
Digital Design & Computer Arch.
Lecture 18c: Fine-Grained

Multithreading

Prof. Onur Mutlu

ETH Zürich
Spring 2020
30 April 2020

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Systolic Arrays
n Decoupled Access Execute
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)

2

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
3

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-
flow instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
4

Fine-Grained Multithreading

5

Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers).

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough

threads to cover the whole pipeline
6

Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

7

Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor
q available queue vs. unavailable (waiting) queue for threads
q each thread can have only 1 instruction in the processor pipeline; each thread

independent
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff

8

Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependency checking

9

Burton Smith
(1941-2018)

Multithreaded Pipeline Example

10Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

11
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N

cycles from the same thread)
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)

12

Modern GPUs are
FGMT Machines

13

NVIDIA GeForce GTX 285 “core”

14

…

= instruction stream decode= data-parallel (SIMD) func. unit,
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

15

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

16

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian

End of
Fine-Grained Multithreading

17

In Memory of Burton Smith

18

Burton Smith
(1941-2018)

In Memory of Burton Smith (II)

19

Digital Design & Computer Arch.
Lecture 18c: Fine-Grained

Multithreading

Prof. Onur Mutlu

ETH Zürich
Spring 2020
30 April 2020

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Burton Smith
• Technical Fellow at Microsoft
• Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor,

Professor at Colorado
• Eckert-Mauchly Award in 1991, Seymour Cray Award, US National

Academy of Engineering, AAAS/ACM/IEEE Fellow and many other
honors

• Many wide-range contributions spanning architecture, system
software, compilers, …, including:
– Denelcor HEP, Tera MTA
– fine-grained synchronization, communication, multithreading
– parallel architectures, resource management, interconnection networks
– …

• One I would like to share:
– Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.

