
Digital Design & Computer Arch.
Lecture 18a: VLIW

Prof. Onur Mutlu

ETH Zürich
Spring 2020
30 April 2020

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Systolic Arrays
n Decoupled Access Execute
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)

2

VLIW

VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle

concurrently

n No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

4

VLIW Concept

n Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.
q ELI: Enormously longword instructions (512 bits)

5

VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n Traditional Characteristics
q Multiple functional units
q All instructions in a bundle are executed in lock step
q Instructions in a bundle statically aligned to be directly fed

into the functional units
6

Carnegie Mellon

7

VLIW Performance Example (2-wide bundles)
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution
n Lock-step (all or none) execution: If any operation in a

VLIW instruction stalls, all instructions stall

n In a truly VLIW machine, the compiler handles all
dependency-related stalls, hardware does not perform
dependency checking
q What about variable latency operations?

8

VLIW Philosophy
n Philosophy similar to RISC (simple instructions and hardware)

q Except multiple instructions in parallel

n RISC (John Cocke, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism
q Hardware stays as simple and streamlined as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design

9

Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones

10

VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes

11

VLIW Summary
n VLIW simplifies hardware, but requires complex compiler

techniques
n Solely-compiler approach of VLIW has several downsides

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW successful when parallelism is easier to find by the
compiler (traditionally embedded markets, DSPs)

12

An Example Work: Superblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

13

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.

https://www.youtube.com/watch%3Fv=isBEVkIjgGA

Another Example Work: IMPACT

14Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Digital Design & Computer Arch.
Lecture 18a: VLIW

Prof. Onur Mutlu

ETH Zürich
Spring 2020
30 April 2020

