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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Systolic Arrays
n Decoupled Access Execute
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
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Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-
flow instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Fine-Grained Multithreading
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Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained 

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor 
q available queue vs. unavailable (waiting) queue for threads 
q each thread can have only 1 instruction in the processor pipeline; each thread 

independent 
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data 
dependency checking
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Burton Smith
(1941-2018)



Multithreaded Pipeline Example
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Sun Niagara Multithreaded Pipeline

11
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from 

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register 

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N 

cycles from the same thread) 
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)
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Modern GPUs are 
FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian



End of
Fine-Grained Multithreading
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In Memory of Burton Smith
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Burton Smith
(1941-2018)



In Memory of Burton Smith (II)
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Burton Smith
• Technical Fellow at Microsoft
• Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor, 

Professor at Colorado
• Eckert-Mauchly Award in 1991, Seymour Cray Award, US National 

Academy of Engineering, AAAS/ACM/IEEE Fellow and many other 
honors

• Many wide-range contributions spanning architecture, system 
software, compilers, …, including: 
– Denelcor HEP, Tera MTA
– fine-grained synchronization, communication, multithreading
– parallel architectures, resource management, interconnection networks 
– …

• One I would like to share:
– Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.


