Digital Design & Computer Arch.

Lecture 20: Graphics Processing Units

Prof. Onur Mutlu

ETH Zürich Spring 2020 8 May 2020

We Are **Almost** Done With This...

- Single-cycle Microarchitectures
- Multi-cycle and Microprogrammed Microarchitectures
- Pipelining
- Issues in Pipelining: Control & Data Dependence Handling,
 State Maintenance and Recovery, ...
- Out-of-Order Execution
- Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

- Pipelining
- Out-of-order execution
- Dataflow (at the ISA level)
- Superscalar Execution
- VLIW
- Systolic Arrays
- Decoupled Access Execute
- Fine-Grained Multithreading
- SIMD Processing (Vector and array processors, GPUs)

Readings for this Week

Required

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Recommended

 Peleg and Weiser, "MMX Technology Extension to the Intel Architecture," IEEE Micro 1996.

SIMD Processing: Exploiting Regular (Data) Parallelism

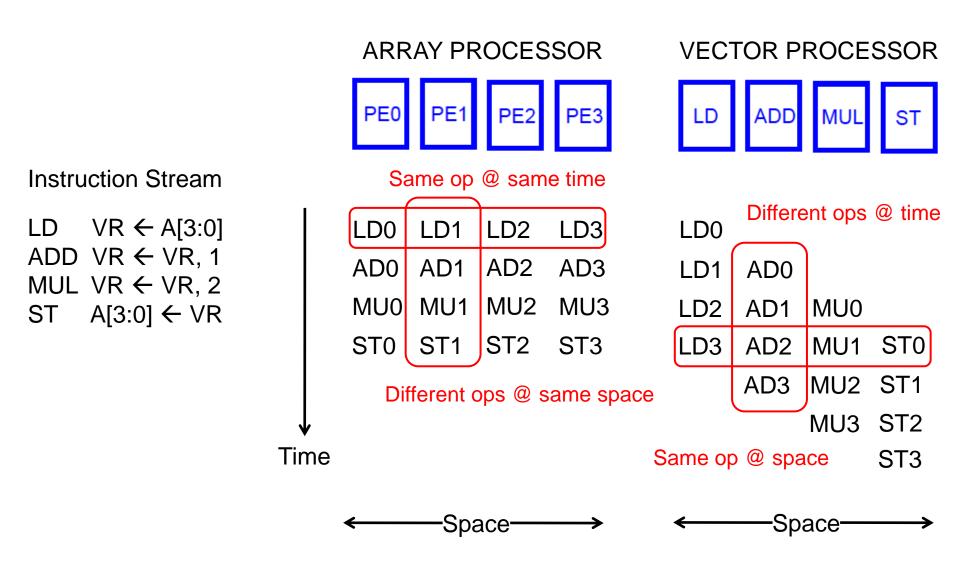
Recall: Flynn's Taxonomy of Computers

- Mike Flynn, "Very High-Speed Computing Systems," Proc. of IEEE, 1966
- SISD: Single instruction operates on single data element
- SIMD: Single instruction operates on multiple data elements
 - Array processor
 - Vector processor
- MISD: Multiple instructions operate on single data element
 - Closest form: systolic array processor, streaming processor
- MIMD: Multiple instructions operate on multiple data elements (multiple instruction streams)
 - Multiprocessor
 - Multithreaded processor

Recall: SIMD Processing

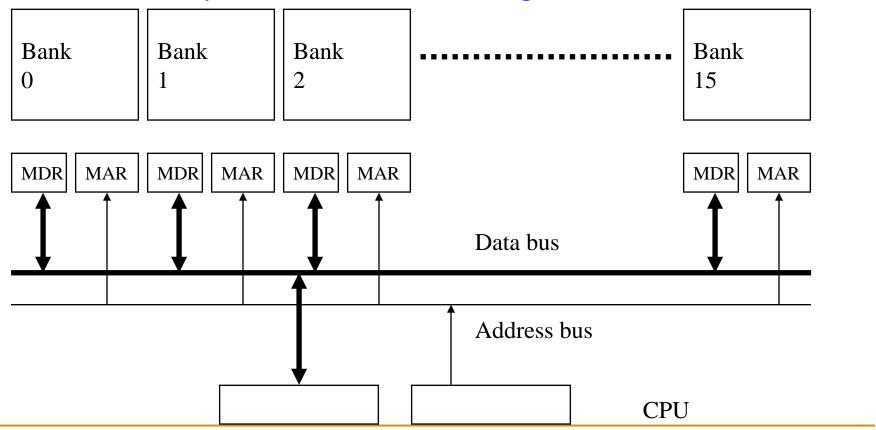
- Single instruction operates on multiple data elements
 - In time or in space
- Multiple processing elements
- Time-space duality
 - Array processor: Instruction operates on multiple data elements at the same time using different spaces
 - Vector processor: Instruction operates on multiple data elements in consecutive time steps using the same space

Recall: Array vs. Vector Processors



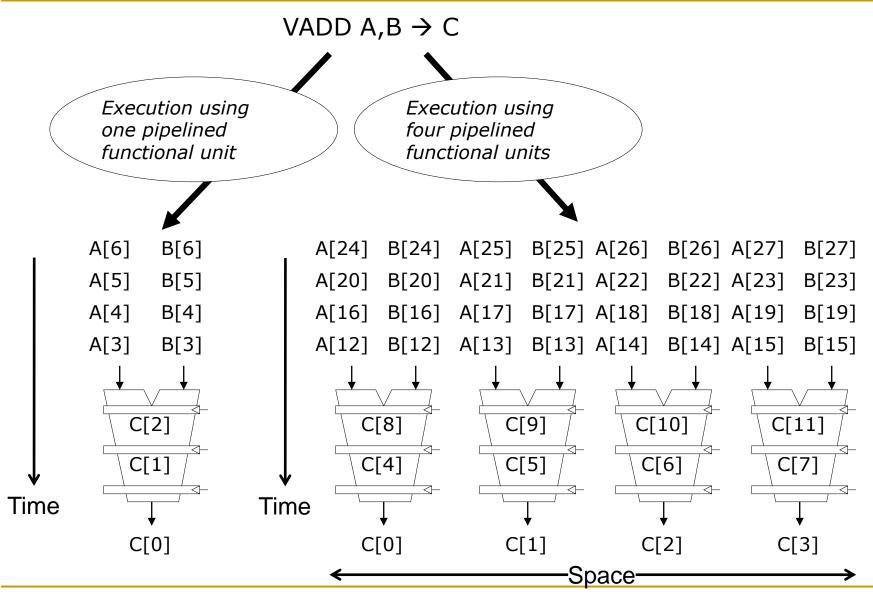
Recall: Memory Banking

- Memory is divided into banks that can be accessed independently;
 banks share address and data buses (to minimize pin cost)
- Can start and complete one bank access per cycle
- Can sustain N parallel accesses if all N go to different banks



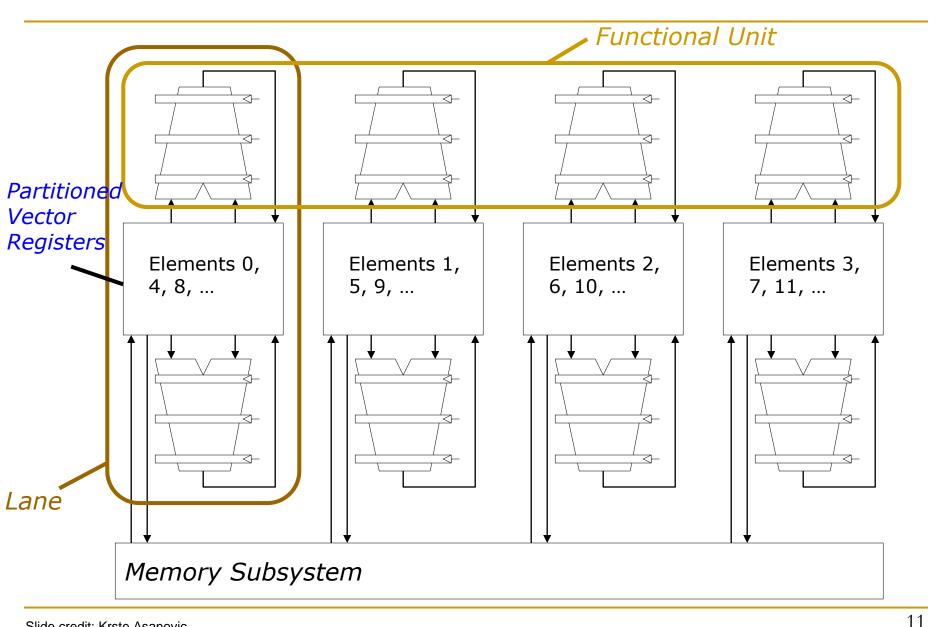
Picture credit: Derek Chiou

Recall: Vector Instruction Execution



Slide credit: Krste Asanovic

Recall: Vector Unit Structure

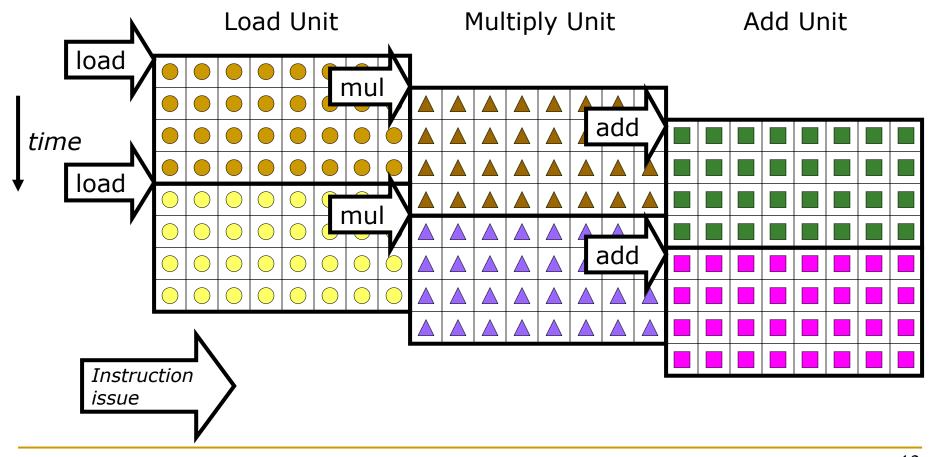


Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions

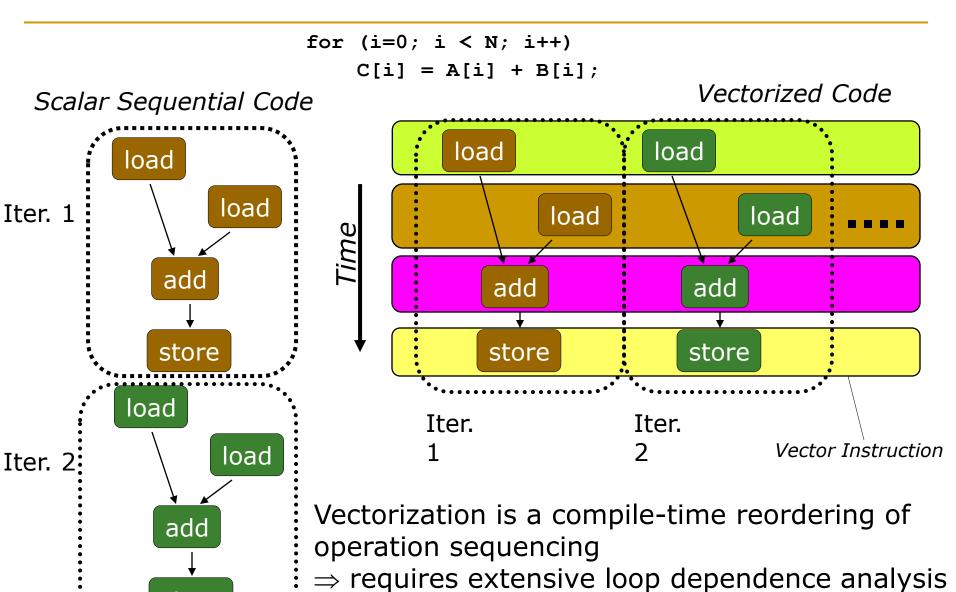
- Example machine has 32 elements per vector register and 8 lanes
- Completes 24 operations/cycle while issuing 1 vector instruction/cycle



Slide credit: Krste Asanovic

Automatic Code Vectorization

store



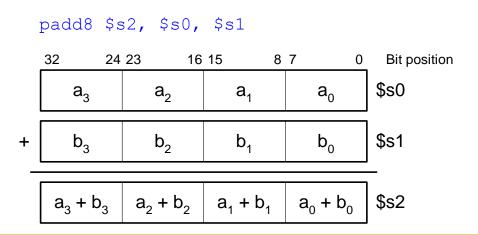
Vector/SIMD Processing Summary

- Vector/SIMD machines are good at exploiting regular datalevel parallelism
 - Same operation performed on many data elements
 - Improve performance, simplify design (no intra-vector dependencies)
- Performance improvement limited by vectorizability of code
 - Scalar operations limit vector machine performance
 - Remember Amdahl's Law
 - CRAY-1 was the fastest SCALAR machine at its time!
- Many existing ISAs include (vector-like) SIMD operations
 - Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

SIMD Operations in Modern ISAs

SIMD ISA Extensions

- Single Instruction Multiple Data (SIMD) extension instructions
 - Single instruction acts on multiple pieces of data at once
 - Common application: graphics
 - Perform short arithmetic operations (also called packed arithmetic)
- For example: add four 8-bit numbers
- Must modify ALU to eliminate carries between 8-bit values



Intel Pentium MMX Operations

- Idea: One instruction operates on multiple data elements simultaneously
 - À la array processing (yet much more limited)
 - Designed with multimedia (graphics) operations in mind

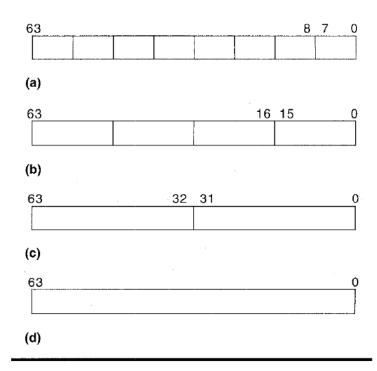


Figure 1. MMX technology data types: packed byte (a), packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, "MMX Technology Extension to the Intel Architecture," IEEE Micro, 1996.

MMX Example: Image Overlaying (I)

Goal: Overlay the human in image 1 on top of the background in image 2

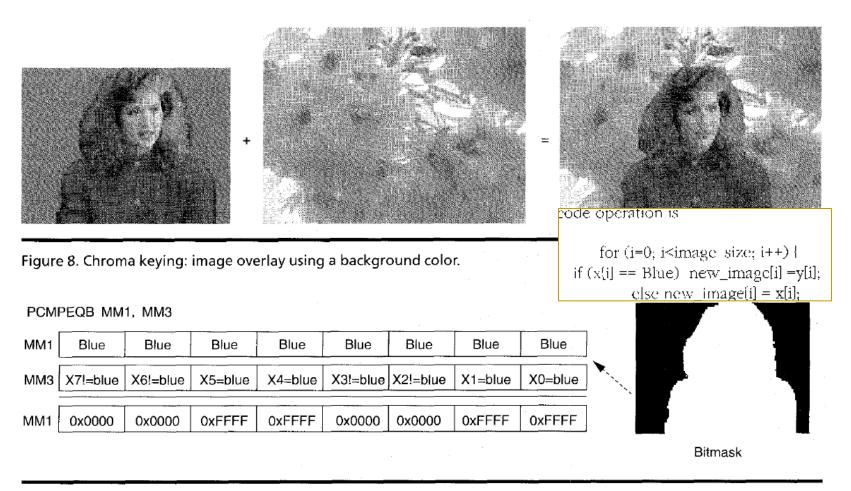


Figure 9. Generating the selection bit mask.

MMX Example: Image Overlaying (II)

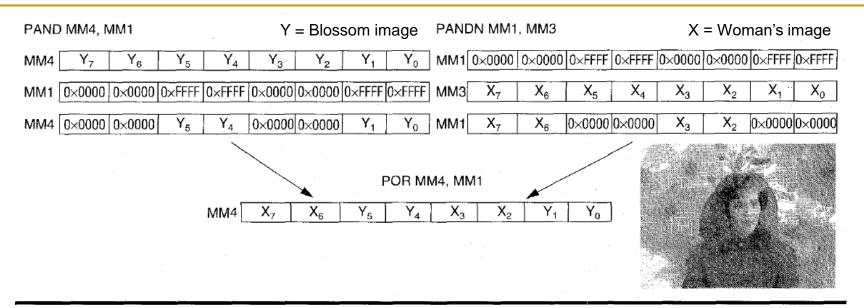


Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

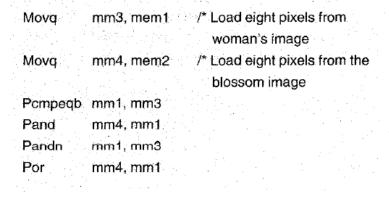


Figure 11. MMX code sequence for performing a conditional select.

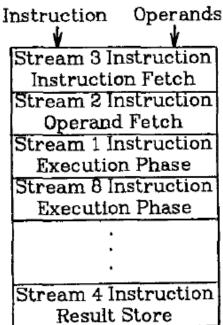
Fine-Grained Multithreading

Recall: Fine-Grained Multithreading

- Idea: Hardware has multiple thread contexts (PC+registers).
 Each cycle, fetch engine fetches from a different thread.
 - By the time the fetched branch/instruction resolves, no instruction is fetched from the same thread

Branch/instruction resolution latency overlapped with execution of other threads' instructions

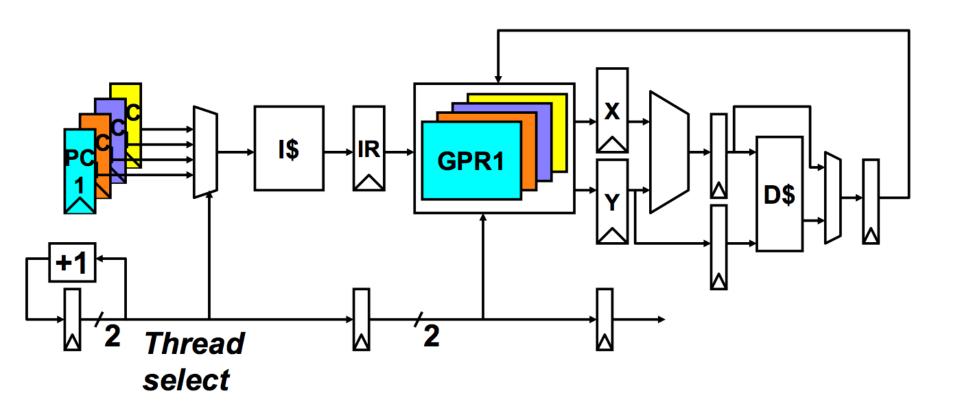
- + No logic needed for handling control and data dependences within a thread
- -- Single thread performance suffers
- -- Extra logic for keeping thread contexts
- Does not overlap latency if not enough threads to cover the whole pipeline



Recall: Fine-Grained Multithreading (II)

- Idea: Switch to another thread every cycle such that no two instructions from a thread are in the pipeline concurrently
- Tolerates the control and data dependency latencies by overlapping the latency with useful work from other threads
- Improves pipeline utilization by taking advantage of multiple threads
- Thornton, "Parallel Operation in the Control Data 6600," AFIPS 1964.
- Smith, "A pipelined, shared resource MIMD computer," ICPP 1978.

Recall: Multithreaded Pipeline Example



Slide credit: Joel Emer

Recall: Fine-grained Multithreading

Advantages

- + No need for dependency checking between instructions (only one instruction in pipeline from a single thread)
- + No need for branch prediction logic
- + Otherwise-bubble cycles used for executing useful instructions from different threads
- + Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register files, ...), thread selection logic
- Reduced single thread performance (one instruction fetched every N cycles from the same thread)
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

- The instruction pipeline operates like a SIMD pipeline (e.g., an array processor)
- However, the programming is done using threads, NOT SIMD instructions
- To understand this, let's go back to our parallelizable code example
- But, before that, let's distinguish between
 - Programming Model (Software)vs.
 - Execution Model (Hardware)

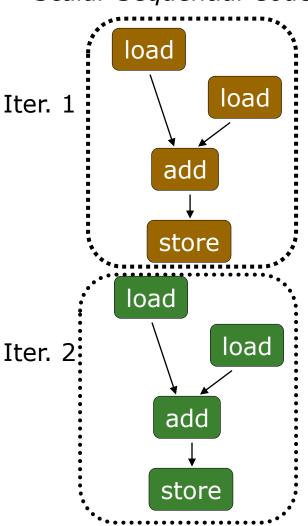
Programming Model vs. Hardware Execution Model

- Programming Model refers to how the programmer expresses the code
 - E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
 Multi-threaded (MIMD, SPMD), ...
- Execution Model refers to how the hardware executes the code underneath
 - E.g., Out-of-order execution, Vector processor, Array processor,
 Dataflow processor, Multiprocessor, Multithreaded processor, ...
- Execution Model can be very different from the Programming Model
 - □ E.g., von Neumann model implemented by an OoO processor
 - E.g., SPMD model implemented by a SIMD processor (a GPU)

How Can You Exploit Parallelism Here?

```
for (i=0; i < N; i++)

Scalar Sequential Code C[i] = A[i] + B[i];
```

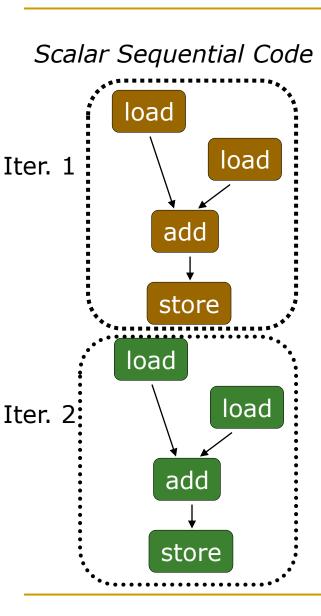


Let's examine three programming options to exploit instruction-level parallelism present in this sequential code:

- 1. Sequential (SISD)
- 2. Data-Parallel (SIMD)
- 3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

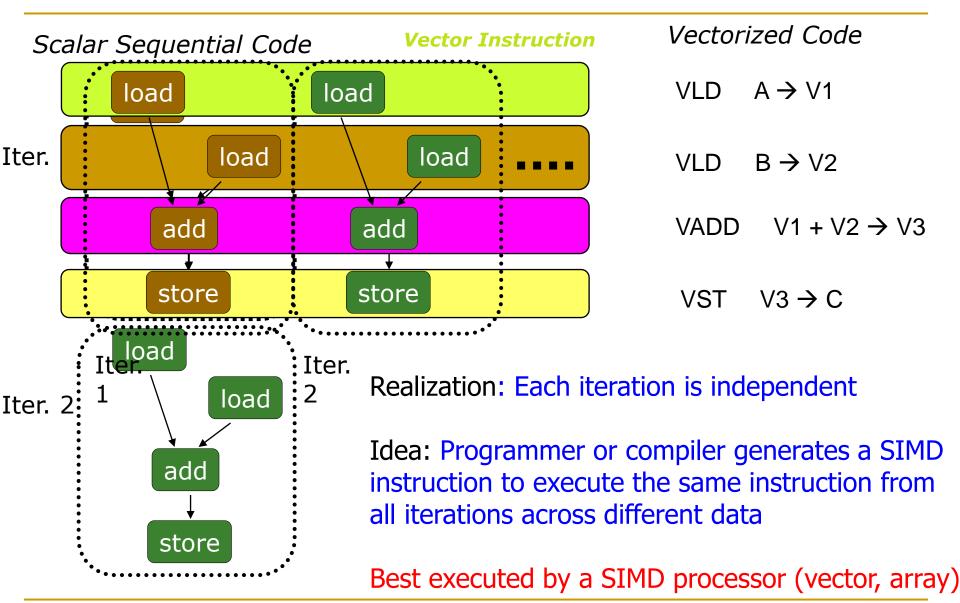
for (i=0; i < N; i++) C[i] = A[i] + B[i];



Can be executed on a:

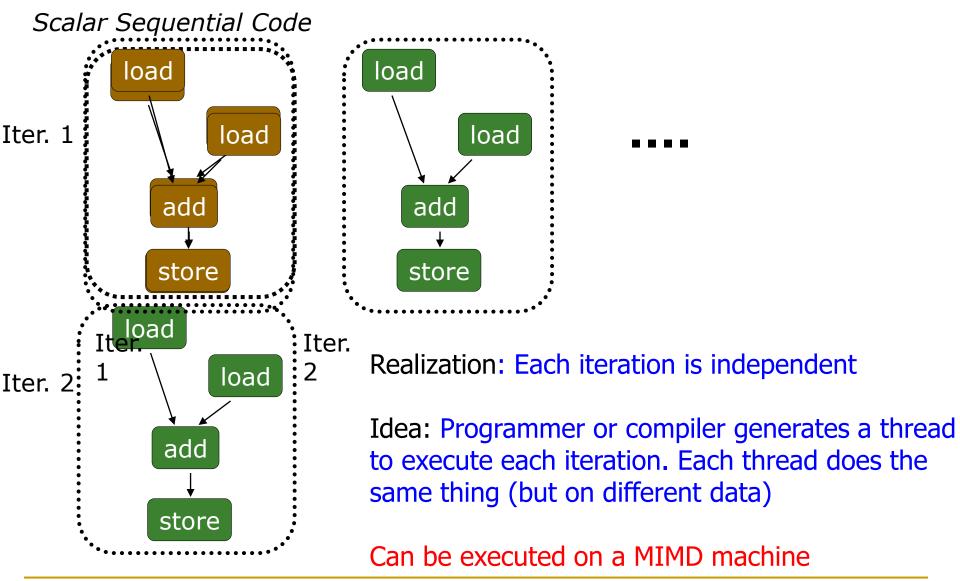
- Pipelined processor
- Out-of-order execution processor
 - Independent instructions executed when ready
 - Different iterations are present in the instruction window and can execute in parallel in multiple functional units
 - In other words, the loop is dynamically unrolled by the hardware
- Superscalar or VLIW processor
 - Can fetch and execute multiple instructions per cycle

Prog. Model 2: Data Parallel (SIMD) for (i=0; i < N; i++) c[i] = A[i] + B[i];



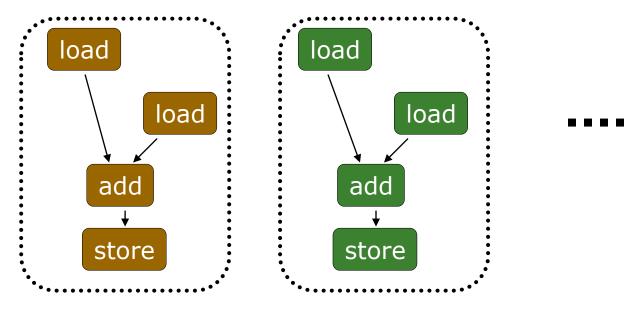
Prog. Model 3: Multithreaded

for (i=0; i < N; i++) C[i] = A[i] + B[i];



Prog. Model 3: Multithreaded

for (i=0; i < N; i++) C[i] = A[i] + B[i];



Iter.

Iter.

Realization: Each iteration is independent

This particular model is also called:

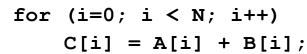
SPMD: Single Program Multiple Data

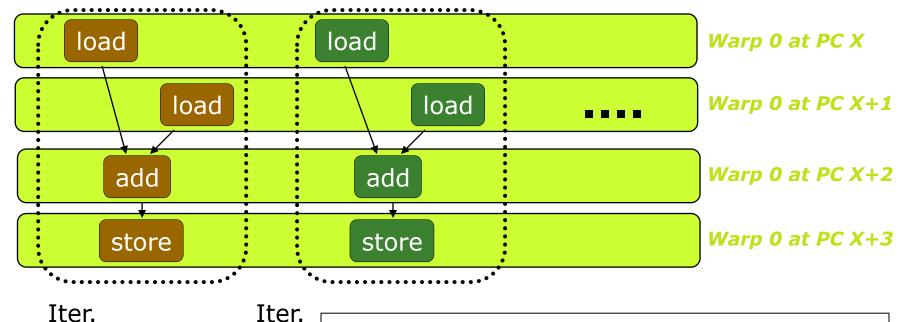
Can be executed on a SIMT machine Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

- Except it is not programmed using SIMD instructions
- It is programmed using threads (SPMD programming model)
 - Each thread executes the same code but operates a different piece of data
 - Each thread has its own context (i.e., can be treated/restarted/executed independently)
- A set of threads executing the same instruction are dynamically grouped into a warp (wavefront) by the hardware
 - A warp is essentially a SIMD operation formed by hardware!

SPMD on SIMT Machine





Warp: A set of threads that execute the same instruction (i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model: Single Instruction Multiple Thread

Graphics Processing Units SIMD not Exposed to Programmer (SIMT)

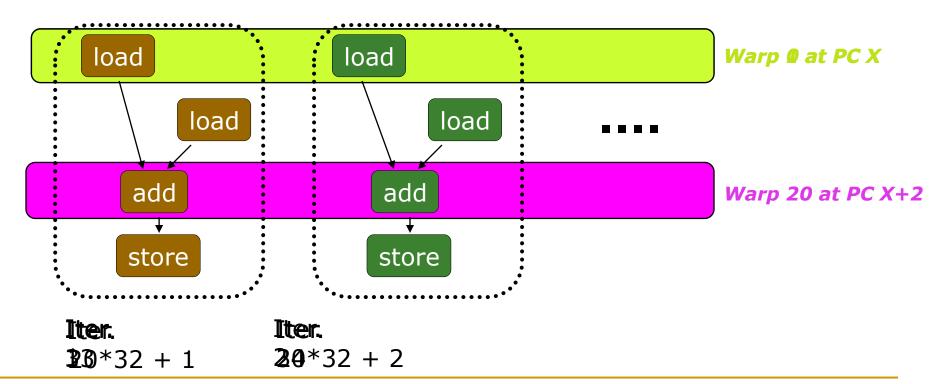
SIMD vs. SIMT Execution Model

- SIMD: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 - [VLD, VLD, VADD, VST], VLEN
- SIMT: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 - [LD, LD, ADD, ST], NumThreads
- Two Major SIMT Advantages:
 - □ Can treat each thread separately → i.e., can execute each thread independently (on any type of scalar pipeline) → MIMD processing
 - □ Can group threads into warps flexibly → i.e., can group threads that are supposed to truly execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

Fine-Grained Multithreading of Warps

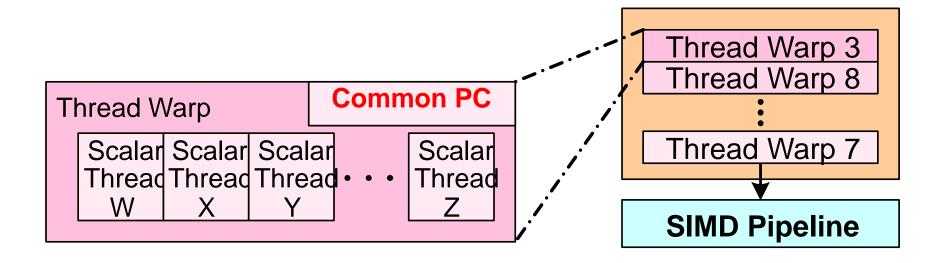
```
for (i=0; i < N; i++)
C[i] = A[i] + B[i];
```

- Assume a warp consists of 32 threads
- If you have 32K iterations, and 1 iteration/thread \rightarrow 1K warps
- Warps can be interleaved on the same pipeline → Fine grained multithreading of warps

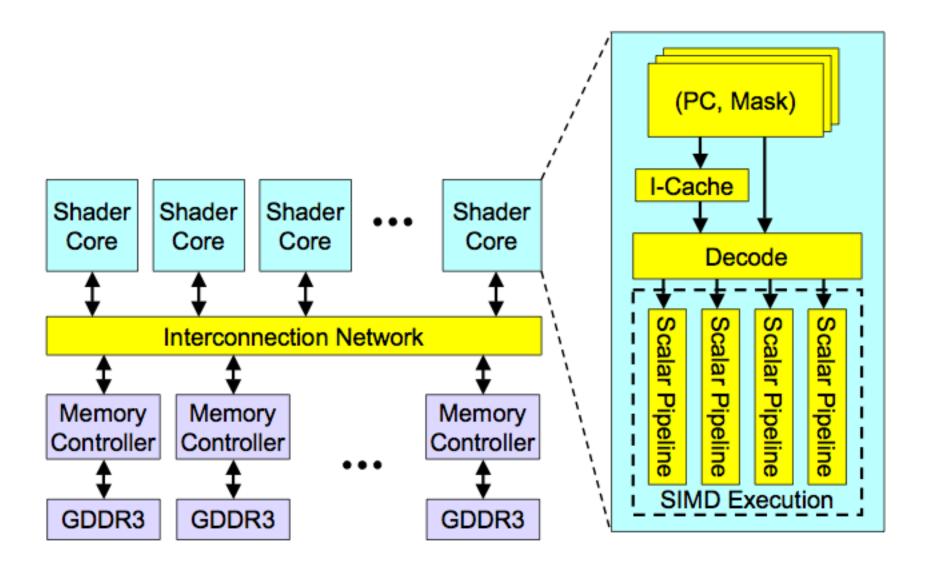


Warps and Warp-Level FGMT

- Warp: A set of threads that execute the same instruction (on different data elements) → SIMT (Nvidia-speak)
- All threads run the same code
- Warp: The threads that run lengthwise in a woven fabric ...

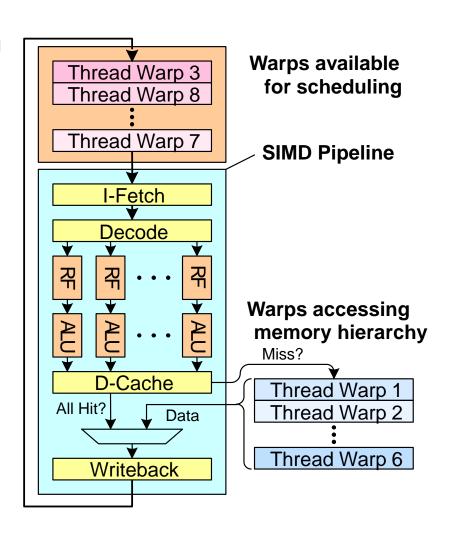


High-Level View of a GPU



Latency Hiding via Warp-Level FGMT

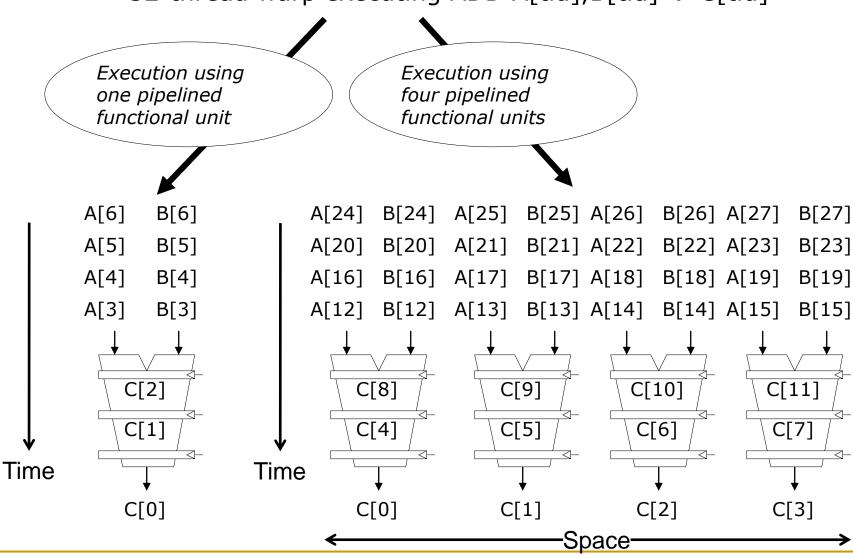
- Warp: A set of threads that execute the same instruction (on different data elements)
- Fine-grained multithreading
 - One instruction per thread in pipeline at a time (No interlocking)
 - Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- FGMT enables long latency tolerance
 - Millions of pixels



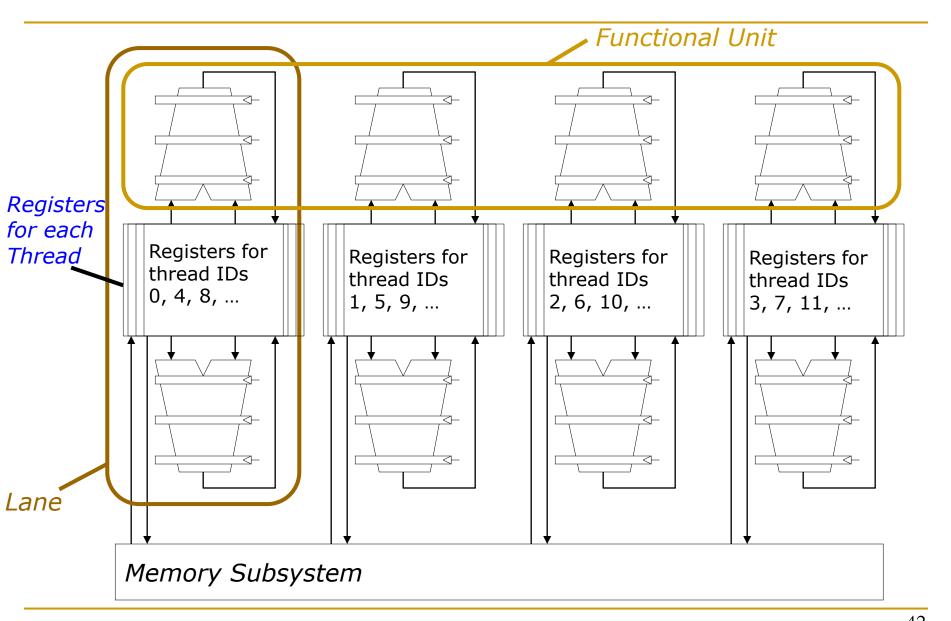
Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

32-thread warp executing ADD A[tid],B[tid] → C[tid]



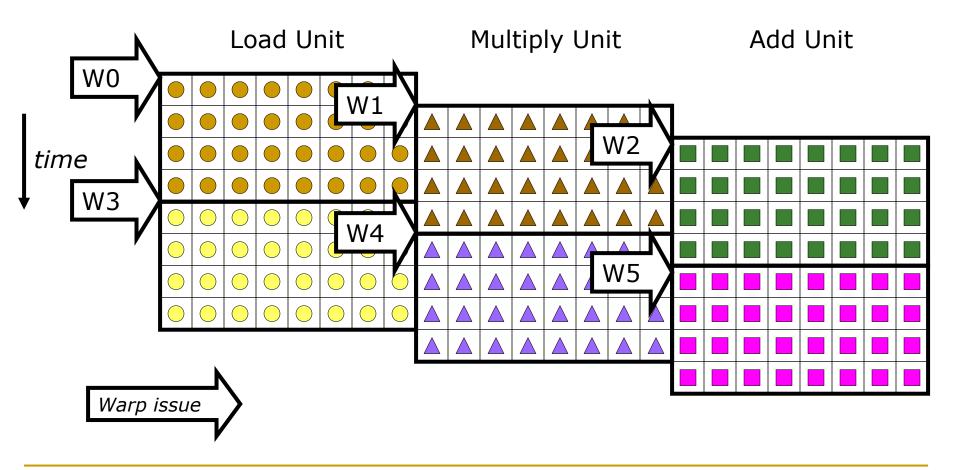
SIMD Execution Unit Structure



Warp Instruction Level Parallelism

Can overlap execution of multiple instructions

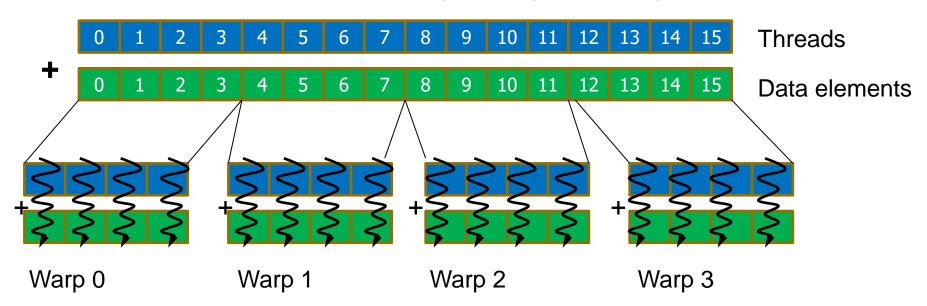
- Example machine has 32 threads per warp and 8 lanes
- Completes 24 operations/cycle while issuing 1 warp/cycle



SIMT Memory Access

 Same instruction in different threads uses thread id to index and access different data elements

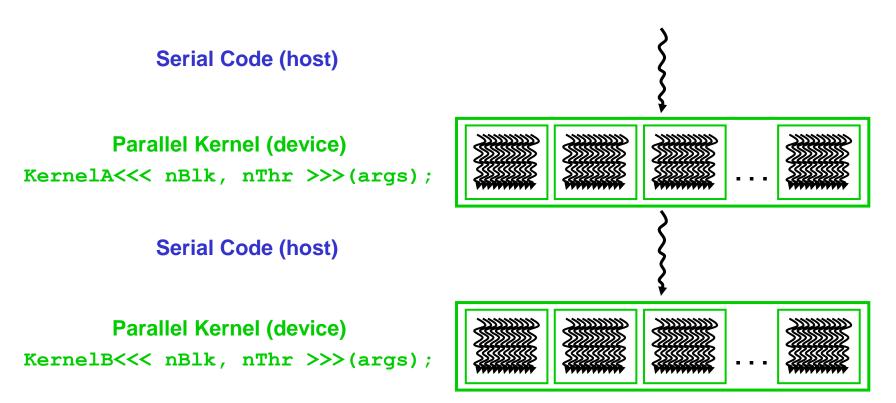
Let's assume N=16, 4 threads per warp \rightarrow 4 warps



Slide credit: Hyesoon Kim

Warps not Exposed to GPU Programmers

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU: Blocks of threads



Slide credit: Hwu & Kirk

Sample GPU SIMT Code (Simplified)

CPU code

```
for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}
```


CUDA code

```
// there are 100000 threads
__global__ void KernelFunction(...) {
  int tid = blockDim.x * blockIdx.x + threadIdx.x;
  int varA = aa[tid];
  int varB = bb[tid];
  C[tid] = varA + varB;
}
```

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

CPU Program

```
void add matrix
( float *a, float* b, float *c, int N) {
  int index;
  for (int i = 0; i < N; ++i)
     for (int j = 0; j < N; ++j) {
       index = i + j*N;
       c[index] = a[index] + b[index];
int main () {
  add matrix (a, b, c, N);
```

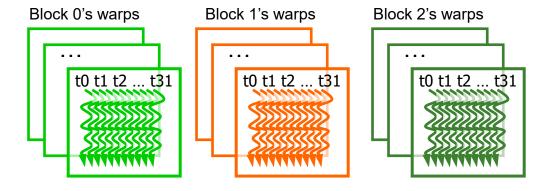
GPU Program

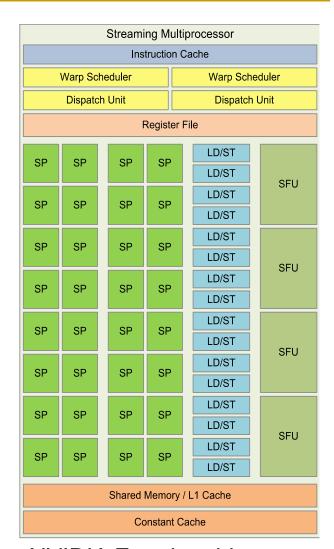
```
global add matrix
(float *a, float *b, float *c, int N) {
int i = blockldx.x * blockDim.x + threadldx.x;
Int j = blockldx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N \&\& j < N)
 c[index] = a[index]+b[index];
Int main() {
 dim3 dimBlock( blocksize, blocksize);
 dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
 add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);
```

Slide credit: Hyesoon Kim

From Blocks to Warps

- GPU cores: SIMD pipelines
 - Streaming Multiprocessors (SM)
 - Streaming Processors (SP)
- Blocks are divided into warps
 - SIMD unit (32 threads)





NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD

- Traditional SIMD contains a single thread
 - Sequential instruction execution; lock-step operations in a SIMD instruction
 - □ Programming model is SIMD (no extra threads) → SW needs to know vector length
 - ISA contains vector/SIMD instructions
- Warp-based SIMD consists of multiple scalar threads executing in a SIMD manner (i.e., same instruction executed by all threads)
 - Does not have to be lock step
 - □ Each thread can be treated individually (i.e., placed in a different warp)
 → programming model not SIMD
 - SW does not need to know vector length
 - Enables multithreading and flexible dynamic grouping of threads
 - □ ISA is scalar → SIMD operations can be formed dynamically
 - Essentially, it is SPMD programming model implemented on SIMD hardware

SPMD

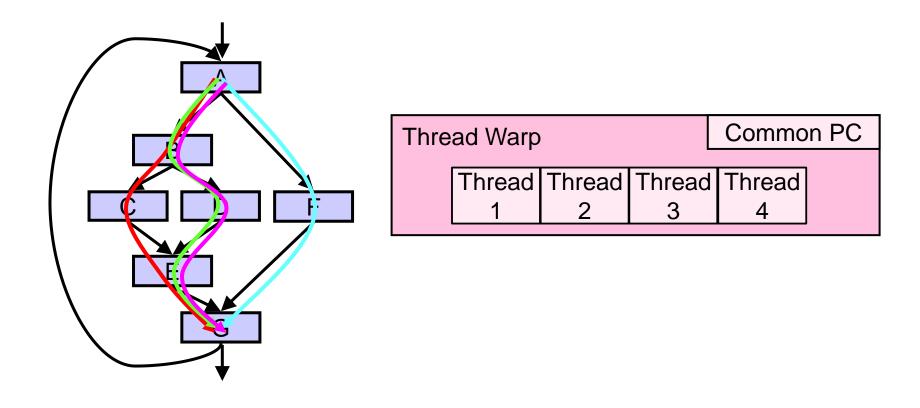
- Single procedure/program, multiple data
 - This is a programming model rather than computer organization
- Each processing element executes the same procedure, except on different data elements
 - Procedures can synchronize at certain points in program, e.g. barriers
- Essentially, multiple instruction streams execute the same program
 - Each program/procedure 1) works on different data, 2) can execute a different control-flow path, at run-time
 - Many scientific applications are programmed this way and run on MIMD hardware (multiprocessors)
 - Modern GPUs programmed in a similar way on a SIMD hardware

SIMD vs. SIMT Execution Model

- SIMD: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 - [VLD, VLD, VADD, VST], VLEN
- SIMT: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 - [LD, LD, ADD, ST], NumThreads
- Two Major SIMT Advantages:
 - □ Can treat each thread separately → i.e., can execute each thread independently on any type of scalar pipeline → MIMD processing
 - □ Can group threads into warps flexibly → i.e., can group threads that are supposed to truly execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SIMD

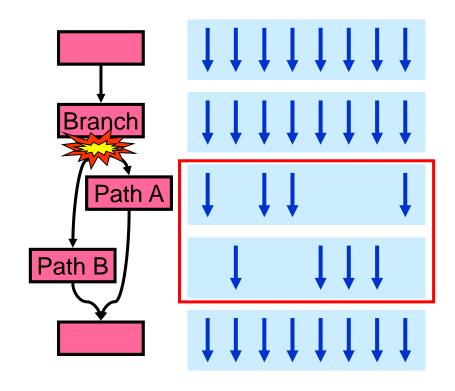
- Each thread can have conditional control flow instructions
- Threads can execute different control flow paths



Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

- A GPU uses a SIMD pipeline to save area on control logic
 - Groups scalar threads into warps
- Branch divergence occurs when threads inside warps branch to different execution paths



This is the same as conditional/predicated/masked execution. Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt

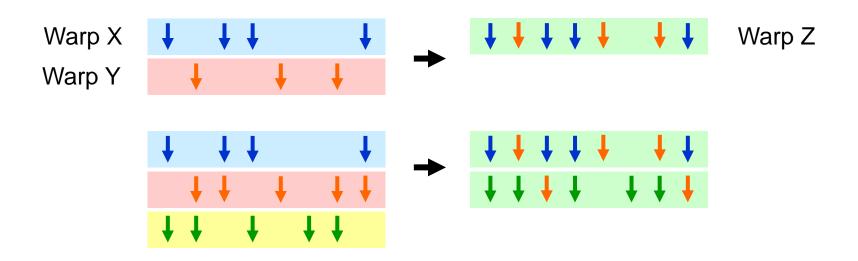
Remember: Each Thread Is Independent

- Two Major SIMT Advantages:
 - □ Can treat each thread separately → i.e., can execute each thread independently on any type of scalar pipeline → MIMD processing
 - □ Can group threads into warps flexibly → i.e., can group threads that are supposed to truly execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

- If we have many threads
- We can find individual threads that are at the same PC
- And, group them together into a single warp dynamically
- This reduces "divergence" → improves SIMD utilization
 - SIMD utilization: fraction of SIMD lanes executing a useful operation (i.e., executing an active thread)

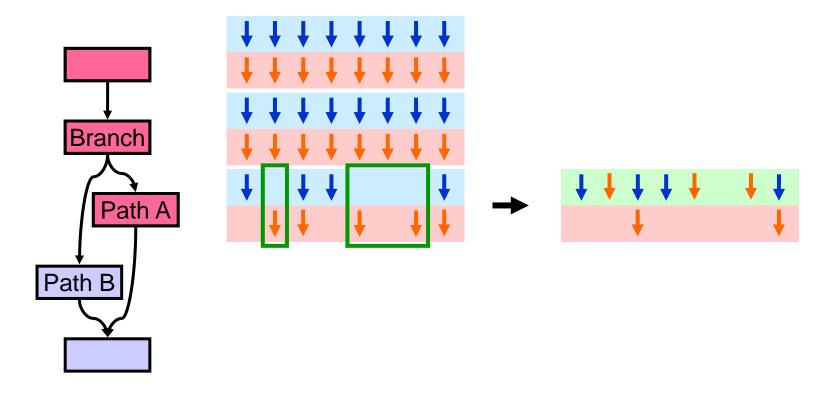
Dynamic Warp Formation/Merging

- Idea: Dynamically merge threads executing the same instruction (after branch divergence)
- Form new warps from warps that are waiting
 - Enough threads branching to each path enables the creation of full new warps



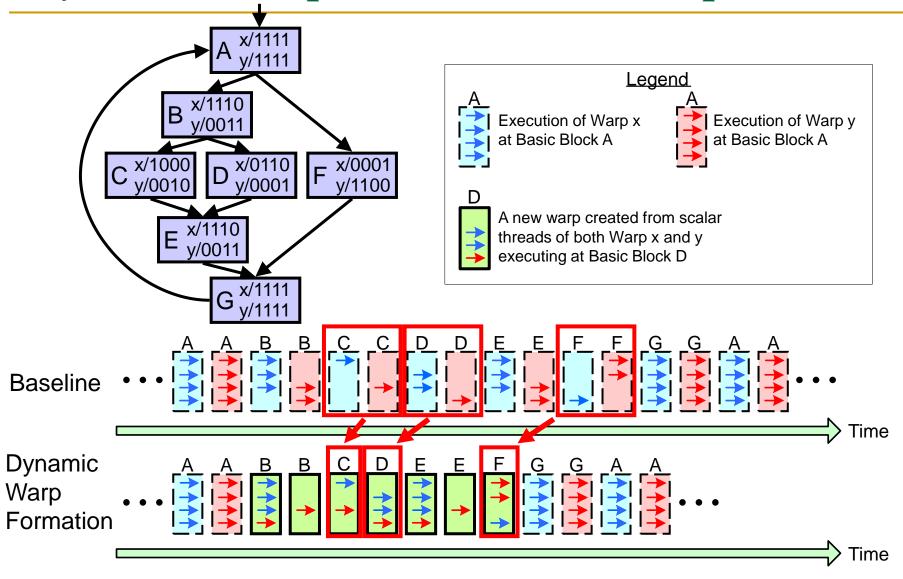
Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same instruction (after branch divergence)



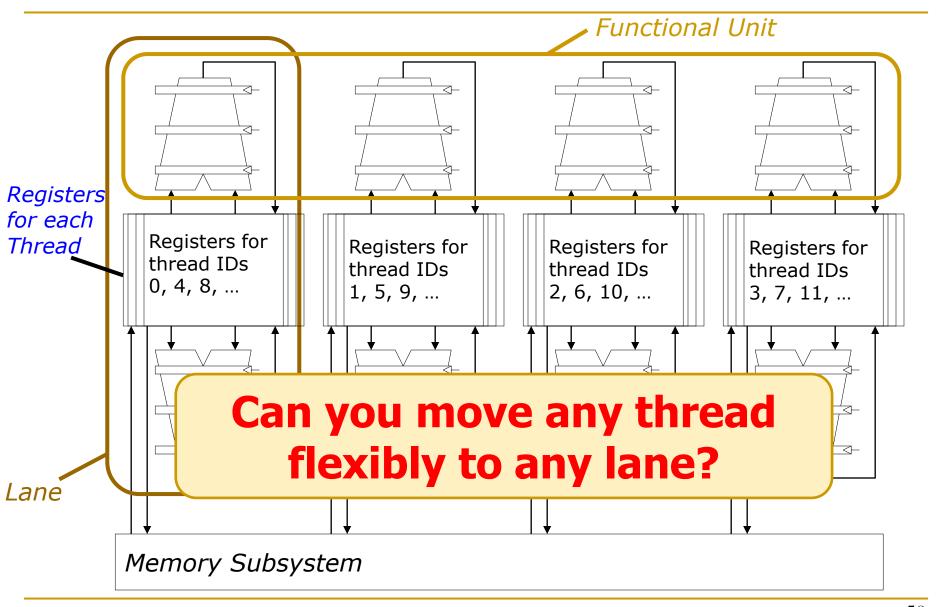
 Fung et al., "Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow," MICRO 2007.

Dynamic Warp Formation Example



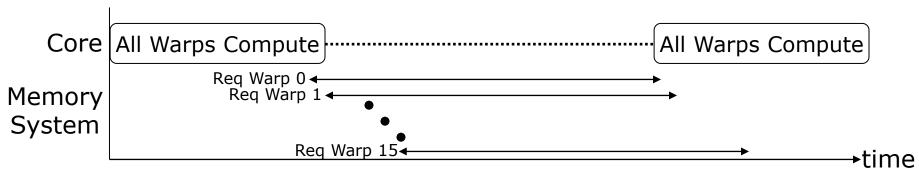
Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping



Large Warps and Two-Level Warp Scheduling

- Two main reasons for GPU resources be underutilized
 - Branch divergence
 - Long latency operations



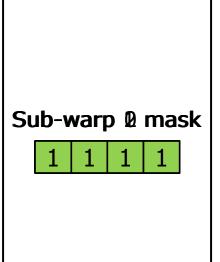
Round Robin Scheduling, 16 total warps

Large Warp Microarchitecture Example

- Reduce branch divergence by having large warps
- Dynamically break down a large warp into sub-warps

Decode Stage

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

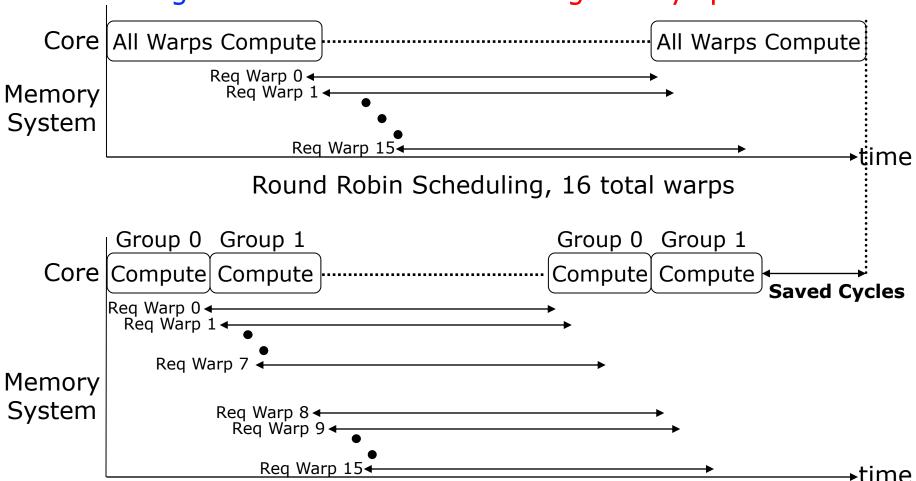


Sub-warp 0 mask

Narasiman et al., "Improving GPU Performance via Large Warps and Two-Level Warp Scheduling," MICRO 2011.

Two-Level Round Robin

Scheduling in two levels to deal with long latency operations



Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., "Improving GPU Performance via Large Warps and Two-Level Warp Scheduling," MICRO 2011.

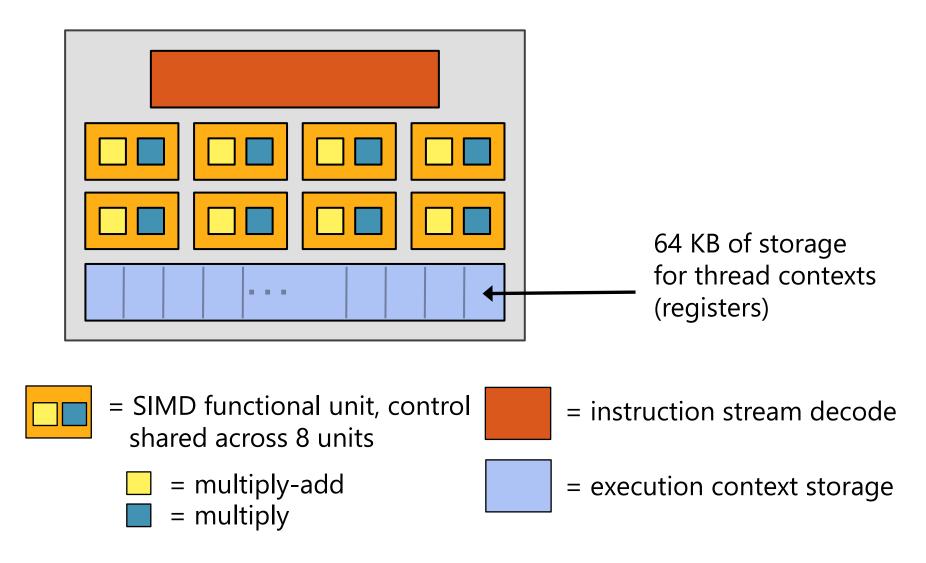
An Example GPU

NVIDIA GeForce GTX 285

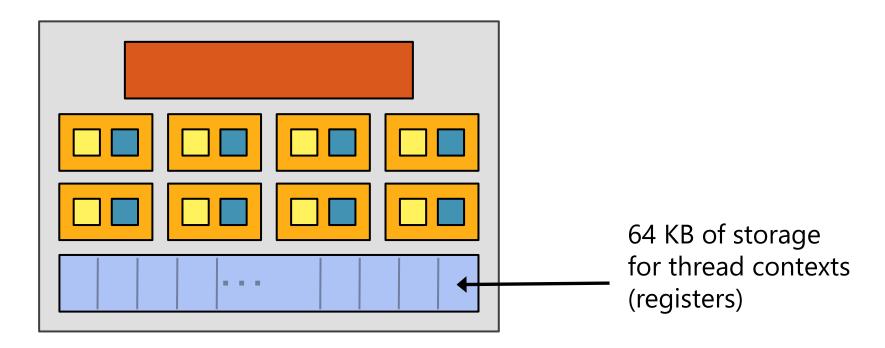
- NVIDIA-speak:
 - 240 stream processors
 - "SIMT execution"

- 30 cores
- 8 SIMD functional units per core

NVIDIA GeForce GTX 285 "core"

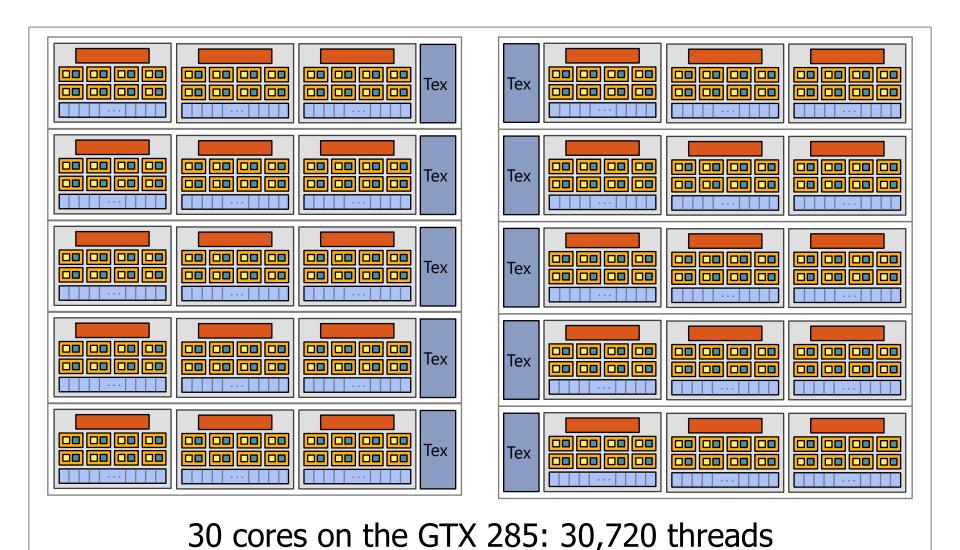


NVIDIA GeForce GTX 285 "core"

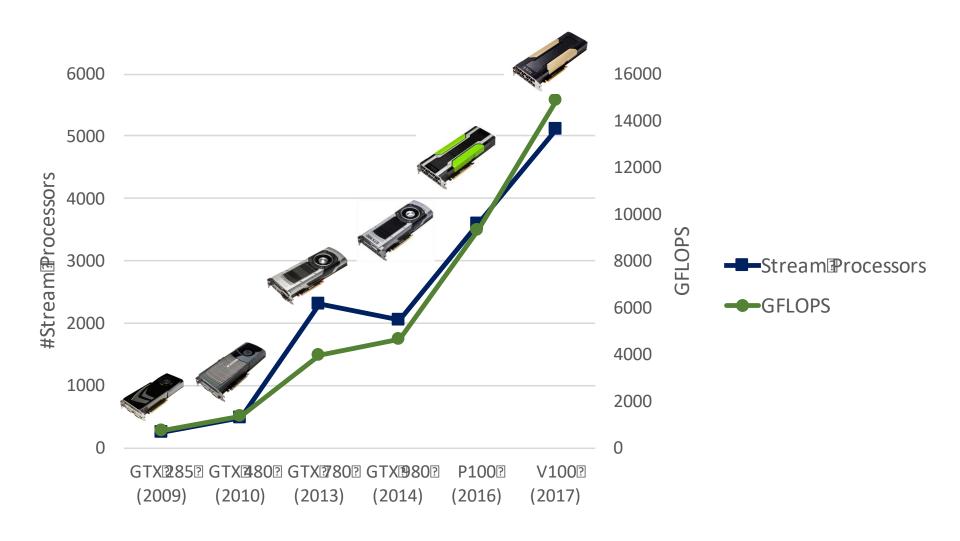


- Groups of 32 threads share instruction stream (each group is a Warp)
- Up to 32 warps are simultaneously interleaved
- Up to 1024 thread contexts can be stored

NVIDIA GeForce GTX 285



Evolution of NVIDIA GPUs



NVIDIA V100

- NVIDIA-speak:
 - □ 5120 stream processors
 - "SIMT execution"

- Generic speak:
 - 80 cores
 - 64 SIMD functional units per core
 - Tensor cores for Machine Learning
- NVIDIA, "NVIDIA Tesla V100 GPU Architecture. White Paper," 2017.

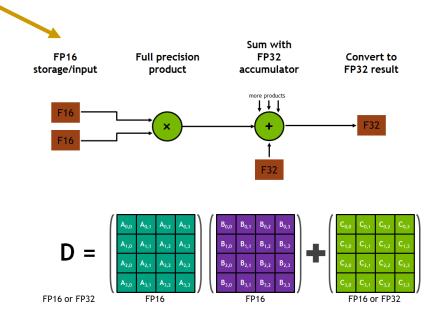
NVIDIA V100 Block Diagram

https://devblogs.nvidia.com/inside-volta/

80 cores on the V100

NVIDIA V100 Core

15.7 TFLOPS Single Precision7.8 TFLOPS Double Precision125 TFLOPS for Deep Learning (Tensor cores)



https://devblogs.nvidia.com/inside-volta/

Food for Thought

- Compare and contrast GPUs vs Systolic Arrays
 - Which one is better for machine learning?
 - Which one is better for image/vision processing?
 - What types of parallelism each one exploits?
 - What are the tradeoffs?
- If you are interested in such questions and more...
 - Bachelor's Seminar in Computer Architecture (HS2019, FS2020)
 - Computer Architecture Master's Course (HS2019)

Digital Design & Computer Arch.

Lecture 20: Graphics Processing Units

Prof. Onur Mutlu

ETH Zürich
Spring 2020
8 May 2020

Clarification of some GPU Terms

Generic Term	NVIDIA Term	AMD Term	Comments
Vector length	Warp size	Wavefront size	Number of threads that run in parallel (lock-step) on a SIMD functional unit
Pipelined functional unit / Scalar pipeline	Streaming processor / CUDA core	-	Functional unit that executes instructions for one GPU thread
SIMD functional unit / SIMD pipeline	Group of N streaming processors (e.g., N=8 in GTX 285, N=16 in Fermi)	Vector ALU	SIMD functional unit that executes instructions for an entire warp
GPU core	Streaming multiprocessor	Compute unit	It contains one or more warp schedulers and one or several SIMD pipelines