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We AreAlmost Done With Thig

A Single-cycle Microarchitectures

A Multi-cycle and Microprogrammed Microarchitectures

A Pipelining

A Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recove

A Out-of-Order Execution

A Other Execution Paradigms




Approaches to (Instructidrevel) Concurrency

Pipelining

Out-of-order execution

Dataflow (at the ISA level)

Superscalar Execution

VLIW

Systolic Arrays

Decoupled Access Execute

Fine-Grained Multithreading

SIMD Processing (Vector and array processors, GPUS)
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Readings for this Week

A Required
A Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

A Recommended

¢ Pel eg andMMMXelecenelogy Exiension to the Intel
Architecture, 0 | EEE Mi cr o 1996.




SIMD Processing:
Exploiting Regular (Data) Paralle

1K




Re c al IsTaxdnomy of @a@amputers

Mike Flynn, Very High-Speed Computing Systems Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

¢ Array processor

¢ Vector processor

MISD: Multiple instructions operate on single data element
¢ Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

¢ Multiprocessor

¢ Multithreaded processor




Recall: SIMD Processing

Single instruction operates on multiple data elements
¢ Intime or in space

Multiple processing elements

Time-space duality

¢ Array processor. Instruction operates on multiple data
elements at the same time using different spaces

¢ Vector processor. Instruction operates on multiple data
elements in consecutive time steps using the same space



Recall: Array vs. Vector Processors

Instruction Stream

LD VR A A[3:0]
ADD VR A VR, 1
MUL VR & VR, 2
ST A[3:01& VR

ARRAY PROCESSOR

Same op @ same time

[LDO

LD1

LD2

LD3|

ADO
MUO
STO

Time

AD1
MU1

ST1
—

AD2
MU2
ST2

AD3
MU3
ST3

Different ops @ same space

VECTOR PROCESSOR

Different ops @ time

LDO
Y
LD1| ADO

LD2 | AD1

MUO

LD3 | AD2

MUL STO|

AD3

MU2 ST1
MU3 ST2

Same op @ space ST3

<«<——Space——> <«<——Space——>



Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

Bank Bank Bank  |.sssssssssssssssssssssss Bank

0 1 2 15

MDR|| MAR || MDR|| MAR || MDR|| MAR MDR|| MAR
Data bus

A

Address bus

CPU

Picture credit: Derek Chiou



Recall: Vector Instruction Execution

VADDAB A C

Execution using
one pipelined
functional unit

four pi

Execution using

functional units

pelined

A[6]  B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A5]  B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4]  B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3]  BI[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

Voo Voo Voo Voo Voo

> ] > L L ] I ]

\ C[2] / \ C[8] / \ C[9] / \C[lO] / \0[11] /

) ew L e em | em | om ||
C[0] C[0] C[1] C[2] C[3]

< Space >

Slide credit: Krste Asanovic
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Recall: Vector Unit Structure

/ Functional Unit

e ] ] .
[ 1 N [
Partiti [ | | [ |
oo | S ——t—] 1 bt
Registers
El 0, El 1, El 2, El 3,
\ 4?mer;3ts, ) ements emenltso’ 7(’=:menltsl’ L
" uj "
A [ L]
[ N L
N y N N S
Lane

Memory Subsystem

Slide credit: Krste Asanovic
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Recall: Vector Instruction Level Parallelisi

Can overlap execution of multiple vector instructions
¢ Example machine has 32 elements per vector register and 8 lanes
¢ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit

eeoooo A A AAA AL
time @000 oo e blajaja/aa/l3dd ImEEEEEEE
0000000 AAAAAAA LA EEEEEEE
CQOOOIOIF="NAAAAAAAAEEEEEEEDE
QOQQO(L—rPcu-I AAAAAAANEEEEEEENE
0000|000 AAAAAL@_.IIIIIIII
olololololo|olo|lalalalaAlaAlaAAlEEEE EEEE
A A AAAAAAINEEEEEEDE
Instruction LI LI

issue

Slide credit: Krste Asanovic 12



Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + BJi];

Scalar Sequential Code Vectorized Code

Iter. 1

Time

1 2 Vector Instruction

lter. 2

: Vectorization is a compile  -time reordering of
: operation sequencing
: Y requires extensive loop dependence analysis

Slide credit: Krste Asanovic 13



Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

¢ Same operation performed on many data elements

¢ Improve performance, simplify design (no intra -vector
dependencies)

Performance improvement limited by vectorizability of code
¢ Scalar operations limit vector machine performance

¢ Remember A md ashH.&awo

¢ CRAY¥1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
¢ Intel MMX/SSERAVX, PowerPCAltiVec, ARM Advanced SIMD

14



SIMD Operations in Modern ISAS




SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
Instructions

¢ Single instruction acts on multiple pieces of data at once
¢ Common application: graphics

¢ Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

32 24 23 16 15 87 0  Bit position
a, a, a, a, $s0
+| b, b, b, b, |$s1

a;+b, | a,+b, | a,+b, | a;+b, | $s2

16



Intel Pentium MMX Operations

ldea: One instruction operates on multiple data elements

simultaneously

¢ A laarray processing (yet much more limited)
¢ Designed with multimedia (graphics) operations in mind

63 8 7

0

(@
63 16 15

(b)

63 . -32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, MMX Technology

Extension to the Intel Architecture,
IEEE Micro, 1996.
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MMX Example: Image Overlaying (1)

A Goal: Overlay the human in image 1 on top of the background in image 2

de oparation

Figure 8. Chroma keying: image overlay using a background color. ' - f‘f’f =0 iimage sz L+.+} | ‘
if (xli] == Blue) new_imagcli] =y[il;
clse new imageii] = x(i);

PCMPEQB MM1, MM3

MM1| Blue Blue Blue Blue Blue Biue Blue Blue

MM3 | X7!=blue | X6l=blue | X5=blue | X4=blue | X3!=blue |[X2!=blue | X1=blue | X0=blue

MM1 | 0x0000 | Ox0000 | OxFFFF | OxFFFF | 0x0000 | 0x0000 | OxFFFF OXFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, MMX Technology Extension to the Intel Architecture, IEEE Micro, 1996. 18



MMX Example: Image Overlaying (Il)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X = Womanés ir
Mval Y, [ Y T Y [ e [ s [ Yo Y, [ Y, | Mm1[0x0000]0x0000]0xFFFF [ 0xFFFF [0x0000]0x0000]0xFFFF J0xFFFF|

MM1 [0x0000 | 0x0000[0xFFFF [O<FFFF [0x0000]0x0000 [OxFFFFJOXFFFF] MM3] X, | Xo [ X5 | Xa [ Xs [ X5 | X | X, |
MM4 [0x0000[0x0000] Y5 | Y. T0x0000[0x0000] Yy | Yo [MM1[ X, [ X; [0x0000j0x0000] X; [ X; [0x0000]0x0000)

=
POR MM4, MM1 _ :

mMal X, | X | Y | Ya] X ] X | Yo Yol

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg B -mm3, mem1 /" Load .éighl pixels from
. womansimage -
‘Movg  mm4, mem2  /*Load eight pixels from the
- S ‘blossom image
~Pompegb mm1, mm3- ' R

Pand  mmd, mmi.
Pandn  mm1, mm3

Por - mmé4,mmt .

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, MMX Technology Extension to the Intel Architecture, IEEE Micro, 1996. 19




FineGrained Multithreading




Recall: Fin&rained Multithreading

A ldea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

¢ By the time the fetched branch/instruction resolves, no

Instruction is fetched from the same thread

¢ Branch/instruction resolution latency overlapped with execution

of other threads instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Instruction Opeimds
Stream 3 Instruction
Instruction Fetch
Stream 2 Instruction
Operand Fetch
Stream 1 Instruction

Execution Phase
tream B [nstruction
Execution Phase

Stream 4 Instruction
Result Store

21



Recall: Fin&rained Multithreading (I1)

ldea: Switch to another thread every cycle such that no two
Instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, Parallel Operation in the Control Data 6600, AFIPS
1964.

Smith, A pipelined, shared resource MIMD computer, ICPP 1978.

22



Recall: Multithreaded Pipeline Example

Al > > D$

1}
_u ‘2 Thread

select

D x

2>

—
— > <

Slide credit; Joel Emer 23



Recall: Fingrained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise -bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ¢é), thread selection | ogi

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logicbetween threads remains (load/store)
24



GPUs (Graphics Processing Units)




GPUs are SIMD Engines Underneath

A The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

A However, the programming is done using threads, NOT
SIMD instructions

A To understand this, | etds go
example
A But , before that, | et 0s di st
¢ Programming Model (Software)
VS.

¢ Execution Model (Hardware)

26



Programming Model vs. Hardware Execution Mo

Programming Model refers to how the programmer expresses
the code

¢ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-t hr eaded ( MI MD, SPMD), &

Execution Model refers to how the hardware executes the
code underneath

¢ E.g., Out-of-order execution, Vector processor, Array processor,
Datafl ow processor, Mul t i1 proce

Execution Model can be very different from the Programming
Model

¢ E.g., von Neumann model implemented by an OoO processor

¢ E.g., SPMD model implemented by a SIMD processor (a GPU)
27



How Can You Exploit Parallelism Here”
Scalar Sequential Code o Cl[i:?;: AI\[ <il\]|;+ BI[++?]:

Iter. 1

Let 0s examine thr
options to exploit instruction -level
parallelism present in this sequential
code:
: 1. Sequential (SISD)
lter. 2 :

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

28



Prog. Model 1:

Sequential (SISBY S, nitva

Scalar Sequential Code

Iter. 2

A Can be executed on a:

A Pipelined processor

A Out-of-order execution processor

¢ Independent instructions executed
when ready

¢ Different iterations are present in the
Instruction window and can execute in
parallel in multiple functional units

¢ In other words, the loop is dynamically
unrolled by the hardware

A Superscalar or VLIW processor

¢ Can fetch and execute multiple
Instructions per cycle

29



<N; i++)

Prog. Model 2: Data Parallel (SIME)< i+ a0

Vectorized Code

Scalar Sequential Code

VLD AA V1

VLD BA V2

VADD V1+V2A V3

VST V3A C

Realization Each iteration is independent

ldea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
30




Prog. Model 3: Multithreadeéd e ki

Scalar Sequential Code

oooooooooooooooooooooo
------------

o °

R4
..'.'l...lllllllllllllllll..“.

Iter. 1

.o‘.‘\i.'liﬁiﬁﬁﬁiillﬂlllllll.‘l.

> Realization Each iteration is independent
ldea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

31



Prog. Model 3: Multithreaded e

1 > Realization Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread




A GPU iIs a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

¢ Each thread executes the same code but operates a different
piece of data

¢ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp ( wavefront ) by the
hardware

¢ A warp is essentially a SIMD operation formed by hardware!

33



SPMD on SIMT Machine ™ “Gi<ai-en

Vs

~N

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:
Single Instruction Multiple Thread




Graphics Processing Units
SIMD not Exposed to Programmer (SI!\TT}




SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
Instructions A each instruction specifies multiple data inputs

¢ [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions A
threads grouped dynamically into warps

¢ [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

¢ Can treat each thread separately A i.e., can execute each thread
Independently (on any type of scalar pipeline) A MIMD processing

¢ Can group threads into warps flexibly A I1.e., can group threads
that are supposed to #ruly execute the same instruction A

dynamically obtain and maximize benefits of SIMD processing
36



FineGrained Multithreading of  or g=o0;i < ;i
Warps Clil = Alil + Bl

A Assume a warp consists of 32 threads
A If you have 32K iterations, and 1 iteration/thread A 1K warps

A Warps can be interleaved on the same pipeline A Fine grained
multithreading of warps

Warp 20 at PC X+2

37



Warps and Warbevel FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) A SIMT (Nvidia-speak)

All threads run the same code

Warp: The threads that run | engthwi se

-~ | Thread Warp 3

- ‘I Thread Warp 8
Thread Warp Common PC .," :
Scalan Scalar| Scalar Scalan Thread Warp 7
ThreaqThread Thread* * * | Threac ¢
W X Y Z . .
SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture,” IEEE Micro 2998.




High-Level View of a GPU

;’ (PC, Mask) H

' I-Cache

Shader| |Shader| |Shader| ,,, | Shader *

Core Core Core Core
Decode

b4 |
Interconnection Network '1.1 g Q| [ :
3 3 o e e |e
L |
Memory | | Memory Memory | | :_;_u -:au' -;,—q .;,—':! |
Controller| |Controller Controller| % | ! % '751. % % ;
¢ t ses t ! :m @ | @ | |®|]
‘| 1 SIMD Execution !
GDDR3 GDDR3 GDDR3 | Tm === !

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture,” IEEE Micro 2998.



Latency Hiding via Watgevel FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

¢ One instruction per thread In
pipeline at a time (No
interlocking)

¢ Interleave warp execution to
hide latencies

Register values of all threads stay
In register file

FGMT enables long latency
tolerance

¢ Millions of pixels

Slide credit: Tor Aamodt

A 4

Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

v

| I-Fetch
v

Decode
v

TV [« R |«
NNV ¢4 3

NV ¢ 3 €

v
D-Cache

|_

Al Hit?l [ Daa |

v

Writeback

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

Thread Warp 1
Thread Warp 2

| Thread Warp 6 |
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Warp Execution (Recall the Slide)

32 -thread warp executing ADD A[ tid],B[ tid] A C[tid]

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6]  B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A5]  B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4]  B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3]  BI[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

Voo Voo Voo Voo Voo

> ] > L L ] I ]

\ C[2] / \ C[8] / \ C[9] / \C[lO] / \0[11] /

) ew L e em | em | om ||
C[0] C[0] C[1] C[2] C[3]

< Space >

Slide credit: Krste Asanovic
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SIMD Execution Unit Structure

/ Functional Unit

] ] ]
[ [ [ \
| - | 2 | = 2
Y L [ [
Registers \/T T\ /T T\ /T T\ /T T\v
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
o, 4, 8 ell1, 5, 9 2, 6, 10/, |é3, 7,
IRV VAR T ] VAR
- 2 - -
L L L A
| e e B
L ) T . T
ane

Memory Subsystem

Slide credit: Krste Asanovic
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Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
¢ Example machine has32 threads per warp and 8 lanes
¢ Completes 24 operations/cycle while issuing 1 warp/cycle

T

time

Load Unit Multiply Unit Add Unit

S

> P

diald

Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @

> 5> B[> > >
> > > |
> > > |
> > > |
> > > |
> b > >

> |
> | P

=
o1
HEEEEEEE

I Warp issue >

Slide credit: Krste Asanovic 43




SIMT Memory Access

A Same instruction in different threads uses thread id to
Index and access different data elements

Let 6s assume N=16,Ad4warpsr eads per

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 44



WarpsnoteExposed to GPU Programmer

A CPU threads and GPU kernels
¢ Sequential or modestly parallel sections on CPU
¢ Massively parallelsections on GPU:Blocks of threads

Serial Code (host) g

Parallel Kernel (device) LD || L || < > B

KernelA <<< nBIk , nThr >>>(args ); ; S || SS555 || S S| ... | S5
Serial Code (host) g

Parallel Kernel (device) LD || L || < > Y

KernelB <<< nBIk , nThr >>>(args ); $ S || S5 || S S| .. | S5

Slide credit: Hwu & Kirk
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Sample GPU SIMT Code (Simplified)

CPU code

for (ii = O; ii < 100000; ++ii) {
Clii] = Alii] + B[ii]:

}
CUDA code I

[// there are 100000 threads

~

~_global . void KernelF
int tid = blockDim.x * blockldx.x + threadldx.x ;

int varA = aaltid];
int varB = bb[tid];
C[tid] = varA + varB;

W

J

unction( é)

{

Slide credit: Hyesoon Kim
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Sample GPU Program (Less Simplified

CPU Program GPU Program

__global __ add_matrix

( float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int ] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock( blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);

}

Slide credit: Hyesoon Kim 47



From Blocks to Warps

A GPU cores: SIMD pipelines
¢ Streaming Multiprocessors (SM)
¢ Streaming Processors (SP)

A Blocks are divided into warps
¢ SIMD unit (32 threads)

Bl ock 06s w8tpsk 106s wlropcsk 26s war

é

to0 t1 t
NNNNNANNNN

2

é

to0o t1 t
NNNNNANNNN

> p ]

2

€

to t1 t
NNNNNNNNRN

2

é

)
Q
=
=
=
o
(@]
D
(72}
(%2}
o
=

Warp Scheduler || Warp Scheduler

Dispatch Unit || Dispatch Unit

@
=~
(]
=

NVIDIA Fermi architecture

N
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Warpbased SIMD vs. Traditional SIMD

A Traditional SIMD contains a single thread

¢
¢

Seqguential instruction execution; lock-step operations in a SIMD instruction

Programming model is SIMD (no extra threads) A SW needs to know
vector length

ISA contains vector/SIMD instructions

A Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

¢
¢

Does not have to be lock step

Each thread can be treated individually (i.e., placed in a different warp)
A programming model not SIMD

A SW doesnot need to know vector length
A Enables multithreading and flexible dynamic grouping of threads
ISA is scalarA SIMD operations can be formed dynamically

Essentially, it is SPMD programming model implemented on SIMD
hardware

49



SPMD

Single procedure/program, multiple data
¢ This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

¢ Procedurescan synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

¢ Each program/procedure 1) works on different data, 2) can execute a
different control -flow path, at run-time

¢ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

¢ Modern GPUs programmed in a similar way on a SIMD hardware

50



SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
Instructions A each instruction specifies multiple data inputs

¢ [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions A
threads grouped dynamically into warps

¢ [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

¢ Can treat each thread separately A i.e., can execute each thread
Independently on any type of scalar pipeline A MIMD processing

Can group threads into warps flexibly A 1.e., can group threads
that are supposed to #ruly execute the same instruction A

dynamically obtain and maximize benefits of SIMD processing




Threads Can Take Different Paths in Wased SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread|Thread | Thread
1 2 3 4

Slide credit: Tor Aamodt 52



Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area
on control logic

¢ Groups scalar threads
Into warps

Branch divergence
occurs when threads
Inside warps branch to
different execution
paths

'

SRRRRRY
SRRRRRY

Path B

Branch
; Path A

e
AL

SRRRRRY

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt
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Remember: Each Thread Is Independe

Two Major SIMT Advantages:

¢ Can treat each thread separately A i.e., can execute each thread
Independently on any type of scalar pipeline A MIMD processing

Can group threads into warps flexibly A i.e., can group threads
that are supposed to fruly execute the same instruction A

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC

And, group them together into a single warp dynamically

Thi s r educesA improvessSiV eithizaten

¢ SIMD utilization: fraction of SIMD lanes executing a useful

operation (i.e., executing an active thread)
54



Dynamic Warp Formation/Merging

ldea: Dynamically merge threads executing the same
Instruction (after branch divergence)

Form new warps from warps that are waiting

¢ Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥ 4 \ - Vidd e v Wwapz

55



Dynamic Warp Formation/Merging

A ldea: Dynamically merge threads executing the same
Instruction (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

A Fung et al., Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow MICRO 2007.
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Dynamic Warp Formation Example
4

x/1111
A y/1111
Legend
x/1110 A_ A
B y/0011 Ir__:l Execu'Fion of Warp x Ir_’| Execu'Fion of Warp y
I_>| at Basic Block A I_>| at Basic Block A
C x/1000 D x/0110 F x/0001 gl g
y/0010 y/0001 y/1100 D
A new warp created from scalar
x/1110 3| threads of both Warp x and y
—» | executing at Basic Block D
p—

E
: I
Baseline °*°° |_>|
>,
. >
Dynamic G
5 5 > > > >l
Warp oool"II_VI > nd | nd > |—>I
: i< idld| s E< E<lg |—>|
Formation > 1> |> ->[ll> >l >

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grou
- Functional Unit

((/f [T [T -1
[ 1 [ [ 1 ] \j

Registers | . ‘ 4 : . : s s \ ; / | 1 \ v 1 1
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
o, 4, 8 e 1, 5, 9 e 2, 6, 10, |3, 7, 11, é

A A A A
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4
/ \ / \ / >

= e =

7

S
Can you move any thread é
U flexibly to any lane?

-

Il

Memory Subsystem
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Large Warps and Twavel Warp Scheduling

Two main reasons for GPU resources be underutilized
¢ Branch divergence

¢ Long latency operations

Core A” Warps Compute ]. ............................................................. [A” Warps Compute ]
ReqgWarp 0 < >
Memory ReqWarp 1 «—¢ >
System *
Req Warp 15 <« > =time

Round Robin Scheduling, 16 total warps

Narasimane t  &riproving GPU Performance via Large Warps and Two-Level Warp
Scheduling, 6 MI CRO 2011. 59



Large Warp Microarchitecture Example

Reducebranch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp 8 mask
111(1]1

OIB|IO|IO|IB|O|O|P
BIOIB|IO|O|O|BD|O
O|I0|I0O|IBP|O|IB|O|O
OIB|IO|IOC|O|IB|O|BP

Sub-warp 0 mask
111(1]1

Sub-warp 0 mask
111(1]1

Narasimane t  &rlproving @PU Performance via Large Warps and Two-Level Warp

Scheduling, 6 MI CRO 2011.



Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core A” Warps Compute } ............................................................. [A” Warps Compute }
ReqgWarp 0 < > :
Memory ReqWarp 1 <— >
System Y :
Reg Warp 15 « > =t§ime

Round Robin Scheduling, 16 total warps

Group 0 Group 1 Group 0 Group 1 :
Core Compute ICOmpute ] .......................................... [Compute ICOmpute 14 >:
- Saved Cycles
RegWarp 0 < >
RegWarp 1 < >
°
[
RegWarp 7 <« >
Memory
System Req Warp 8 < >
Reg Warp 9 < ° >
[
Reg Warp 15 « > =time

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasimane t  &rlproving @PU Performance via Large Warps and Two-Level Warp
Scheduling, 6 MI CRO 2011.



An Example GPU




NVIDIA GeForce GTX 285

NVIDIA-speak:
¢ 240 stream processors
¢ SIMT execution

Generic speak:
¢ 30 cores
¢ 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 core

B 0B | O
e

64 KB of storage
for thread contexts

ol = SIMD functional unit, control
shared across 8 units

= multiply -add
B = multiply

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 core

B 0B | O
e

64 KB of storage
for thread contexts
(registers)

A Groups of 32 threads share instruction stream (each group is

a Warp)

A Up to 32 warps are simultaneously interleaved

A Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian
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Evolution of NVIDIA GPUs
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NVIDIA V100

NVIDIA-speak:
¢ 9120 stream processors
¢ SIMT execution

Generic speak:
¢ 80 cores
¢ 64 SIMD functional units per core

¢ Tensor cores for Machine Learning

NV I D INXIDIA fiesla V100 GPU Architecture. White Paper 6 201 7 .
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NVIDIA V100 Block Diagram

80 cores on the V100
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