
Digital Design & Computer Arch.

Lecture 19: SIMD Processors

Prof. Onur Mutlu

ETH Zürich

Spring 2020

7 May 2020

We Are Almost Done With This…

◼ Single-cycle Microarchitectures

◼ Multi-cycle Microarchitectures

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

◼ Out-of-Order Execution

◼ Other Execution Paradigms

2

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Out-of-order execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ Fine-Grained Multithreading

◼ SIMD Processing (Vector and array processors, GPUs)

3

Readings for this Week

◼ Required

◼ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

4

Announcement

◼ Late submission of lab reports in Moodle

❑ Open until June 20, 2020, 11:59pm (cutoff date -- hard
deadline)

❑ You can submit any past lab report, which you have not
submitted before its deadline

❑ It is NOT allowed to re-submit anything (lab reports, extra
assignments, etc.) that you had already submitted via other
Moodle assignments

❑ We will grade your reports, but late submission has a
penalization of 1 point, that is, the highest possible score per
lab report will be 2 points

5

Exploiting Data Parallelism:

SIMD Processors and GPUs

SIMD Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

8

Data Parallelism

◼ Concurrency arises from performing the same operation on
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
9

SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data
elements at the same time using different spaces

❑ Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

10

Array vs. Vector Processors

11

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together by the compiler

12

SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements

13

Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length

register (VLEN)

❑ Elements of a vector might be stored apart from each other in
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector

14

Vector Processors (II)

◼ A vector instruction performs an operation on each element
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector
elements

◼ Enables prefetching of vectors into registers/cache/memory

15

Vector Processor Advantages

+ No dependencies within a vector

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

❑ Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops

❑ Fewer branches in the instruction sequence

16

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

17Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks

18

Vector Processing in More Depth

Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (V
k
[i] == 0)

20

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

◼ Use a deep pipeline to execute
element operations

→ fast clock cycle

◼ Control of deep pipeline is
simple because elements in
vector are independent

21

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

22

CRAY X-MP-28 @ ETH (CAB, E Floor)

23

CRAY X-MP System Organization

24

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP Design Detail

25

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP CPU Functional Units

26

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP System Configuration

27

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

Seymour Cray, the Father of Supercomputers

28

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

29

Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance
(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across
banks

30

Memory Banking
◼ Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N parallel accesses if all N go to different banks

31

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou

Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput

32

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2 ;decrement and branch if NZ

33

304 dynamic instructions

Scalar Code Execution Time (In Order)

34

◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

35

7 dynamic instructions

Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the
direct input of another

❑ The entire vector register needs to be ready before any
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles

36

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

37

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

◼ 182 cycles

38

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!

39

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on #
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

40

(Vector) Stripmining

41Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining

Questions (II)

◼ What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector
registers

❑ Called scatter/gather operations

42

Gather/Scatter Operations

43

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

◼ Vector loads and stores use an index vector which is added
to the base register to generate the addresses

◼ Scatter example

44

Index Vector Data Vector (to Store) Stored Vector (in Memory)

0 3.14 Base+0 3.14

2 6.5 Base+1 X

6 71.2 Base+2 6.5

7 2.71 Base+3 X

Base+4 X

Base+5 X

Base+6 71.2

Base+7 2.71

Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations

❑ VMASK register is a bit mask determining which data element
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
45

Another Example with Masking

46

for (i = 0; i < 64; ++i)

if (a[i] >= b[i])

c[i] = a[i]

else

c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

47

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?

Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

◼ Storage of a matrix

❑ Row major: Consecutive elements in a row are laid out
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out
consecutively in memory

❑ You need to change the stride when accessing a row versus
column

48

◼ A and B, both in row-major order

◼ A: Load A0 into vector register V1

❑ Each time, increment address by one to access the next column

❑ Accesses have a stride of 1

◼ B: Load B0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Matrix Multiplication

49

A4x6 B6x10 → C4x10

Dot products of rows and columns

of A and B

Different strides can lead

to bank conflicts

How do we minimize them?

Minimizing Bank Conflicts

◼ More banks

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

50

Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s”
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail

51

Recall: Array vs. Vector Processors

52

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

53

VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Vector Unit Structure

54

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

55

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

We did not cover the following slides.

They are for your preparation for the

next lecture.

56

Automatic Code Vectorization

57

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

58

SIMD Operations in Modern ISAs

SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

60

Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

61

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image 1 on top of the background in image 2

62Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

MMX Example: Image Overlaying (II)

63Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

Digital Design & Computer Arch.

Lecture 19: SIMD Processors

Prof. Onur Mutlu

ETH Zürich

Spring 2020

7 May 2020

