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Readings
n Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 
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Recall: Cache Structure
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Cache Performance



Recall: Cache Parameters vs. Miss/Hit Rate
n Cache size

n Block size

n Associativity

n Replacement policy
n Insertion/Placement policy
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Recall: How to Improve Cache Performance
n Three fundamental goals

n Reducing miss rate
q Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted

n Reducing miss latency or miss cost

n Reducing hit latency or hit cost

n The above three together affect performance 
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Recall: Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity 

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches
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Recall: Software Approaches for Higher Hit Rate

n Restructuring data access patterns
n Restructuring data layout

n Loop interchange
n Data structure separation/merging
n Blocking
n …
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Recall: Restructuring Data Access Patterns (I)
n Idea: Restructure data layout or data access patterns
n Example: If column-major

q x[i+1,j] follows x[i,j] in memory
q x[i,j+1] is far away from x[i,j]

n This is called loop interchange
n Other optimizations can also increase hit rate

q Loop fusion, array merging, …
9

Poor code
for i = 1, rows

for j = 1, columns
sum = sum + x[i,j]

Better code
for j = 1, columns

for i = 1, rows
sum = sum + x[i,j]



Recall: Restructuring Data Access Patterns (II)

n Blocking
q Divide loops operating on arrays into computation chunks so 

that each chunk can hold its data in the cache
q Avoids cache conflicts between different chunks of 

computation
q Essentially: Divide the working set so that each piece fits in 

the cache

n Also called Tiling
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Restructuring Data Layout (I)
n Pointer based traversal 

(e.g., of a linked list)
n Assume a huge linked 

list (1B nodes) and 
unique keys

n Why does the code on 
the left have poor cache 
hit rate?
q “Other fields” occupy 

most of the cache line 
even though rarely 
accessed!

11

struct Node {
struct Node* next;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access other fields of node
}
node = nodeànext;

}



Restructuring Data Layout (II)
n Idea: separate frequently-

used fields of a data 
structure and pack them 
into a separate data 
structure

n Who should do this?
q Programmer
q Compiler 

n Profiling vs. dynamic
q Hardware?
q Who can determine what 

is frequently used?
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struct Node {
struct Node* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access nodeànode-data
}
node = nodeànext;

}



Multi-Core Issues in Caching



Caches in a Multi-Core System
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Caches in Multi-Core Systems
n Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q Memory bandwidth is at premium
q Cache space is a limited resource across cores/threads

n How do we design the caches in a multi-core system?

n Many decisions
q Shared vs. private caches
q How to maximize performance of the entire system?
q How to provide QoS to different threads in a shared cache?
q Should cache management algorithms be aware of threads?
q How should space be allocated to threads in a shared cache?
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Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block 

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores
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Resource Sharing Concept and Advantages
n Idea: Instead of dedicating a hardware resource to a 

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses, 

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can 

use it; no need to replicate shared data
+ Reduces communication latency

q For example, data shared between multiple threads can be kept 
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model
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Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it 

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone  

- Eliminates performance isolation à inconsistent performance 
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS

- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block 

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
n If one core does not utilize some space, another core can

q Easier to maintain coherence (a cache block is in a single location)

n Disadvantages
q Slower access (cache not tightly coupled with the core)
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rates of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Example: Problem with Shared Caches
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L1 $

Processor Core 2←t1

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1
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t2’s throughput can be significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Memory System: A Shared Resource View
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Storage

Most of the system is a shared resource, storing and moving data 



Cache Coherence



Cache Coherence 
n Basic question: If multiple processors cache the same 

block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?
n Software

q Can the programmer ensure coherence if caches are invisible to 
software?

q What if the ISA provided a cache flush instruction?
n FLUSH-LOCAL A: Flushes/invalidates the cache block containing 

address A from a processor’s local cache. 
n FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 

address A from all other processors’ caches. 
n FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

n Hardware
q Simplifies software’s job
q One idea: Invalidate all other copies of block A when a processor writes 

to it
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A Very Simple Coherence Scheme (VI)
n Caches “snoop” (observe) each other’s write/read 

operations via a shared bus. If a processor writes to a 
block, all others invalidate the block.

n A simple protocol:
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n Write-through, no-
write-allocate 
cache

n Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

n Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



(Non-)Solutions to Cache Coherence
n No hardware based coherence

q Keeping caches coherent is software’s responsibility
+ Makes microarchitect’s life easier
-- Makes average programmer’s life much harder 

n need to worry about hardware caches to maintain program 
correctness?

-- Overhead in ensuring coherence in software (e.g., page 
protection and page-based software coherence)

n All caches are shared between all processors
+ No need for coherence
-- Shared cache becomes the bandwidth bottleneck
-- Very hard to design a scalable system with low-latency cache 

access this way
33



Maintaining Coherence
n Need to guarantee that all processors see a consistent 

value (i.e., consistent updates) for the same memory 
location

n Writes to location A by P0 should be seen by P1 
(eventually), and all writes to A should appear in some 
order

n Coherence needs to provide:
q Write propagation: guarantee that updates will propagate
q Write serialization: provide a consistent order seen by all 

processors for the same memory location

n Need a global point of serialization for this store ordering
34



Hardware Cache Coherence
n Basic idea:

q A processor/cache broadcasts its write/update to a memory 
location to all other processors

q Another cache that has the location either updates or 
invalidates its local copy

n Two major approaches
q Snoopy bus (all operations are broadcast on a shared bus)
q Directory based (a mediator gives permission to each request)

n To learn more, take the Graduate Comp Arch class
q https://safari.ethz.ch/architecture/fall2019/doku.php?id=schedule
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https://safari.ethz.ch/architecture/fall2019/doku.php?id=schedule
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Cache Examples:
For You to Study



Cache Terminology
n Capacity (C): 

q the number of data bytes a cache stores
n Block size (b): 

q bytes of data brought into cache at once
n Number of blocks (B = C/b): 

q number of blocks in cache: B = C/b
n Degree of associativity (N): 

q number of blocks in a set
n Number of sets (S = B/N): 

q each memory address maps to exactly one cache set 
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How is data found?
n Cache organized into S sets

n Each memory address maps to exactly one set

n Caches categorized by number of blocks in a set:

q Direct mapped: 1 block per set

q N-way set associative: N blocks per set

q Fully associative: all cache blocks are in a single set

n Examine each organization for a cache with:

q Capacity (C = 8 words)

q Block size (b = 1 word)

q So, number of blocks (B = 8)
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Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)
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Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 

20%
Temporal Locality
Compulsory Misses
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses
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N-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0
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N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =
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N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10 
= 20%

Associativity reduces 
conflict misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0
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Fully Associative Cache

n No conflict misses

n Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV
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Spatial Locality?
n Increase block size:

q Block size, b = 4 words
q C = 8 words
q Direct mapped (1 block per set)
q Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0
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Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =
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Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15 
= 6.67%

Larger blocks reduce 
compulsory misses through 
spatial locality

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]
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Cache Organization Recap
n Main Parameters

q Capacity: C
q Block size: b
q Number of blocks in cache: B = C/b
q Number of blocks in a set: N
q Number of Sets: S = B/N

Organization
Number of Ways 

(N)
Number of Sets 

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1
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Capacity Misses
n Cache is too small to hold all data of interest at one time

q If the cache is full and program tries to access data X that is 
not in cache, cache must evict data Y to make room for X

q Capacity miss occurs if program then tries to access Y again
q X will be placed in a particular set based on its address

n In a direct mapped cache, there is only one place to put X

n In an associative cache, there are multiple ways where X 
could go in the set.

n How to choose Y to minimize chance of needing it again? 
q Least recently used (LRU) replacement: the least recently 

used block in a set is evicted when the cache is full.
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Types of Misses
n Compulsory: first time data is accessed

n Capacity: cache too small to hold all data of interest

n Conflict: data of interest maps to same location in cache

n Miss penalty: time it takes to retrieve a block from lower 
level of hierarchy

55



LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)
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