
Design of Digital Circuits
Lecture 24: Virtual Memory II

Prof. Onur Mutlu
ETH Zurich
Spring 2020
28 May 2020

Readings
n Virtual Memory

n Required
q H&H Chapter 8.4

2

Recall: Virtual Memory
n Idea: Give the programmer the illusion of a large address

space while having a small physical memory
q So that the programmer does not worry about managing

physical memory

n Programmer can assume he/she has “infinite” amount of
physical memory

n Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion
q Illusion is maintained for each independent process

3

4

Recall: A System with Physical Memory Only

n Examples:
q most Cray machines
q early PCs
q many embedded systems

CPU’s load or store addresses used
directly to access memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

5

A System with Virtual Memory (Page based)

n Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Recall: Virtual Memory Definitions
n Page size: amount of memory transferred from hard disk to

DRAM at once

n Address translation: determining the physical address from
the virtual address

n Page table: lookup table used to translate virtual addresses to
physical addresses (and find where the associated data is)

6

Recall: Virtual and Physical Addresses

n Most accesses hit in physical memory
n But programs see the large capacity of virtual memory

7

Recall: Address Translation

8

Recall: Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

9

Recall: Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

n Organization:
q Virtual address: 31 bits
q Physical address: 27 bits
q Page offset: 12 bits
q # Virtual pages = 231/212 = 219 (VPN = 19 bits)
q # Physical pages = 227/212 = 215 (PPN = 15 bits)

10

Recall: Virtual Memory Mapping Example

11

How Do We Translate Addresses?
n Page table

q Has entry for each virtual page

n Each page table entry has:

q Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

q Physical page number: where the virtual page is located in
physical memory

q (Replacement policy, dirty bits)

12

Page Table Address Translation Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x7FFF 47C

13

Page Table is Indexed
with the VPN

Page Table Provides
The PPN

Page Table is located
at physical memory
address specified by
the PTBR (Page Table
Base Register)

Page offset bits
do not change
during translation

Page Table Address Translation Example 1

n What is the physical
address of virtual address
0x5F20?

n We first need to find the
page table entry
containing the translation
for the corresponding
VPN

n Look up the PTE at the
address
q PTBR + VPN*PTE-size

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

14

Page Table Address Translation Example 1

n What is the physical
address of virtual address
0x5F20?
q VPN = 5
q Entry 5 in page table

indicates VPN 5 is in
physical page 1

q Physical address is
0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x0001 F20

15

Page Table Address Translation Example 2

n What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

16

Page Table Address Translation Example 2

n What is the physical
address of virtual address
0x73E0?
q VPN = 7
q Entry 7 in page table is

invalid, so the page is
not in physical memory

q The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

17

Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page
table?

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!

18

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Page Table Challenges

n Challenge 1: Page table is large
q at least part of it needs to be located in physical memory
q solution: multi-level (hierarchical) page tables

n Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time
q Unless we are clever… à speed up the translation…

19

Translation Lookaside Buffer (TLB)

n Idea: Cache the page table entries (PTEs) in a hardware
structure in the processor to speed up address translation

n Translation lookaside buffer (TLB)

q Small cache of most recently used translations (PTEs)

q Reduces number of memory accesses required for most
instruction fetches and loads/stores to only one

20

Translation Lookaside Buffer (TLB)
n Page table accesses have a lot of temporal locality

q Data accesses have temporal and spatial locality
q Large page size (say 4KB, 8KB, or even 1-2GB)
q Consecutive instructions and loads/stores are likely to access

same page

n TLB
q Small: accessed in ~ 1 cycle
q Typically 16 - 512 entries
q High associativity
q > 95-99 % hit rates typical (depends on workload)
q Reduces number of memory accesses for most instruction

fetches and loads/stores to only one

21

Example Two-Entry TLB

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

22

Virtual Memory Support
and Examples

Supporting Virtual Memory
n Virtual memory requires both HW+SW support

q Page Table is in memory

q Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory

management unit)

q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to leverage the MMU to

q Populate page tables, decide what to replace in physical memory

q Change the Page Table Register on context switch (to use the

running thread’s page table)

q Handle page faults and ensure correct mapping
24

Address Translation
n How to obtain the physical address from a virtual address?

n Page size specified by the ISA

q VAX: 512 bytes

q Today: 4KB, 8KB, 2GB, … (small and large pages mixed

together)

q Trade-offs? (remember cache lectures)

n Page Table contains an entry for each virtual page

q Called Page Table Entry (PTE)

q What is in a PTE?

25

What Is in a Page Table Entry (PTE)?

26

n Page table is the “tag store” for the physical memory data store
q A mapping table between virtual memory and physical memory

n PTE is the “tag store entry” for a virtual page in memory
q Need a valid bit à to indicate validity/presence in physical memory
q Need tag bits (PFN) à to support translation
q Need bits to support replacement
q Need a dirty bit to support “write back caching”
q Need protection bits to enable access control and protection

27

Address Translation (I)
n Parameters

q P = 2p = page size (bytes).
q N = 2n = Virtual-address limit
q M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

28

Address Translation (II)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset
physical address

0p–1pm–1

n–1
0

p–1p
page table

base register
(per process)

if valid=0
then page
not in memory
(page fault)

valid physical frame number (PFN)

VPN acts as
table index

n Separate (set of) page table(s) per process
n VPN forms index into page table (points to a page table entry)
n Page Table Entry (PTE) provides information about page

access

29

Address Translation: Page Hit

30

Address Translation: Page Fault

Page Fault (“A Miss in Physical Memory”)

n If a page is not in physical memory but disk
q Page table entry indicates virtual page not in memory
q Access to such a page triggers a page fault exception
q OS trap handler invoked to move data from disk into memory

n Other processes can continue executing
n OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

31

Disk

32

Servicing a Page Fault

n (1) Processor signals controller
q Read block of length P starting

at disk address X and store
starting at memory address Y

n (2) Read occurs
q Direct Memory Access (DMA)
q Under control of I/O controller

n (3) Controller signals completion
q Interrupt processor
q OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

Page Replacement Algorithms
n If physical memory is full (i.e., list of free physical pages is

empty), which physical frame to replace on a page fault?

n Is True LRU feasible?
q 4GB memory, 4KB pages, how many possibilities of ordering?

n Modern systems use approximations of LRU
q E.g., the CLOCK algorithm

n And, more sophisticated algorithms to take into account
“frequency” of use
q E.g., the ARC algorithm
q Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead

Replacement Cache,” FAST 2003.
33

CLOCK Page Replacement Algorithm
n Keep a circular list of physical frames in memory (OS does)
n Keep a pointer (hand) to the last-examined frame in the list
n When a page is accessed, set the R bit in the PTE
n When a frame needs to be replaced, replace the first frame

that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise
q During traversal, clear the R bits of examined frames
q Set the hand pointer to the next frame in the list

34

Cache versus Page Replacement
n Physical memory (DRAM) is a cache for disk

q Managed by system software via the virtual memory subsystem

n Page replacement is similar to cache replacement
n Page table is the “tag store” for physical memory data store

n What is the difference?
q Required speed of access to cache vs. physical memory
q Number of blocks in a cache vs. physical memory
q “Tolerable” amount of time to find a replacement candidate (disk

versus memory access latency)
q Role of hardware versus software

35

Memory Protection

Memory Protection
n Multiple programs (processes) run at once

q Each process has its own page table
q Each process can use entire virtual address space without

worrying about where other programs are

n A process can only access physical pages mapped in its
page table – cannot overwrite memory of another process
q Provides protection and isolation between processes
q Enables access control mechanisms per page

37

Page Table is Per Process
n Each process has its own virtual address space

q Full address space for each program
q Simplifies memory allocation, sharing, linking and loading.

38

Virtual
Address
Space for
Process 1:

Physical Address
Space (DRAM)VP 1

VP 2
PP 2Address

Translation
0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)
n Not every process is allowed to access every page

q E.g., may need supervisor level privilege to access system
pages

n Idea: Store access control information on a page basis in
the process’s page table

n Enforce access control at the same time as translation

à Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)
Access control (protection)

40

Two Functions of Virtual Memory

41

VM as a Tool for Memory Access Protection

42

Page Tables

Process i:

Physical AddrRead? Write?
PP 6Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

PP 0

Memory

Physical AddrRead? Write?
PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•••

•••
•••

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•••

n Extend Page Table Entries (PTEs) with permission bits
n Check bits on each access and during a page fault

q If violated, generate exception (Access Protection exception)

Privilege Levels in x86

43

Page Level Protection in x86

44

Food for Thought: What If?

n Your hardware is unreliable and someone can flip the
access protection bits
q such that a user-level program can gain supervisor-level

access (i.e., access to all data on the system)
q by flipping the access control bit from user to supervisor!

n Can this happen?

45

Remember RowHammer?

One can
predictably induce errors

in most DRAM memory chips

46

Remember RowHammer?
n DRAM Row Hammer (or, DRAM Disturbance Errors)

n How a simple hardware failure mechanism can create a
widespread system security vulnerability

47

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

48

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

One Can Take Over an Otherwise-Secure System

54

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them
exhibited the problem.

n We built two working privilege escalation exploits that use this effect.
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

n When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

n It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

55Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

56

Security Implications

57

More Security Implications (I)

58
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

59
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications (III)
n Using an integrated GPU in a mobile system to remotely

escalate privilege via the WebGL interface

60

More Security Implications (IV)
n Rowhammer over RDMA (I)

61

More Security Implications (V)
n Rowhammer over RDMA (II)

62

More Security Implications?

63

Curious? First RowHammer Paper

64

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Curious? A RowHammer Retrospective
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]

65

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

Takeaway and Food for Thought
n If hardware is unreliable, higher-level security and protection

mechanisms (as in virtual memory) may be compromised

n The root of security and trust is at the very low levels…
q in the hardware itself
q RowHammer, Spectre, Meltdown are recent key examples…

n What should we assume the hardware provides?
n How do we keep hardware reliable?
n How do we design secure hardware?
n How do we design secure hardware with high performance,

high energy efficiency, low cost, convenient programming?

66
Plenty of exciting and highly-relevant research questions

Some Issues in Virtual Memory

Three Major Issues
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

68

Teaser: Virtual Memory Issue III
n When do we do the address translation?

q Before or after accessing the L1 cache?

69

Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

70

Cache-VM Interaction

71

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA
PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA
PA

VA
PA

Virtual Memory
Summary

Virtual Memory Summary
n Virtual memory gives the illusion of “infinite” capacity

n A subset of virtual pages are located in physical memory

n A page table maps virtual pages to physical pages – this is
called address translation

n A TLB speeds up address translation

n Multi-level page tables keep the page table size in check

n Using different page tables for different programs provides
memory protection

73

Virtual Memory: Parting Thoughts

n VM is one of the most successful examples of
q architectural support for programmers
q how to partition work between hardware and software
q hardware/software cooperation
q programmer/architect tradeoff

n Going forward: How does virtual memory scale into the
future? Three key trends:
q Increasing, huge physical memory sizes
q Hybrid physical memory systems (DRAM + NVM + …)
q Many accelerators in the system addressing physical memory

74

Design of Digital Circuits
Lecture 24: Virtual Memory II

Prof. Onur Mutlu
ETH Zurich
Spring 2020
28 May 2020

Some Issues in Virtual Memory

Three Major Issues
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

77

Virtual Memory Issue I
n How large is the page table?

n Where do we store it?
q In hardware?
q In physical memory? (Where is the PTBR?)
q In virtual memory? (Where is the PTBR?)

n How can we store it efficiently without requiring physical
memory that can store all page tables?
q Idea: multi-level page tables
q Only the first-level page table has to be in physical memory
q Remaining levels are in virtual memory (but get cached in

physical memory when accessed)

78

Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page
table?

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!

79

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Solution: Multi-Level Page Tables

80

Example from the x86 architecture

Page Table Access
n How do we access the Page Table?

n Page Table Base Register (CR3 in x86)
n Page Table Limit Register

n If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page à access control
exception

n Page Table Base Register is part of a process’s context
q Just like PC, status registers, general purpose registers
q Needs to be loaded when the process is context-switched in

81

More on x86 Page Tables (I): Small Pages

82

More on x86 Page Tables (II): Large Pages

83

x86 Page Table Entries

84

x86 PTE (4KB page)

85

x86 Page Directory Entry (PDE)

86

Four-level Paging in x86

87

Four-level Paging and Extended Physical Address Space in x86

88

Virtual Memory Issue II
n How fast is the address translation?

q How can we make it fast?

n Idea: Use a hardware structure that caches PTEs à
Translation lookaside buffer

n What should be done on a TLB miss?
q What TLB entry to replace?
q Who handles the TLB miss? HW vs. SW?

n What should be done on a page fault?
q What virtual page to replace from physical memory?
q Who handles the page fault? HW vs. SW?

89

90

Speeding up Translation with a TLB
n Essentially a cache of recent address translations

q Avoids going to the page table on every reference

n Index = lower bits of VPN
(virtual page #)

n Tag = unused bits of VPN +
process ID

n Data = a page-table entry
n Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.

Handling TLB Misses
n The TLB is small; it cannot hold all PTEs

q Some translations will inevitably miss in the TLB
q Must access memory to find the appropriate PTE

n Called walking the page directory/table
n Large performance penalty

n Who handles TLB misses? Hardware or software?

Handling TLB Misses (II)
n Approach #1. Hardware-Managed (e.g., x86)

q The hardware does the page walk
q The hardware fetches the PTE and inserts it into the TLB

n If the TLB is full, the entry replaces another entry
q Done transparently to system software

n Approach #2. Software-Managed (e.g., MIPS)
q The hardware raises an exception
q The operating system does the page walk
q The operating system fetches the PTE
q The operating system inserts/evicts entries in the TLB

Handling TLB Misses (III)
n Hardware-Managed TLB

q Pro: No exception on TLB miss. Instruction just stalls
q Pro: Independent instructions may continue
q Pro: No extra instructions/data brought into caches.
q Con: Page directory/table organization is etched into the

system: OS has little flexibility in deciding these

n Software-Managed TLB
q Pro: The OS can define page table oganization
q Pro: More sophisticated TLB replacement policies are possible
q Con: Need to generate an exception à performance overhead

due to pipeline flush, exception handler execution, extra
instructions brought to caches

Virtual Memory Issue III
n When do we do the address translation?

q Before or after accessing the L1 cache?

94

Virtual Memory and Cache Interaction

Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

96

Homonyms and Synonyms
n Homonym: Same VA can map to two different PAs

q Why?
n VA is in different processes

n Synonym: Different VAs can map to the same PA
q Why?

n Different pages can share the same physical frame within or
across processes

n Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

n Do homonyms and synonyms create problems when we
have a cache?
q Is the cache virtually or physically addressed?

97

Cache-VM Interaction

98

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA
PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA
PA

VA
PA

Physical Cache

99

Virtual Cache

100

Virtual-Physical Cache

101

Virtually-Indexed Physically-Tagged
n If C≤(page_size ´ associativity), the cache index bits come only

from page offset (same in VA and PA)

n If both cache and TLB are on chip

q index both arrays concurrently using VA bits

q check cache tag (physical) against TLB output at the end

102

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged
n If C>(page_size ´ associativity), the cache index bits include VPN
Þ Synonyms can cause problems
q The same physical address can exist in two locations

n Solutions?

103

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem
n Limit cache size to (page size times associativity)

q get index from page offset

n On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
q Used in Alpha 21264, MIPS R10K

n Restrict page placement in OS
q make sure index(VA) = index(PA)
q Called page coloring
q Used in many SPARC processors

104

An Exercise (I)

105

106

An Exercise (II)

107

An Exercise (Concluded)

108

Some System Software Tasks for VM
n Keeping track of which physical frames are free

n Allocating free physical frames to virtual pages

n Page replacement policy
q When no physical frame is free, what should be removed?

n Sharing pages between processes

n Copy-on-write optimization

n Page-flip optimization
109

