Digital Desigh & Computer Arch.

Lecture 18c: Fine-Grained
Multithreading

Prof. Onur Mutlu

ETH Zurich
Spring 2020
30 April 2020

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Systolic Arrays

= Decoupled Access Execute

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)

Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-
flow instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Fine-Grained Multithreading

Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | nstruction Fetch

Stream 2 Instruction

data dependences within a thread swgggﬁigi?;;m
-- Single thread performance suffers e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough —
Stream 4 Instruction
threads to cover the whole pipeline Result Store

Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

Fine-Grained Multithreading: History

CDC 6600’ s peripheral processing unit is fine-grained
multithreaded

a Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/O thread every cycle

o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can have only 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

o O O O

U

Fine-Grained Multithreading in HEP

FROM DATA MEMORY TO DATA MEMORY

= Cycle time: 100ns VIA SWITCH VIA SWITCH

QUEUE

= 8 stages - 800 ns to

PERFORM
complete an FUNCTION
Instruction

. PERFORM
o assuming no memory FUNCTION
access

REGISTER
MEMORY

STORE
RESULT

FETCH
OPERANDS

= No control and data
dependency checking

C FETCH > e
, INSTRUCTION '
Burton Smith

(1941-2018) I

PROGRAM
MEMORY

Multithreaded Pipeline Example

_ — : > X >
N — 1$ —(IR—I gpR1 =
1 A g Y g
n N |
+1}
A

_‘u II :I_l ,’ :l_l
2 Thread N 2 W

select

Slide credit: Joel Emer 10

Sun Niagara Muly

ded Pipeline

e CcOde

<— Instruction type
<+—— Misses
<——— Traps and interrupty

Crossbar
Interface

Resource conflicts

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

11

Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
12

Modern GPUs are
FGM'T Machines

NVIDIA GeForce GTX 285 “core’”

[] [] []
B u u n 64 KB of storage

l l l l l l for thread contexts
[] [] | | <i .
(registers)

[= data-parallel (SIMD) func. unit, - = instruction stream decode
control shared across 8 units

= multiply-add = execution context storage
B = multiply

Slide credit: Kayvon Fatahalian 14

NVIDIA GeForce GTX 285 “core’”

64 KB of storage

for thread contexts
(registers)

-

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

15

NVIDIA GeForce GTX 285

[=]=] | [=]=]{[=]=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

 [=[=]{[=]=]| [=[=]| [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

| [T=] [T [wT=] | [<T]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

CLiitr---T111]

L1100

CLiit--T111]

 [=[=]{[=I=]{ [=I=]| [=]=]|

[T | [T | [T=] | [wT]|

[=[=] | (I=] | [S[=] | =[=],

[=[=]| (=[5} [[=]| =[=],

[m]=] | [=[=] | [=[=] | [=]=]|

[=]=]|[=]=]|[=]=]{[=]=]|

INNEEnEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=1=] | [T=] | [ST=]} ES[=],

| [=T=]) [ST] [wT=] | [ST]]

CLiit--T111]

L1100

CLirt---T111]

[=[=]| [STE]| [ST=] | ST=])

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

[=1=]] [ST=]) ST=]) [S[=])

[=[=]| (STE] | ST=]| [ST=]]

INNEEnEEER

CLEff---TT11]

L ---T11T]

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

CLifr---T111]

INNEEnEEER

 [=]=]{[=]=]{[=[=]| [=]=]|

[T [T [T=] | [wT]|

[=[=] | (I=] | [S[=] | (<[=])

 [=[=]{[=I=]{ [=I=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

INREEnEEER

L1111

INNEEnEEER

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]| [=I=]| [=]=]|

[==]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

CLiitr---T111]

L1100

CLiit--T111]

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEnEEER

CLift---T1111

INNNEn R

| [T=] [T [wT=] | [<T]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNEEN R

CLift---T1111

INNNEn R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

16

End of
Fine-Grained Multithreading

In Memory of Burton Smith

A PIPELINED, SHARED RESOUCE MIMD COMPUTEK

Burton J. Smith

Denelcor, Inc.
Denver, Colorado 80205

Burton Smith
(1941-2018)

Architecture and applications of the HEP multiprocessor computer system

Burton J. Smith
Denelcor, Inc., 14221 E. 4th Avenue, Aurora, Colorado 80011

In Memory of Burton Smith (II)

Robert Alverson

David Callahan
Allan Porterfield

The Tera Computer System”

Tera Computer Company

Seattle, Washington USA

4 Processors

Each processor in a Tera computer can execute multiple
instruction streams simultaneously. In the current im-
plementation, as few as one or as many as 128 program
counters may be active at once. On every tick of the
clock, the processor logic selects a stream that is ready
to execute and allows it to issue its next instruction.
Since instruction interpretation is completely pipelined
by the processor and by the network and memories as
well, a new instruction from a different stream may be
1ssued in each tick without interfering with its predeces-
sors. When an instruction finishes, the stream to which
it belongs thereby becomes ready to execute the next
instruction. As long as there are enough instruction
streams in the processor so that the average instruction
latency is filled with instructions from other streams,
the processor is being fully utilized. Thus, it is only
necessary to have enough streams to hide the expected
latency (perhaps 70 ticks on average); once latency is
hidden the processor is running at peak performance
and additional streams do not speed the result.

Daniel Cummings
Burton Smith

Brian Koblenz

19

Digital Desigh & Computer Arch.

Lecture 18c: Fine-Grained
Multithreading

Prof. Onur Mutlu

ETH Zurich
Spring 2020
30 April 2020

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Burton Smith

Technical Fellow at Microsoft

Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor,
Professor at Colorado

Eckert-Mauchly Award in 1991, Seymour Cray Award, US National
Academy of Engineering, AAAS/ACM/IEEE Fellow and many other

honors

Many wide-range contributions spanning architecture, system
software, compilers, ..., including:

— Denelcor HEP, Tera MTA

— fine-grained synchronization, communication, multithreading

— parallel architectures, resource management, interconnection networks

One | would like to share:
— Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.

