Digital Design & Computer Arch.
Lecture 19: SIMD Processors

Prof. Onur Mutlu

ETH Zlrich
Spring 2020
/ May 2020

We Are Almost Done With This...

= Single-cycle Microarchitectures
= Multi-cycle Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

s VLIW

= Systolic Arrays

= Decoupled Access Execute

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)

Readings for this Week

Required

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

Recommended

o Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

Announcement

Late submission of lab reports in Moodle

o Open until June 20, 2020, 11:59pm (cutoff date -- hard
deadline)

o You can submit any past lab report, which you have not
submitted before its deadline

a It is NOT allowed to re-submit anything (lab reports, extra
assignments, etc.) that you had already submitted via other
Moodle assignments

a We will grade your reports, but late submission has a
penalization of 1 point, that is, the highest possible score per
lab report will be 2 points

Exploiting Data Para

lelism:

SIMD Processors anc

GPUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data
o A form of ILP where instruction happens to be the same across data

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

10

Array vs. Vector Processors

Instruction Stream

LD VR €< A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
S
ADO| AD1 |AD2 AD3 LD1| ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 [LDS AD2 MUl STO]
—
Different ops @ same space AD3 MU2 ST1
v MU3 ST2
Time Same op @ space ST3

«<——Space——> «<——Space——>

11

SIMD Array Processing vs. VLIW

VLIW: Multiple independent operations packed together by the compiler

Programl

9 addr1.r2r3 | load r4.r5+4 mul r7.r8.r9
ounter

Instruction

Execution

12

SIMD Atrray Processing vs. VLIW

Array processor: Single operation on multiple (different) data elements

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution
PE PE PE PE

13

Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)
CLi] = (Ali] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
o Need to load/store vectors - vector registers (contain vectors)

o Need to operate on vectors of different lengths - vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory - vector stride register (VSTR)

Stride: distance in memory between two elements of a vector

14

Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies - no hardware interlocking
needed within a vector

o No control flow within a vector

o Known stride allows easy address calculation for all vector
elements

Enables prefetching of vectors into registers/cache/memory

15

Vector Processor Advantages

+ No dependencies within a vector
o Pipelining & parallelization work really well
o Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
o Reduces instruction fetch bandwidth requirements

+ Highly reqular memory access pattern

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

16

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built intc the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. U7

Vector Processor L.imitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

18

Vector Processing in More Depth

Vector Registers

Each vector data register holds N M-bit values

Vector control registers: VLEN, VSTR, VMASK
Maximum VLEN can be N

o Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)

o Indicates which elements of vector to operate on

o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)
M-bit wide M-bit wide

V0,0 V1,0
V0,1 V11

VO,N-1 V1,N-1

20

Vector Functional Units

Use a deep pipeline to execute
element operations

- fast clock cycle

Control of deep pipeline is
simple because elements in
vector are independent

Six stage multiply pipeline

Slide credit: Krste Asanovic

V V|V
1 12 3
Ay
G
Ll
.
m \\ /L
e

V1 *V2->V3

21

Vector Machine Organization (CRAY-1)

MEMOR |

VECTOR REGISTERS

1111111

uuuuuu

51| FLOATING

) POINT

s

INSTRUCTION BUFFERS

ADDRESS

FUNCTIONAL UNITS

CRAY-1

Russell, “The CRAY-1
computer system,”
CACM 1978.

Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers
8 24-bit address registers

22

CRAY X-MP-28 @ ETH (CAB, E Floor)

CRAY X-MP System Organization

CRAY X-MP system organization

CPU 1

'CPL!? ' Vregisters Vector functional =
T L1 e 8registers units
I 3 64 64-bit A
' - elements per Shift
register ~ Logical (2)
- Population
. = (B4-bit arithmetic)
= Vector mask Vector
(64-bits) - section
Vector length
(7 bits)
P Scalar
QPQ 3 section
—
= Address
section
CPU4 Instruction
section
S—

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

CRANY 24

CRAY X-MP Design Detail

CRAY X-MP design detail

Mainframe

CRAY X-MP single- and
multiprocessor systems are
designed to offer users outstanding
performance on large-scale,
compute-intensive and I/O-bound
jobs.

CRAY X-MP mainframes consist of
six (X-MP/1), eight (X-MP/2) or
twelve (X-MP/4) vertical columns
arranged in an arc. Power supplies
and cooling are clustered around the
base and extend outward.

Hardware features:

O 9.5 nsec clock

1 One, two or four CPUs, each
with its own computation and
control sections

O Large multiport central memory

0 Memory bank cycle time of 38
nsec on X-MP/4 systems, 76
nsec on X-MP/1 and X-MP/2
models

0O Memory bandwidth of 25-100
gigabits, depending on model

O 1/O section

0 Proven cooling and packaging
technologies

Memory size

(millions of Number
Model Number of CPUs 64-bit words) of banks
CRAY X-MP/416 4 16 64
CRAY X-MP/48 4 8 32
CRAY X-MP/216 2 16 32
CRAY X-MP/28 2 8 32
CRAY X-MP/24 2 4 16
CRAY X-MP/18 1 8 32
CRAY X-MP/14 1 4 16
CRAY X-MP/12 1 2 16
CRAY X-MP/11 1 1 16

A description of the major system
components and their functions
follows.

CPU computation section

Within the computation section of
each CPU are operating registers,
functional units and an instruction
control network — hardware
elements that cooperate in executing
sequences of instructions. The
instruction control network makes all
decisions related to instruction issue
as well as coordinating the three
types of processing within each
CPU: vector, scalar and address.
Each of the processing modes has
its associated registers and
functional units.

The block diagram of a CRAY
X-MP/4 (opposite page) illustrates
the relationship of the registers to the
functional units, instruction buffers,
1/0 channel control registers,
interprocessor communications
section and memory. For
multiple-processor CRAY X-MP
models, the interprocessor

communications section coordinates
processing between CPUs, and
central memory is shared.

Registers
The basic set of programmable
registers is composed of:

Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address
(B) registers
Eight 64-bit scalar (S) registers
Sixty-four 64-bit scalar-save
(T) registers
Eight 64-element (4096-bit) vector (V)
registers with 64 bits per element

The 24-bit A registers are generally
used for addressing and counting
operations. Associated with them are
64 B registers, also 24 bits wide.
Since the transfer between an A and
a B register takes only one clock
period, the B registers assume the
role of data cache, storing
information for fast access without
tying up the A registers for relatively
long periods.

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

25

CRAY X-MP CPU Functional Units

CRAY X-MP CPU functional units

Register Time in
usage clock periods
Address functional units
Addition A 2
Multiplication A 4
Scalar functional units
Addition S 3
Shift-single S 2
Shift-double S 3
Logical) 1
Population, parity and leading zero S 3or4d
Vector functional units
Addition \ 3
Shift Vv 3or4
Full vertor Inaical V 2

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

26

CRAY X-MP System Contiguration

System configuration options

X-MP/1 X-MP/2 X-MP/4

Mainframe

CPUs 1 2 4
Bipolar memory (64-bit words) N/A N/A 8 or 16M
MOS memory (64-bit words) 1,2, 4 or 8M 4,8 or 16M N/A
6-Mbyte channels 20r4 4 4
100-Mbyte channels 10r2 2 4
1000-Mbyte channels 1 1 2
1/0 Subsystem

|/O processors 2,30r4 2,30r4 4
Disk storage units 2-32 2-32 2-32
Magnetic tape channels 1-8 1-8 1-8
Front-end interfaces 1-7 1-7 1-7
Buffer memory (Mbytes) 8,32 or 64 8,320r64 64

Solid-state Storage Device
Memory size (Mbytes)

N/A signifies option is not available on the madel

256, 512 or 1024

256, 5120r 1024

256, 512 0r 1024

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

27

Seymour Cray, the Father of Supercomputers

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

28

Vector Machine Organization (CRAY-1)

VECTOR REGISTERS

= CRAY-1
S = = Russell, “The CRAY-1
= |||llbx | [computer system,”
| — CACM 1978.
MEMORY| Li'm_% 1 : FIF_:;J::'IFH
: 1| = Scalar and vector modes
ol = 8 64-element vector
h registers

= 64 bits per element
N = 8 64-bit scalar registers
= 8 24-bit address registers

FUNCTIONAL UNITS

s

INSTRUCTION BUFFERS 29

Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?
Answer: Bank the memory; interleave the elements across

banks
30

Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

Bank Bank Bank E EEEEEEEEEEEEEEEEEEEEEETSRm Bank

0 1 2 15

MDR|| MAR || MDR|| MAR || MDR|| MAR MDR| | MAR
Data bus

A

Address bus

CPU

31

Picture credit: Derek Chiou

Vector Memory System

Next address = Previous address + Stride

If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

o we can sustain 1 element/cycle throughput

Base Stride

Vector Registers

\ 4

&

<’,

Address

Generator

A 4 4
A

A
L <&

Memory Bank

Picture credit: Krste Asanovic

32

Scalar Code Example: Element-Wise Avg.

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code (instruction and its latency)

MOVI RO = 50
MOVA R1 = A
MOVA R2 = B
MOVA R3 = C

X: LD R4 = MEM[R1++]
LD R5 = MEM[R2++]
ADD R6 = R4 + R5
SHFR R7 = R6 >> 1
ST MEM[R3++] = R7
DECBNZ RO, X

1

1 304 dynamic instructions

1

1

11 ;autoincrement addressing
11

4

1

11

2 :decrement and branch if NZ

33

Scalar Code Execution Time (In Order)

Scalar execution time on an in-order processor with 1 bank

o First two loads in the loop cannot be pipelined: 2*11 cycles
o 4 + 50*%40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

o First two loads in the loop can be pipelined
o 4 + 50*30 = 1504 cycles

Why 16 banks?
o 11-cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency
34

Vectorizable Loops

A loop is vectorizable if each iteration is independent of any
other

For I = 0to 49

o C[i] = (A[i] + B[i]) / 2

Vectorized loop (each instruction and its latency):
MOVI VLEN = 50

7 dynamic instructions

MOVI VSTR =1

VLD VO = A 11 + VLEN -1
VLD V1 =B 11 + VLEN -1
VADD V2 = V0 + V1 4 + VLEN - 1
VSHFR V3 =V2 >> 1 1+ VLEN -1

VST C =V3 11 + VLEN - 1

35

Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

a The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

VO=A0.49] | Vv1=B[0.49] | ADD

1 1 11 49 11 49 4 49 1 49 11 49
|
|
|

285 cycles

36

Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

<

V V ||V V
LV vl\ 1 2 3 4
MULV v3,vl,v2
ADDV v5,\‘v3, v4
Chain Chain
Load y ‘f\\\j ‘

Unit I I

Memory

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector
functional unit to another

1 l 11 49 11 49

Strict assumption:

Each memory bank
has a single port
(memory bandwidth

bottleneck)

These two VLDs cannot be
pipelined. WHY? E

v11 49

VLD and VST cannot be </% ‘

= 182 cycles pipelined. WHY?

38

Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

b1 11 49

79 cycles
19X perf. improvement!] |

39

Questions (1)

What if # data elements > # elements in a vector register?

o Idea: Break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGS
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining

40

(Vector) Stripmining

Surface mining, including strip mining,
open-pit mining and mountaintop removal

-

mining, is a broad category of mining in
which soil and rock overlying the mineral
deposit (the overburden) are removed, in
contrast to underground mining, in which
the overlying rock is left in place, and the
mineral removed through shafts or tunnels.

Surface mining began in the mid-sixteenth
century!'! and is practiced throughout the ‘ g »
world, although the majority of surface coal e e
mining occurs in North America.l?! It gained ~ Coal strip mine in Wyoming =

Source: https://en.wikipedia.org/wiki/Surface mining 41

https://en.wikipedia.org/wiki/Surface_mining

Questions (11)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

42

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[1]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from rC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

43

Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example
Index Vector Data Vector (to Store) Stored Vector (in Memory)
0 3.14 Base+0 3.14
2 6.5 Base+l X
6 71.2 Base+2 6.5
7 2.71 Base+3 X
Base+4 X
Base+5 X
Base+6 71.2

Base+7 2.71
44

Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] !'= 0) then b[i]=a[i]*b][i]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o This is predicated execution. Execution is predicated on mask bit.
45

Another Example with Masking

for (i=0; i < 64; ++i)

if (a[i] >= b[i]) Steps to execute the loop in SIMD code
c[i] = a[i]
1. Compare A, B to get
else i VMASK ’
c[i] = bl[i]
2. Masked store of Ainto C
A B VMASK 3. Complement VMASK
1 2 0
2 2 1 4. Masked store of B into C
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

46

Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off — scan mask vector and only execute
result writeback according to mask elements with non-zero masks
M[7]1=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M[6]=0 T~ A7l BL7]
M[5]=1 A[5] B[5] M[5]=1 ! !
M[4]=1 A[4] B[4] M[4]=1\ | 1
M[3]=0 A[3] B[3] M[3]=0\ Cl5] |
! l/ M[2]=0 C[4] /
o e M[1]=1 | "
M[21=0 | C[2] | M[O]=O\
M[1]=1 C[1]/ C[1]

<]7

] Write data port

M[0]=0 _l C[O]
Write Enable Write data port

Which one is better?

Tradeoffs?

Slide credit: Krste Asanovic 47

Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column

48

Matrix Multiplication

= A and B, both in row-major order

0 0O o o X

>

Bnnonn

6 7 8 9 |10 | 11

A4x6 BBXlO - C4x10

Dot products of rows and columns
of Aand B

: Load A, into vector register V,
Each time, increment address by one to access the next column

Accesses have a stride of 1

: Load B, into vector register V,

Each time, increment address by 10
Accesses have a stride of 10

14

15

16

17

18

19

Different strides can lead
to bank conflicts

~

How do we minimize them?

J
D

J

49

Minimizing Bank Contflicts

s More banks

= Better data layout to match the access pattern
o Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991.

50

Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
o They exploit data parallelism in both time and space
o GPUs are a prime example we will cover in a bit more detail

51

Recall: Array vs. Vector Processors

Instruction Stream

LD VR €< A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
S
ADO| AD1 |AD2 AD3 LD1| ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 [LDS AD2 MUl STO]
—
Different ops @ same space AD3 MU2 ST1
v MU3 ST2
Time Same op @ space ST3

«<——Space——> «<——Space——>

52

Vector Instruction Execution

A[6]
A[5]
A[4]
A[3]

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
\

|
/

e

]

4

e

4

Time

-

C[0]

Slide credit: Krste Asanovic

VADD AB-> C

A[24]
A[20]
A[16]
A[12]

B[24]

B[20]
B[16]
B[12]

|
\

|
/

<

\

C[8] /

2

Execution using
four pipelined
functional units

A[25]
A[21]
A[17]
A[13]

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

|
\

| |
|

B[27]
B[23]
B[19]
B[15]

| |
|

<} \

|
/

<1- \

o]

\C[lO] /

<]7

\C[ll] /

2

ECIN

1

Ti%ef<F T¢ T<F TQ

<€

C[0]

C[1]

C[2]

C[3]

Space

>

Vector Unit Structure

(T

Partitiongd_ |

Vector

Functional Unit
/

T
Y

[

—4

[—

Registers

~

Elements O,
4,8, ..

Lane

Elements 1,
509, ..

Elements 2,
6, 10, ...

Elements 3,
7,11, ..

Memory Subsystem

Slide credit: Krste Asanovic

54

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit

s
> =

=3

Q

Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @

‘_m
@
@
[m
O
O

—
O
O

> >|> > > >
> >
> >
> >
> >
> —p > >
> o bl > |

> |l

a
HEEEEEEN

Instruction
issue

Slide credit: Krste Asanovic 55

We did not cover the following slides.
They are for your preparation for the
next lecture.

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]; .
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 57

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

58

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics

o Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, Ssl

32 24 23 16 15 87 0 Bit position

L a, $s0

b, $s1

a;+b, | a,+b, | a,+b, | a;+b, | $s2

60

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

2 A /aarray processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(@

63 16 15

(b)

63 . -32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

61

MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image 1 on top of the background in image 2

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

MM1

MM3

MM1

de oparation

if (xli] == Blue) new _imageli] =ylil:

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | X0=blue
0x0000 | 0x0000 | OxFFFF | OxFFFF | 0Ox0000 | 0x0000 | OxFFFF OxFFFF

for (i=0; i<image sixe; i+

clse new imageii] = x[1);

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 02

MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman’s image
Mval Y, [Y T Y [e [s [Yo Y, [Y, | Mm1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0x0000]0xFFFF J0xFFFF|

MM1 [0x0000 | 0x0000[0xFFFF [O<FFFF [0x0000]0x0000 [OxFFFFJOXFFFF] MM3] X, | Xo [X5 | Xa [Xs [X5 | X | X, |
| X, T X, Joxoo0o]oxo00q

MM4 [0x0000[0x0000] Y5 [Y. 10x0000[00000[Yy | Yo [MM1[X; | X5 [0x00000x0000

[X] % | V%] N %] %] Vil %]

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg B -mm3, mem1 /" Load .éighl pixels from
. womansimage -
‘Movg mm4, mem2 /*Load eight pixels from the
- S ‘blossom image
~Pompegb mm1, mm3- ' R

Pand mmd, mmi.
Pandn mm1, mm3

Por - mmé4,mmt .

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 03

Digital Design & Computer Arch.
Lecture 19: SIMD Processors

Prof. Onur Mutlu

ETH Zlrich
Spring 2020
/ May 2020

