) - The direction of last N branches - Second level: Table of saturating counters for each history entry - The direction the branch took the last time the same history was seen # Pattern History Table (PHT) 00 00 00 01 GHR (global history register) previous branch's direction 11 11 ### How Does the Global Predictor Work? After the initial startup time, the conditional branches have the following behavior, assuming GR is shifted to the left: | test | value | GR | regult | |-------|-------|------|---------------| | j<3 | j=1 | 1101 | taken | | j<3 | j=2 | 1011 | taken | | j<3 | j=3 | 0111 | not taken | | i<100 | | 1110 | usually taken | This branch tests i Last 4 branches test j History: TTTN Predict taken for i Next history: TTNT (shift in last outcome) McFarling, "Combining Branch Predictors," DEC WRL TR 1993. ### Intel Pentium Pro Branch Predictor - Two level global branch predictor - 4-bit global history register - Multiple pattern history tables (of 2 bit counters) - Which pattern history table to use is determined by lower order bits of the branch address - First widely commercially successful out-of-order execution machine # Improving Global Predictor Accuracy - Idea: Add more context information to the global predictor to take into account which branch is being predicted - Gshare predictor: GHR hashed with the Branch PC - + More context information used for prediction - + Better utilization of the two-bit counter array McFarling, "Combining Branch Predictors," DEC WRL Tech Report, 1993. ### Review: One-Level Branch Predictor #### Direction predictor (2-bit counters) ## Two-Level Global History Branch Predictor ### Two-Level Gshare Branch Predictor ## Can We Do Better: Two-Level Prediction - Last-time and 2BC predictors exploit only "last-time" predictability for a given branch - Realization 1: A branch's outcome can be correlated with other branches' outcomes - Global branch correlation - Realization 2: A branch's outcome can be correlated with past outcomes of the same branch (in addition to the outcome of the branch "last-time" it was executed) - Local branch correlation ### Local Branch Correlation If the loop test is done at the end of the body, the corresponding branch will execute the pattern $(1110)^n$, where 1 and 0 represent taken and not taken respectively, and n is the number of times the loop is executed. Clearly, if we knew the direction this branch had gone on the previous three executions, then we could always be able to predict the next branch direction. McFarling, "Combining Branch Predictors," DEC WRL TR 1993. ## More Motivation for Local History - To predict a loop branch "perfectly", we want to identify the last iteration of the loop - By having a separate PHT entry for each local history, we can distinguish different iterations of a loop - Works for "short" loops ## Capturing Local Branch Correlation - Idea: Have a per-branch history register - Associate the predicted outcome of a branch with "T/NT history" of the same branch - Make a prediction based on the outcome of the branch the last time the same local branch history was encountered - Called the local history/branch predictor - Uses two levels of history (Per-branch history register + history at that history register value) ### Two Level Local Branch Prediction - First level: A set of local history registers (N bits each) - Select the history register based on the PC of the branch - Second level: Table of saturating counters for each history entry - The direction the branch took the last time the same history was seen ## Two-Level Local History Branch Predictor ### Can We Do Even Better? - Predictability of branches varies - Some branches are more predictable using local history - Some branches are more predictable using global - For others, a simple two-bit counter is enough - Yet for others, a single bit is enough - Observation: There is heterogeneity in predictability behavior of branches - No one-size fits all branch prediction algorithm for all branches - Idea: Exploit that heterogeneity by designing heterogeneous (hybrid) branch predictors ## Hybrid Branch Predictors - Idea: Use more than one type of predictor (i.e., multiple algorithms) and select the "best" prediction - E.g., hybrid of 2-bit counters and global predictor ### Advantages: - + Better accuracy: different predictors are better for different branches - + Reduced warmup time (faster-warmup predictor used until the slower-warmup predictor warms up) ### Disadvantages: - -- Need "meta-predictor" or "selector" to decide which predictor to use - -- Longer access latency - McFarling, "Combining Branch Predictors," DEC WRL Tech Report, 1993. ## Alpha 21264 Tournament Predictor - Minimum branch penalty: 7 cycles - Typical branch penalty: 11+ cycles - 48K bits of target addresses stored in I-cache - Predictor tables are reset on a context switch - Kessler, "The Alpha 21264 Microprocessor," IEEE Micro 1999. ### Are We Done w/ Branch Prediction? - Hybrid branch predictors work well - □ E.g., 90-97% prediction accuracy on average - Some "difficult" workloads still suffer, though! - □ E.g., gcc - Max IPC with tournament prediction: 9 - Max IPC with perfect prediction: 35 # Some Other Branch Predictor Types #### Loop branch detector and predictor - Loop iteration count detector/predictor - Works well for loops with small number of iterations, where iteration count is predictable - Used in Intel Pentium M #### Perceptron branch predictor - Learns the *direction correlations* between individual branches - Assigns weights to correlations - Jimenez and Lin, "Dynamic Branch Prediction with Perceptrons," HPCA 2001. #### Hybrid history length based predictor - Uses different tables with different history lengths - Seznec, "Analysis of the O-Geometric History Length branch predictor," ISCA 2005. # Intel Pentium M Predictors: Loop and Jump The advanced branch prediction in the Pentium M processor is based on the Intel Pentium[®] 4 processor's [6] branch predictor. On top of that, two additional predictors to capture special program flows, were added: a Loop Detector and an Indirect Branch Predictor. Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic Gochman et al., "The Intel Pentium M Processor: Microarchitecture and Performance," Intel Technology Journal, May 2003. # Perceptrons for Learning Linear Functions - A perceptron is a simplified model of a biological neuron - It is also a simple binary classifier - A perceptron maps an input vector X to a 0 or 1 - Input = Vector X - Perceptron learns the linear function (if one exists) of how each element of the vector affects the output (stored in an internal Weight vector) - Output = Weight.X + Bias > 0 - In the branch prediction context - Vector X: Branch history register bits - Output: Prediction for the current branch # Perceptron Branch Predictor (I) - Idea: Use a perceptron to learn the correlations between branch history register bits and branch outcome - A perceptron learns a target Boolean function of N inputs Each branch associated with a perceptron A perceptron contains a set of weights wi - → Each weight corresponds to a bit in the GHR - →How much the bit is correlated with the direction of the branch - → Positive correlation: large + weight - → Negative correlation: large weight #### Prediction: - → Express GHR bits as 1 (T) and -1 (NT) - → Take dot product of GHR and weights - → If output > 0, predict taken - Jimenez and Lin, "Dynamic Branch Prediction with Perceptrons," HPCA 2001. - Rosenblatt, "Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms," 1962 # Perceptron Branch Predictor (II) #### Prediction function: #### Training function: ``` if \mathrm{sign}(y_{out}) \neq t \ \mathrm{or} \ |y_{out}| \leq \theta \ \mathrm{then} for i := 0 to n do w_i := w_i + tx_i end for end if ``` # Perceptron Branch Predictor (III) - Advantages - + More sophisticated learning mechanism → better accuracy - Disadvantages - -- Hard to implement (adder tree to compute perceptron output) - Can learn only linearly-separable functions e.g., cannot learn XOR type of correlation between 2 history bits and branch outcome A successful example of use of machine learning in processor design # Prediction Using Multiple History Lengths - Observation: Different branches require different history lengths for better prediction accuracy - Idea: Have multiple PHTs indexed with GHRs with different history lengths and intelligently allocate PHT entries to different branches Figure 1: A 5-component TAGE predictor synopsis: a base predictor is backed with several tagged predictor components indexed with increasing history lengths Seznec and Michaud, "A case for (partially) tagged Geometric History Length Branch Prediction," JILP 2006. #### State of the Art in Branch Prediction - See the Branch Prediction Championship - https://www.jilp.org/cbp2016/program.html Figure 1. The TAGE-SC-L predictor: a TAGE predictor backed with a Statistical Corrector predictor and a loop predictor #### Branch Confidence Estimation - Idea: Estimate if the prediction is likely to be correct - i.e., estimate how "confident" you are in the prediction - Why? - Could be very useful in deciding how to speculate: - What predictor/PHT to choose/use - Whether to keep fetching on this path - Whether to switch to some other way of handling the branch, e.g. dual-path execution (eager execution) or dynamic predication - **...** Jacobsen et al., "Assigning Confidence to Conditional Branch Predictions," MICRO 1996. # Other Ways of Handling Branches # How to Handle Control Dependences - Critical to keep the pipeline full with correct sequence of dynamic instructions. - Potential solutions if the instruction is a control-flow instruction: - Stall the pipeline until we know the next fetch address - Guess the next fetch address (branch prediction) - Employ delayed branching (branch delay slot) - Do something else (fine-grained multithreading) - Eliminate control-flow instructions (predicated execution) - Fetch from both possible paths (if you know the addresses of both possible paths) (multipath execution) # Delayed Branching (I) - Change the semantics of a branch instruction - Branch after N instructions - Branch after N cycles - Idea: Delay the execution of a branch. N instructions (delay slots) that come after the branch are always executed regardless of branch direction. - Problem: How do you find instructions to fill the delay slots? - Branch must be independent of delay slot instructions - Unconditional branch: Easier to find instructions to fill the delay slot - Conditional branch: Condition computation should not depend on instructions in delay slots → difficult to fill the delay slot # Delayed Branching (II) #### Normal code: #### Timeline: #### Delayed branch code: #### Timeline: 6 cycles 5 cycles # Fancy Delayed Branching (III) - Delayed branch with squashing - In SPARC - Semantics: If the branch falls through (i.e., it is not taken), the delay slot instruction is not executed - Why could this help? Normal code: Delayed branch code: Delayed branch w/ squashing: # Delayed Branching (IV) #### Advantages: - + Keeps the pipeline full with useful instructions in a simple way assuming - 1. Number of delay slots == number of instructions to keep the pipeline full before the branch resolves - 2. All delay slots can be filled with useful instructions #### Disadvantages: - -- Not easy to fill the delay slots (even with a 2-stage pipeline) - 1. Number of delay slots increases with pipeline depth, superscalar execution width - 2. Number of delay slots should be variable with variable latency operations. Why? - -- Ties ISA semantics to hardware implementation - -- SPARC, MIPS, HP-PA: 1 delay slot - -- What if pipeline implementation changes with the next design? # Digital Design & Computer Arch. Lecture 17: Branch Prediction II Prof. Onur Mutlu ETH Zürich Spring 2020 24 April 2020 # We did not cover the following slides. They are for your benefit. # An Aside: Filling the Delay Slot a. From before c. From fall through b. From target sub \$t4, \$t5, \$t6 ◀ add \$s1, \$s2, \$s3 add \$s1, \$s2, \$s3 if \$s2 = 0 then if \$s1 = 0 then reordering data add \$s1, \$s2, \$s3 independent Delay slot Delay slot if \$s1 = 0 then (RAW, WAW, WAR) sub \$t4, \$t5, \$t6 ← Delay slot instructions does not change **Becomes Becomes Becomes** program semantics add \$s1, \$s2, \$s3 if \$s1 = 0 then if \$s2 = 0 then add \$s1, \$s2, \$s3 sub \$t4, \$t5, \$t6 add \$s1, \$s2, \$s3 if \$s1 = 0 then Safe? sub \$t4, \$t5, \$t6 For correctness: For correctness: within same add a new instruction add a new instruction basic block to the not-taken path? to the taken path? # How to Handle Control Dependences - Critical to keep the pipeline full with correct sequence of dynamic instructions. - Potential solutions if the instruction is a control-flow instruction: - Stall the pipeline until we know the next fetch address - Guess the next fetch address (branch prediction) - Employ delayed branching (branch delay slot) - Do something else (fine-grained multithreading) - Eliminate control-flow instructions (predicated execution) - Fetch from both possible paths (if you know the addresses of both possible paths) (multipath execution) ## Predicate Combining (not Predicated Execution) - Complex predicates are converted into multiple branches - \Box if ((a == b) && (c < d) && (a > 5000)) { ... } - 3 conditional branches - Problem: This increases the number of control dependencies - Idea: Combine predicate operations to feed a single branch instruction instead of having one branch for each - Predicates stored and operated on using condition registers - A single branch checks the value of the combined predicate - + Fewer branches in code → fewer mipredictions/stalls - -- Possibly unnecessary work - -- If the first predicate is false, no need to compute other predicates - Condition registers exist in IBM RS6000 and the POWER architecture # Predication (Predicated Execution) - Idea: Convert control dependence to data dependence - Simple example: Suppose we had a Conditional Move instruction... - □ CMOV condition, R1 \leftarrow R2 - \square R1 = (condition == true) ? R2 : R1 - Employed in most modern ISAs (x86, Alpha) - Code example with branches vs. CMOVs if (a == 5) {b = 4;} else {b = 3;} ``` CMPEQ condition, a, 5; CMOV condition, b \leftarrow 4; CMOV !condition, b \leftarrow 3; ``` # Predication (Predicated Execution) - Idea: Compiler converts control dependence into data dependence → branch is eliminated - Each instruction has a predicate bit set based on the predicate computation - Only instructions with TRUE predicates are committed (others turned into NOPs) #### Predicated Execution References Allen et al., "Conversion of control dependence to data dependence," POPL 1983. Kim et al., "Wish Branches: Combining Conditional Branching and Predication for Adaptive Predicated Execution," MICRO 2005. # Conditional Move Operations - Very limited form of predicated execution - CMOV R1 ← R2 - □ R1 = (ConditionCode == true) ? R2 : R1 - Employed in most modern ISAs (x86, Alpha) # Predicated Execution (II) Predicated execution can be high performance and energyefficient #### Predicated Execution Eliminates branches → enables straight line code (i.e., larger basic blocks in code) #### Advantages - Eliminates hard-to-predict branches - Always-not-taken prediction works better (no branches) - Compiler has more freedom to optimize code (no branches) - control flow does not hinder inst. reordering optimizations - code optimizations hindered only by data dependencies #### Disadvantages - Useless work: some instructions fetched/executed but discarded (especially bad for easy-to-predict branches) - Requires additional ISA (and hardware) support - Can we eliminate all branches this way? #### Predicated Execution vs. Branch Prediction - + Eliminates mispredictions for hard-to-predict branches - + No need for branch prediction for some branches - + Good if misprediction cost > useless work due to predication - -- Causes useless work for branches that are easy to predict - -- Reduces performance if misprediction cost < useless work - -- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch behavior changes based on input set, program phase, control-flow path. #### Predicated Execution in Intel Itanium - Each instruction can be separately predicated - 64 one-bit predicate registers each instruction carries a 6-bit predicate field An instruction is effectively a NOP if its predicate is false - Almost all ARM instructions could include an optional condition code. - Prior to ARM v8 - An instruction with a condition code is executed only if the condition code flags in the CPSR meet the specified condition. | 31 2 | 827 | | | | | 16 | 15 | 8 | 7 | | | 0 | Instruction type | |------|---------|-----|---------|---|---|---------|------------|---------------|--------|-----|--------------------|---------|------------------------------------------------| | Cond | 0 0 1 0 | рс | od | е | S | Rn | Rd | | Oper | aı | nd2 | | Data processing / PSR Transfer | | Cond | 0 0 0 0 | 0 | 0 | A | S | Rd | Rn | Rs | 1 0 |) (| 0 1 | Rm | Multiply | | Cond | 0 0 0 0 | 1 | Ü | A | S | RdHi | RdLo | Rs | 1 0 |) | 0 1 | Rm | Long Multiply (v3M / v4 only) | | Cond | 0 0 0 1 | 0 | В | 0 | 0 | Rn | Rd | 0 0 0 0 | 1 0 |) | 0 1 | Rm | Swap | | Cond | 0 1 I P | U | В | W | L | Rn | Rd | Offset | | | | | Load/Store Byte/Word | | Cond | 1 0 0 P | U | S | W | L | Rn | | Register List | | | | | Load/Store Multiple | | Cond | 0 0 0 P | U | 1 | W | L | Rn | Rd | Offset1 | 1 s | 3 | н 1 | Offset2 | Halfword transfer : Immediate offset (v4 only) | | Cond | 0 0 0 P | U | 0 | M | L | Rn | Rd | 0 0 0 0 | 1 s | I | н 1 | Rm | Halfword transfer: Register offset (v4 only) | | Cond | 1 0 1 L | | Offset | | | | | | | | | Branch | | | Cond | 0 0 0 1 | 0 | 0 | 1 | 0 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 0 (|) | 0 1 | Rn | Branch Exchange (v4T only) | | Cond | 1 1 0 P | U | U N W L | | L | Rn | Rn CRd | | um Off | | Off | set | Coprocessor data transfer | | Cond | 1 1 1 0 | | Op1 | | | CRn | CRd | CPNum | Op | 2 | 0 | CRm | Coprocessor data operation | | Cond | 1 1 1 0 | | Οp | 1 | ь | CRn | Rd | CPNum | Op | 2 | 1 | CRm | Coprocessor register transfer | | Cond | 1 1 1 1 | 1 1 | | | | | SWI Number | | | | Software interrupt | | | - * To execute an instruction conditionally, simply postfix it with the appropriate condition: - For example an add instruction takes the form: ``` - ADD r0, r1, r2 ; r0 = r1 + r2 (ADDAL) ``` • To execute this only if the zero flag is set: ``` - ADDEQ r0,r1,r2 ; If zero flag set then... ; ... r0 = r1 + r2 ``` - * By default, data processing operations do not affect the condition flags (apart from the comparisons where this is the only effect). To cause the condition flags to be updated, the S bit of the instruction needs to be set by postfixing the instruction (and any condition code) with an "S". - For example to add two numbers and set the condition flags: ``` - ADDS r0,r1,r2 ; r0 = r1 + r2 ; ... and set flags ``` - * Convert the GCD algorithm given in this flowchart into - 1) "Normal" assembler, where only branches can be conditional. - 2) ARM assembler, where all instructions are conditional, thus improving code density. - * The only instructions you need are CMP, B and SUB. The ARM Instruction Set - ARM University Program - V1.0 #### "Normal" Assembler ``` gcd cmp r0, r1 ; reached the end? beq stop blt less :if r0 > r1 sub r0, r0, r1 ; subtract r1 from r0 bal gcd less sub r1, r1, r0 ; subtract r0 from r1 bal gcd stop ``` #### **ARM Conditional Assembler** ``` cmp r0, r1 ; if r0 > r1 gcd subgt r0, r0, r1 ;subtract r1 from r0 sublt r1, r1, r0 ;else subtract r0 from r1 bne gcd ;reached the end? ``` # How to Handle Control Dependences - Critical to keep the pipeline full with correct sequence of dynamic instructions. - Potential solutions if the instruction is a control-flow instruction: - Stall the pipeline until we know the next fetch address - Guess the next fetch address (branch prediction) - Employ delayed branching (branch delay slot) - Do something else (fine-grained multithreading) - Eliminate control-flow instructions (predicated execution) - Fetch from both possible paths (if you know the addresses of both possible paths) (multipath execution) #### Multi-Path Execution #### Idea: Execute both paths after a conditional branch - For all branches: Riseman and Foster, "The inhibition of potential parallelism by conditional jumps," IEEE Transactions on Computers, 1972. - For a hard-to-predict branch: Use dynamic confidence estimation #### Advantages: - + Improves performance if misprediction cost > useless work - + No ISA change needed #### Disadvantages: - -- What happens when the machine encounters another hard-to-predict branch? Execute both paths again? - -- Paths followed quickly become exponential - -- Each followed path requires its own context (registers, PC, GHR) - -- Wasted work (and reduced performance) if paths merge #### Dual-Path Execution versus Predication # Handling Other Types of Branches # Remember: Branch Types | Туре | Direction at fetch time | Number of possible next fetch addresses? | When is next fetch address resolved? | | |---------------|-------------------------|------------------------------------------|--------------------------------------|--| | Conditional | Unknown | 2 | Execution (register dependent) | | | Unconditional | Always taken | 1 | Decode (PC + offset) | | | Call | Always taken | 1 | Decode (PC + offset) | | | Return | Always taken | Many | Execution (register dependent) | | | Indirect | Always taken | Many | Execution (register dependent) | | How can we predict an indirect branch with many target addresses? #### Call and Return Prediction - Direct calls are easy to predict - Always taken, single target - Call marked in BTB, target predicted by BTB - Returns are indirect branches - A function can be called from many points in code - A return instruction can have many target addresses - Next instruction after each call point for the same function - Observation: Usually a return matches a call - Idea: Use a stack to predict return addresses (Return Address Stack) - A fetched call: pushes the return (next instruction) address on the stack - A fetched return: pops the stack and uses the address as its predicted target - Accurate most of the time: 8-entry stack \rightarrow > 95% accuracy # Indirect Branch Prediction (I) Register-indirect branches have multiple targets R1 = MEM[R2] branch R1 Conditional (Direct) Branch **Indirect Jump** - Used to implement - Switch-case statements - Virtual function calls - Jump tables (of function pointers) - Interface calls # Indirect Branch Prediction (II) - No direction prediction needed - Idea 1: Predict the last resolved target as the next fetch address - + Simple: Use the BTB to store the target address - -- Inaccurate: 50% accuracy (empirical). Many indirect branches switch between different targets - Idea 2: Use history based target prediction - E.g., Index the BTB with GHR XORed with Indirect Branch PC - Chang et al., "Target Prediction for Indirect Jumps," ISCA 1997. - + More accurate - -- An indirect branch maps to (too) many entries in BTB - -- Conflict misses with other branches (direct or indirect) - -- Inefficient use of space if branch has few target addresses #### Intel Pentium M Indirect Branch Predictor The advanced branch prediction in the Pentium M processor is based on the Intel Pentium[®] 4 processor's [6] branch predictor. On top of that, two additional predictors to capture special program flows, were added: a Loop Detector and an Indirect Branch Predictor. Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic Gochman et al., "The Intel Pentium M Processor: Microarchitecture and Performance," Intel Technology Journal, May 2003. # Issues in Branch Prediction (I) - Need to identify a branch before it is fetched - How do we do this? - □ BTB hit → indicates that the fetched instruction is a branch - BTB entry contains the "type" of the branch - Pre-decoded "branch type" information stored in the instruction cache identifies type of branch - What if no BTB? - Bubble in the pipeline until target address is computed - E.g., IBM POWER4 ## Latency of Branch Prediction - Latency: Prediction is latency critical - Need to generate next fetch address for the next cycle - Bigger, more complex predictors are more accurate but slower