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We Are Almost Done With This…

◼ Single-cycle Microarchitectures

◼ Multi-cycle Microarchitectures

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

◼ Out-of-Order Execution

◼ Other Execution Paradigms
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Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Out-of-order execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ Fine-Grained Multithreading

◼ SIMD Processing (Vector and array processors, GPUs)
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Readings for this Week

◼ Required

◼ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel 
Architecture,” IEEE Micro 1996.
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Announcement

◼ Late submission of lab reports in Moodle

❑ Open until June 20, 2020, 11:59pm (cutoff date -- hard 
deadline)

❑ You can submit any past lab report, which you have not 
submitted before its deadline

❑ It is NOT allowed to re-submit anything (lab reports, extra 
assignments, etc.) that you had already submitted via other 
Moodle assignments

❑ We will grade your reports, but late submission has a 
penalization of 1 point, that is, the highest possible score per 
lab report will be 2 points
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Exploiting Data Parallelism:

SIMD Processors and GPUs



SIMD Processing:

Exploiting Regular (Data) Parallelism



Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor
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Data Parallelism

◼ Concurrency arises from performing the same operation on 
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in 
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in 
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
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SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements 

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data 
elements at the same time using different spaces

❑ Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together by the compiler
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SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements
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Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length 

register (VLEN)

❑ Elements of a vector might be stored apart from each other in 
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector
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Vector Processors (II)

◼ A vector instruction performs an operation on each element 
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking 

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector 
elements

◼ Enables prefetching of vectors into registers/cache/memory
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Vector Processor Advantages

+ No dependencies within a vector 

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines, no dependencies! 

+ Each instruction generates a lot of work 

❑ Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern 

+ No need to explicitly code loops 

❑ Fewer branches in the instruction sequence
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Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

17Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck, 
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks
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Vector Processing in More Depth



Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (V
k
[i] == 0)
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Functional Units

◼ Use a deep pipeline to execute 
element operations

→ fast clock cycle

◼ Control of deep pipeline is 
simple because elements in 
vector are independent  

21

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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CRAY X-MP-28 @ ETH (CAB, E Floor)
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CRAY X-MP System Organization
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP Design Detail
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP CPU Functional Units
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP System Configuration
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



Seymour Cray, the Father of Supercomputers
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"If you were plowing a field, which would you 
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance 
(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that 
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across 
banks
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Memory Banking
◼ Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N parallel accesses if all N go to different banks
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Bank

0

Bank
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Bank

2

Bank
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MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou



Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved 
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput
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0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

Picture credit: Krste Asanovic



Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2   ;decrement and branch if NZ

33

304 dynamic instructions



Scalar Code Execution Time (In Order)
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◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16 
banks (word-interleaved: consecutive words are stored in 
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency



Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any 
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

35

7 dynamic instructions



Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the 
direct input of another 

❑ The entire vector register needs to be ready before any 
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another
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Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another

◼ 182 cycles
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 

pipelined. WHY?

VLD and VST cannot be 

pipelined. WHY?

Strict assumption:

Each memory bank 

has a single port 

(memory bandwidth

bottleneck)



Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on # 
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining
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(Vector) Stripmining

41Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining


Questions (II)

◼ What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector 
registers

❑ Called scatter/gather operations
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Gather/Scatter Operations

43

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD       # Load indices in D vector

LVI vC, rC, vD  # Load indirect from rC base

LV vB, rB       # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA       # Store result



Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware 
to handle sparse vectors (matrices)

◼ Vector loads and stores use an index vector which is added 
to the base register to generate the addresses

◼ Scatter example

44

Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14

2 6.5 Base+1      X

6 71.2 Base+2      6.5

7 2.71 Base+3      X

Base+4      X

Base+5      X

Base+6    71.2

Base+7      2.71 



Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations 

❑ VMASK register is a bit mask determining which data element 
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
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Another Example with Masking
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for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) 

c[i] = a[i]

else 

c[i] = b[i]

A B VMASK    

1 2 0                 

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get 

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C



Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute 
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off 
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?



Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

◼ Storage of a matrix

❑ Row major: Consecutive elements in a row are laid out 
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out 
consecutively in memory

❑ You need to change the stride when accessing a row versus 
column
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◼ A and B, both in row-major order

◼ A: Load A0 into vector register V1

❑ Each time, increment address by one to access the next column

❑ Accesses have a stride of 1

◼ B: Load B0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Matrix Multiplication
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A4x6 B6x10 → C4x10

Dot products of rows and columns 

of A and B

Different strides can lead 

to bank conflicts

How do we minimize them?



Minimizing Bank Conflicts

◼ More banks

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s” 
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail
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Recall: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution
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VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle
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load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



We did not cover the following slides. 

They are for your preparation for the 

next lecture.
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Automatic Code Vectorization
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector 
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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SIMD Operations in Modern ISAs



SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension 
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed 
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+
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Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements 
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

61

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image 1 on top of the background in image 2

62Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.



MMX Example: Image Overlaying (II)

63Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image
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