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Required Readings

= This week

o Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, "Combining Branch Predictors,” DEC WRL Technical
Report, 1993.




Recall: How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction) ‘

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)



Recall: Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)
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Recall: More Sophisticated Direction Prediction

Compile time (static)

o Always not taken

o Always taken

o BTFN (Backward taken, forward not taken)
o Profile based (likely direction)

o Program analysis based (likely direction)

‘ Run time (dynamic) ‘
o Last time prediction (single-bit)
o Two-bit counter based prediction
o Two-level prediction (global vs. local)
Q
Q

Hybrid
Advanced algorithms (e.g., using perceptrons)



Recall: Last Time Predictor

Last time predictor

o Single bit per branch (stored in BTB)

o Indicates which direction branch went last time it executed
[TTTTTTTTTNNNNNNNNNN - 90% accuracy

Always mispredicts the last iteration and the first iteration
of a loop branch

o Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)
-- Loop branches for loops will small N (number of iterations)
TNTNTNTNTNTNTNTNTNTN = 0% accuracy



Implementing the Last-Time Predictor

tag BTB index
\§ A W,
N Y
N-bit | BHT:
- One
| tag Bit BTB: one target
| table address per entry
per
entry
taken? _ PC+4
‘/_\ > 1 0

%

nextPC
The 1-bit BHT (Branch History Table) entry is updated with

the correct outcome after each execution of a branch



State Machine for Last-Time Prediction

actually
taken
actually predict predict actually
not taken not taken taken
taken
actually

not taken




Improving the Last Time Predictor

Problem: A last-time predictor changes its prediction from
T->NT or NT->T too quickly

o even though the branch may be mostly taken or mostly not
taken

Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

a Use two bits to track the history of predictions for a branch
instead of a single bit

o Can have 2 states for T or NT instead of 1 state for each

Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.



Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter
One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

10



State Machine for 2-bit Saturating Counter

= Counter using saturating arithmetic
o Arithmetic with maximum and minimum values

actually r / actually —
P

taken rec ltaken
taken
11 actually
taken
actually actually
taken ltaken

ctually
ltaken

actually actually

-
taken taken 11



Hysteresis Using a 2-bit Counter

actually actually
taken ltaken

“strongly
taken”

actually
aken

actually
ltaken

actually
taken

“strongly
Itaken”

actually

Itaken o O

actually
actually ltaken

taken

Change prediction after 2 consecutive mistakes 12



Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter

One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

13



Is This Good Enough?

~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

Is this good enough?

How big is the branch problem?

14



Let’s Do the Exercise Again

Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?

o 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work; IPC = 500/100

2 90% accuracy
100 (correct path) + 20 * 10 (wrong path) = 300 cycles
200% extra instructions fetched; IPC = 500/300

o 85% accuracy
100 (correct path) + 20 * 15 (wrong path) = 400 cycles
300% extra instructions fetched; IPC = 500/400

o 80% accuracy

100 (correct path) + 20 * 20 (wrong path) = 500 cycles
400% extra instructions fetched; IPC = 500/500



Can We Do Better: Two-Level Prediction

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 16



Global Branch Correlation (I)

Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

1f (condl)
iéo(condl AND cond?2)
If first branch not taken, second also not taken
branch Y: if (condl)a = 2;

branch X: if (a == 0)

If first branch taken, second definitely not taken

17



Global Branch Correlation (1)

branch Y: if (cond]l)
branch Z: if (cond?2)

branch X: if (condl AND cond2)

If Y and Z both taken, then X also taken
If Y or Z not taken, then X also not taken

18



Global Branch Correlation (111)

= Eqgntott, SPEC92: Generates truth table from Boolean expr.

if (aa==2) Bl
aa=0;
if (bb==2) B2
bb=0;
if (aa!'=bb) { * B3
)

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

19



Capturing Global Branch Correlation

Idea: Associate branch outcomes with “global T/NT history”
of all branches

Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

Implementation:

o Keep track of the “global T/NT history” of all branches in a
register > Global History Register (GHR)

o Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past - Pattern
History Table (table of 2-bit counters)

Global history/branch predictor
Uses two levels of history (GHR + history at that GHR)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 20



Two Level Global Branch Prediction

= First level: Global branch history register (N bits)
o The direction of last N branches
= Second level: Table of saturating counters for each history entry

o The direction the branch took the last time the same history was
seen

Pattern History Table (PHT)

00 ....00
11 ... 00....01 ) 3
GHR previous 00....10
(global ,
: branch’s
history : :
register) direction
index
0 1
11 .... 11

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 21



How Does the Global Predictor Work?

for (1=0; 1<100; 1++)
for (j=0; j<3; j+=+)

After the initial startup time, the conditonal branches have the following behavior,

assuming GR is shifted to the left
tect value (=E asnlt
j<3 j=1 | 1101 taken
j<3 }=2 | 1011 taken
1<3 I=. 0111 not taken
1<100 1110 | usually taken

This branch tests i

Last 4 branches test |

History: TTTN

Predict taken for |

Next history: TTNT
(shift in last outcome)

= McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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Intel Pentium Pro Branch Predictor

Two level global branch predictor
4-bit global history register
Multiple pattern history tables (of 2 bit counters)

o Which pattern history table to use is determined by lower
order bits of the branch address

First widely commercially successful out-of-order execution
machine

23



Improving Global Predictor Accuracy

Idea: Add more context information to the global predictor to take into
account which branch is being predicted

o Gshare predictor: GHR hashed with the Branch PC
+ More context information used for prediction

+ Better utilization of the two-bit counter array

-- Increases access latency Pattern History Table

— /

Branch Address

vy

Branch History Register

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

taken?
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Two-Level Global History Branch Predictor

Which direction earlier

branches went

taken?

Direction predictor (2-bit counters)

Global branch
history

[N
L

hit?
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Cache of Target Addresses (BTB: Branch Target Buffer)
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Two-Level Gshare Branch Predictor

Which direction earlier

branches went

Global branch
history

Direction predictor (2-bit counters)

y

" Program [
“ Counter [S¢

Address of the
current instruction

taken?

i,

\ 4

R
(Y

hit?

PC + inst size ———

\
\

target address

N

1%

Next Fetch

Address

Cache of Target Addresses (BTB: Branch Target Buffer)

27



Can We Do Better: Two-Level Prediction

Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

o Local branch correlation

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 28



LLocal Branch Correlation

for (i=1; i<=4; 1++) | |

: wisdone at the end of the body, the corresponding branch will execute
the pd where 1 and O represent taken and not taken respectively, and . is the
number v&ames the-Toop is executed. Clearly, if we knew the direction this branch had
gone on the previous three execudons, then we could alwavs be able to predict the next
branch directon.

= McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

29



More Motivation tor Local History

Loop closing branch’s history

To predict a loop 1110 11101110111 01110

branch “perfectly”, we
want to identify the
last iteration of the
loop

0000
0001
0010
0011
0100
0101
0110

By having a separate
PHT entry for each
local history, we can
distinguish different

> 0111
1000
1001
1010

iterations of a loop

> 1011
1100

> 1101

Works for “short”
loops

> 1110
1111

11

11

11

PHT

30



Capturing L.ocal Branch Correlation

Idea: Have a per-branch history register

o Associate the predicted outcome of a branch with “T/NT history”
of the same branch

Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

Called the local history/branch predictor

Uses two levels of history (Per-branch history register +
history at that history register value)

31



Two Level L.ocal Branch Prediction

= First level: A set of local history registers (N bits each)
o Select the history register based on the PC of the branch
= Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)
00 ....00
11..... 10
2 3
0 1

Local history
registers

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 32

11 ... 11




Two-Level Local History Branch Predictor

Which directions earlier instances of *this branch* went

/ Direction predictor (2-bit counters)
/
?
// |- taken? —
7 1 \l
\; PC + inst size —— Next Fetch
e Address
=R
_ Counter [ : > /

Address of the
current instruction

\
\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)
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Can We Do Even Better?

Predictability of branches varies

Some branches are more predictable using local history
Some branches are more predictable using global

For others, a simple two-bit counter is enough

Yet for others, a single bit is enough

Observation: There is heterogeneity in predictability
behavior of branches

o No one-size fits all branch prediction algorithm for all branches

Idea: Exploit that heterogeneity by designing

heterogeneous (hybrid) branch predictors
34



Hybrid Branch Predictors

Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

o E.qg., hybrid of 2-bit counters and global predictor

Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

Disadvantages:

-- Need “meta-predictor” or “selector” to decide which predictor to use
-- Longer access latency

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
35



Alpha 21264 Tournament Predictor

Program Clobal History
Counter 1
 Local Globall |,
Predict “
4,096

P
2 bits

Global
Prediction

Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.
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Are We Done w/ Branch Prediction?

Hybrid branch predictors work well
o E.g., 90-97% prediction accuracy on average

Some “difficult” workloads still suffer, though!
o E.g., gcc

o Max IPC with tournament prediction: 9

o Max IPC with perfect prediction: 35

37



Some Other Branch Predictor Types

Loop branch detector and predictor
o Loop iteration count detector/predictor

o Works well for loops with small number of iterations, where
iteration count is predictable

o Used in Intel Pentium M

Perceptron branch predictor
o Learns the direction correlations between individual branches
o Assigns weights to correlations

o Jimenez and Lin, "Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

Hybrid history length based predictor
o Uses different tables with different history lengths

o Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.
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Intel Penttum M Predictors: LLoop and Jump

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that. two additional
predictors to capture special program flows. were added:

a Loop Detector and an Indirect Branch Predictor. Instruction Global
Pointer History
T L L
Count | Limit | Prediction
"'j 1 1 Target : type : hit target : hit
Vv =
0
N
< N N \ ,\/
tj hit target
Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.
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Perceptrons for Learning Iinear Functions

A perceptron is a simplified model of a biological neuron
It is also a simple binary classifier

A perceptron maps an input vector Xtoa O or 1
o Input = Vector X

a Perceptron learns the linear function (if one exists) of how
each element of the vector affects the output (stored in an
internal Weight vector)

o Output = Weight.X + Bias > 0

In the branch prediction context
o Vector X: Branch history register bits

o Output: Prediction for the current branch

Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962 40



Perceptron Branch Predictor (I)

Idea: Use a perceptron to learn the correlations between branch history

register bits and branch outcome

A perceptron learns a target Boolean function of N inputs

Wq Wi \ /

n
Yy = wo + E LiWi.
i=1

Each branch associated with a perceptron

A perceptron contains a set of weights wi

—> Each weight corresponds to a bit in
the GHR

—->How much the bit is correlated with the
direction of the branch

—> Positive correlation: large + weight

- Negative correlation: large - weight

Prediction:

- Express GHR bits as 1 (T) and -1 (NT)
- Take dot product of GHR and weights
- If output > 0, predict taken

Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

41



Perceptron Branch Predictor (11)

Branch Address

History Register Branch Outcome

Prediction

» Training

é

| Selected Pe1cept1on <

Y

Table

of

Sel&
Entry /=" | Perceptrons

Prediction function:

Dot product of GHR
and perceptron weights

Output _ _
compared Blgs weight |
to 0 (bias of branch, independent of

the history)

Training function:

if sign(yout) # tor yout < € then
fori:=0ton do
w; = w; + tx;
end for
end if
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Perceptron Branch Predictor (I11)

Advantages
+ More sophisticated learning mechanism - better accuracy

Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

A successful example of use of machine learning in processor design

43



Prediction Using Multiple History Lengths

= QObservation: Different
branches require
different history lengths
for better prediction
accuracy

Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

pc  BOL]  pe hOLQ]  pe hOLB)]  pc  hOL@)]
(hash) ;;asﬁj (hash) ;gasﬁ) (hash) ggashj (hash) (has
TO T1 T2 T3 T4
g : : | | : : : |
—g; pred, tag |u pred, tag |u pred, tag |u pred, tag |u
g : : : : : : : :
_8: : : ' ' : : ' '
ED— ED— ED— ED—

e

prediction | —

Figure 1: A 5-component TAGE predictor synopsis: a base predictor is backed with several
tagged predictor components indexed with increasing history lengths

Seznec and Michaud, “A case for (partially) tagged Geometric History Length
Branch Prediction,” JILP 2006.
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State of the Art in Branch Prediction

= See the Branch Prediction Championship
o https://www.jilp.org/cbp2016/program.html

Global, local,
skeleton histories

Prediction +
Confidence

Andre Seznec,
“TAGE-SC-L branch predictors,”
CBP 2014.

> Andre Seznec,
“TAGE-SC-L branch predictors

again,” CBP 2016.

Figure 1. The TAGE-SC-L predictor: a TAGE
predictor backed with a Statistical Corrector
predictor and a loop predictor 45



https://www.jilp.org/cbp2016/program.html

Branch Confidence Estimation

Idea: Estimate if the prediction is likely to be correct
o i.e., estimate how “confident” you are in the prediction

Why?

o Could be very useful in deciding how to speculate:
What predictor/PHT to choose/use
Whether to keep fetching on this path

Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

Jacobsen et al., “"Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.
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Other Ways of Handling

Branches




How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot) ‘

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

48



Delayed Branching (I)

Change the semantics of a branch instruction
o Branch after N instructions
o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

a Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on

instructions in delay slots - difficult to fill the delay slot
49



Delayed Branching (II)

Normal code: Timeline: Delayed branch code: Timeline:
A if |ex A% if |ex
B C
C A BC X A
BC X B A B C A
D C B D BC C
E BC C E B BC
F - BC F G B
X:| G G - X: |G

6 cycles 5 cycles

50



Fancy Delayed Branching (I11)

Delayed branch with squashing
o In SPARC

o Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:

XA X A A
B B X |B
C C C

BC X BC X BC X
D NOP A
E D D
E E

51



Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
52
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We did not cover the following slides.
They are for your benefit.




An Aside: Filling the Delay Slot

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change

program semantics i

a. From before

add $s1, $s2, $s3

if $s2 = 0 then ——

Delay slot

Becomes

if $s2 = 0 then —

add $s1, $s2, $s3

within same
basic block

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

b. From target

c. From fall through

sub $t4, $t5, $t6 <«

add $s1, $s2, $s3

if $s1 = 0 then ——
add $s1, $s2, $s3
| Delayslot |
if $s1 = 0 then —
Delay slot sub $t4, $t5, $t6
Becomes Becomes

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then ——

sub $t4, $t5, $t6

For correctness:
add a new instruction
to the not-taken path?

correctness:

Safe?

add a new instrytction

to the take

55



How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

56



Predicate Combining (no# Predicated Execution)

Complex predicates are converted into multiple branches
o if((@a==b)&& (c <d)&& (a > 5000)) {..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

57



Predication (Predicated Execution)
Idea: Convert control dependence to data dependence

Simple example: Suppose we had a Conditional Move
instruction...

a CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMQOVs
if (@ ==5){b=4;}else {b=23;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOV Icondition, b € 3;

58



Predication (Predicated Execution)

Idea: Compiler converts control dependence into data

dependence = branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation
o Only instructions with TRUE predicates are committed (others turned into NOPs)

if (cond) {

b=0;

h

else {

h

(normal branch code)

¥

pl = (cond)
branch pl, TARGET

mov b, 1
mp JOIN

TARGET:
mov b, 0

add x, b, 1

(predicated code)

A

B
C
D

pl = (cond)

(!pl) mov b, 1

(p1) mov b, 0

add x, b, 1

59



Predicated Execution References

Allen et al., "Conversion of control dependence to data
dependence,” POPL 1983.

Kim et al., "Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.
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Conditional Move Operations

Very limited form of predicated execution

CMOV R1 €« R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

61



Predicated Execution (1)

= Predicated execution can be high performance and energy-
efficient

Predicated Execution

A Fetch Decode Rename Schedule RegisterRead Execute
C B ,70’0
Branch Prediction
D Fetch Decode Rename Schedule RegisterRead Execute
E L LT T[] [elefo]e]a]
v Pipeline flush!!
F




Predicated Execution

Eliminates branches - enables straight line code (i.e.,
larger basic blocks in code)

Advantages
o Eliminates hard-to-predict branches
o Always-not-taken prediction works better (no branches)

o Compiler has more freedom to optimize code (no branches)
control flow does not hinder inst. reordering optimizations
code optimizations hindered only by data dependencies

Disadvantages

a Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

o Requires additional ISA (and hardware) support

o Can we eliminate all branches this way?
63



Predicated Execution vs. Branch Prediction

+ Eliminates mispredictions for hard-to-predict branches
+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

64



Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp | p1p2 <—cmp

br _m-

| elsel ol thenl

Lioinl

else2 =

— ) Jrum

thenl — pd else2

then?2 Lioin2
—»L]Qinl
[ ioin2




Conditional Execution in the ARM ISA

Almost all ARM instructions could include an optional
condition code.

o Prior to ARM v8

An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

66



Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 Q I Opcode | S Rn Rd Operand2 Data processing / PSR Transfer
Cond 000O0OORAlSs Rd Rn Rs 1001 Rm Multiply
Cond 0000 1ulals| Rd4Hi RdLo Rs 100 1| Rm Long Multiply  (v3M / v4 only)
Cond 00010 BO0DO Rn Rd 000O0100 1| Rm Swap
Cond 0 ]“ 1 p UI BI WL Rn Rd offset Load/Store Byte/Word
Cond 1 00 PF U s|W L Rn Register List Load/Store Multiple
Cond 00dHu 1wL Rn Rd offsetl| 1| s| H| 1| offset2 | Halfword transfer : Immediate offset (v4 only)
Cond [0 0 0P UIO w"L Rn Rd 0 00oO|1s|lHl1] Rm Halfword transfer: Register offset (v4 only)
Cond 101 offset Branch
Cond [00O01l00101111f1111f111130001 Rn Branch Exchange (v4T only)
Cond 110dH 14| NI Wl L Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 opl CRn CRd CPNum | op2 | 0| CRm Coprocessor data operation
cond 1110 opl|L|l CRn Rd CPNum | Op2 |1| CRm Coprocessor register transfer
cCond |1111 SWI Number Software 1nterrupt

L

67



Conditional Execution in ARM ISA

31 28 24 20 16 12 3 4 0
[T 1 rrrrr+t1rr+r>1° >t 1Tttt T 1 T T T T 1T 171/
Cond I
| | |
0000 = EQ - Z set (equal) 1001 =LS - Cclear or Z (set unsigned

lower or same)

1010 = GE - N set and V set. or N clear
and V clear (>or =)

1011 =LT - N setand V clear. or N clear
and V set (>)

1100 = GT - Z clear. and either N set and
V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0001 = NE - Z clear (not equal)
0010 =HS /CS - C set (unsigned

higher or same)

0011 =LO /CC - C clear (unsigned
lower)

0100 = MI -N set (negative)

0101 =PL - N clear (positive or
ZEero)

0110 =VS -V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear
%

The ARM Instruction Set - ARM University Program - V1.0




Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:
— ADD r0,rl,xr2 ; rO = rl + r2 (ADDAL)
* To execute this only if the zero flag 1s set:

— ADDEQ r0O,rl,xr2 If zero flag set then...

ee. YO = rl + r2

e W

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

* For example to add two numbers and set the condition flags:

— ADDS r0O,rl,xr2 r0O = rl + r2
... and set flags

- W

The ARM Instruction Set - ARM University Program - V1.0
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Conditional Execution in ARM ISA

A
No
Yes @\ No
ro=r0-ri
<

rMM=r1-r0

The ARM Instruction Set - ARM University Program - V1.0

* Convert the GCD

algorithm given in this
flowchart into

1) “Normal™ assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

“ The only instructions you
need are CMP, B and SUB.

ﬁ
D 24

™
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Conditional Execution in ARM ISA

“Normal’ Assembler

r0,
stop

gecd cmp rl
beq
blt
sub
bal
sub

bal

less
r0,
gecd

rO, rl

less rl, rl, rO

ged
stop

;reached the end?

;if rO0 > ri

;subtract rl from rO

;subtract rO0 from rl

ARM Conditional Assembler

ro0,
subgt r0, r0, ri
sublt ril1,

bne

gecd cmp rl
rl,

gecd

The ARM Instruction Set - ARM University Program - V1.0

r0

;if rO0 > ri
;subtract rl from rO
;else subtract r0 from rl

;reached the end?

25
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How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)
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Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication

Dual-path Predicated Execution
A | Hard to predict palth 1 palth 2 palth 1 palth 2
C B C B C B

D D D CFMerge CFMerge

. D
E E E

. E
F F F

F

74



Handling Other Types of

Branches




Remember: Branch Types

Direction at
fetch time

Type

Number of
possible next

fetch addresses?
Conditional Unknown 2
Unconditional Always taken 1
Call Always taken 1
Return Always taken Many
Indirect Always taken Many

When is next
fetch address
resolved?

Execution (register
dependent)

Decode (PC +
offset)

Decode (PC +
offset)

Execution (register
dependent)

Execution (register
dependent)

How can we predict an indirect branch with many target addresses?
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Call and Return Prediction

Direct calls are easy to predict .
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
iR;éturn
Returns are indirect branches Return
Return

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack > > 95% accuracy
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Indirect Branch Prediction (I)

Register-indirect branches have multiple targets

A br.cond TARGET A R1 = MEM[R2]
‘y \N‘ ? branch R1
7 1 \ N
(// 'I \‘ \\4
TARG A+1
allBIllol]l p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements
Virtual function calls

a
o Jump tables (of function pointers)
o Interface calls
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Indirect Branch Prediction (II)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses
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Intel Pentium M Indirect Branch Predictor

The advanced branch prediction in the Pentium M

processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that. two additional
predictors to capture special program flows. were added:

a Loop Detector and an Indirect Branch Predictor. Instruction Global
Pointer History
T L L
Count | Limit | Prediction
"'j 1 1 Target : type : hit target : hit
Vv =
0
N
< N N \ ,\/
tj hit target
Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.
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Issues in Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

o Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

What if no BTB?
o Bubble in the pipeline until target address is computed

o E.g., IBM POWER4
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Latency of Branch Prediction

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size :\

BTB target — Next Fetch
Return Address Stack target — —  Address

Indirect Branch Predictor target ——
Resolved target from Backend —

2?77
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