
Digital Design & Computer Arch.

Lecture 3a: Mysteries in Comp. Arch.

Prof. Onur Mutlu

ETH Zürich

Spring 2020

27 February 2020

Four Mysteries, Continued

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memories Forget: Refresh (2011-2012)

◼ Memory Performance Attacks (2006-2007)

2

Mystery #3: DRAM Refresh

3

Recall: DRAM Refresh

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to refresh each row periodically
to restore charge

❑ Activate each row every N ms

❑ Typical N = 64 ms

◼ Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

4

Recall: How Do We Solve the Problem?

◼ Observation: All DRAM rows are refreshed every 64ms.

◼ Critical thinking: Do we need to refresh all rows every 64ms?

◼ What if we knew what happened underneath and exposed
that information to upper layers?

5

Underneath: Retention Time Profile of DRAM

6Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Aside: Why Do We Have Such a Profile?

◼ Answer: Manufacturing is not perfect

◼ Not all DRAM cells are exactly the same

◼ Some are more leaky than others

◼ This is called Manufacturing Process Variation

7

Opportunity: Taking Advantage of This Profile

◼ Assume we know the retention time of each row exactly

◼ What can we do with this information?

◼ Who do we expose this information to?

◼ How much information do we expose?

❑ Affects hardware/software overhead, power consumption,
verification complexity, cost

◼ How do we determine this profile information?

❑ Also, who determines it?

8

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

Retention Time of DRAM Rows

◼ Observation: Overwhelming majority of DRAM rows can be
refreshed much less often without losing data

◼ Can we exploit this to reduce refresh operations at low cost?

9

Only ~1000 rows in 32GB DRAM need refresh every 64 ms,

but we refresh all rows every 64ms
Key Idea of RAIDR: Refresh weak rows more frequently,

all other rows less frequently

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating

Unnecessary DRAM Refreshes

10

Liu, Jaiyen, Veras, Mutlu,
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

1. Profiling: Identify the retention time of all DRAM rows

→ can be done at design time or during operation

2. Binning: Store rows into bins by retention time

→ use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

→ check the bins to determine refresh rate of a row

RAIDR: Mechanism

11

1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Results and Takeaways
◼ System: 32GB DRAM, 8-core; Various workloads

◼ RAIDR hardware cost: 1.25 kB (2 Bloom filters)

◼ Refresh reduction: 74.6%

◼ Dynamic DRAM energy reduction: 16%

◼ Idle DRAM power reduction: 20%

◼ Performance improvement: 9%

◼ Benefits increase as DRAM scales in density

12

Reading for the Really Interested

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention -Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012. Slides (pdf)

13

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

Really Interested? … Further Readings

◼ Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)

14

http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

15

Mystery #4:

Memory Performance Attacks

16

Multi-Core Systems

17

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

Multi-Core

Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY

CONTROLLER

A Trend: Many Cores on Chip

◼ Simpler and lower power than a single large core

◼ Parallel processing on single chip → faster, new applications

18

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
ппу άŎƻǊŜǎέ

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

◼ What we want:

❑ N times the system performance with N times the cores

◼ What do we get today?

19

Unexpected Slowdowns in Multi-Core

20

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, Memory performance attacks: Denial of memory service
in multi-core systems, USENIX Security 2007.

Three Questions

◼ Can you figure out why the applications slow down if you
do not know the underlying system and how it works?

◼ Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

◼ Can you fix the problem without knowing what is
happening “underneath”?

21

Three Questions

◼ Why is there any slowdown?

◼ Why is there a disparity in slowdowns?

◼ How can we solve the problem if we do not want that
disparity?

❑ What do we want (the system to provide)?

22

Why Is This Important?

◼ We want to execute applications in parallel in multi-core
systems → consolidate more and more

❑ Cloud computing

❑ Mobile phones

◼ We want to mix different types of applications together

❑ those requiring QoS guarantees (e.g., video, pedestrian detection)

❑ those that are important but less so

❑ those that are less important

◼ We want the system to be controllable and high performance

23

24

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

INTERCONNECT

DRAM

Bank 3

25

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM

Bank 3

Digging Deeper: DRAM Bank Operation

26

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

This view of a bank is an

abstraction.

Internally, a bank consists of

many cells (transistors &

capacitors) and other

structures that enable access

to cells

27

DRAM Controllers

◼ A row-conflict memory access takes significantly longer
than a row-hit access

◼ Current controllers take advantage of this fact

◼ Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

◼ This scheduling policy aims to maximize DRAM throughput

*Rixner et al., Memory Access Scheduling, ISCA 2000.

*Zuravleff and Robinson, Controller for a synchronous DRAM …,US Patent 5,630,096, May 1997.

28

The Problem

◼ Multiple applications share the DRAM controller

◼ DRAM controllers designed to maximize DRAM data
throughput

◼ DRAM scheduling policies are unfair to some applications

❑ Row-hit first: unfairly prioritizes apps with high row buffer locality

◼ Threads that keep on accessing the same row

❑ Oldest-first: unfairly prioritizes memory-intensive applications

◼ DRAM controller vulnerable to denial of service attacks

❑ Can write programs to exploit unfairness

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

29

A Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming

(in sequence)

random

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.

30

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B

128 (8KB/64B) requests of STREAM serviced

before a single request of RANDOM

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.

Now That We Know What Happens Underneath

◼ How would you solve the problem?

◼ What is the right place to solve the problem?

❑ Programmer?

❑ System software?

❑ Compiler?

❑ Hardware (Memory controller)?

❑ Hardware (DRAM)?

❑ Circuits?

◼ Two other goals of this course:

❑ Enable you to think critically

❑ Enable you to think broadly

31

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

For the Really Interested…

◼ Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi -Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),
pages 257-274, Boston, MA, August 2007. Slides (ppt)

32

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

Really Interested? … Further Readings

◼ Onur Mutlu and Thomas Moscibroda,

"Stall -Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

◼ Onur Mutlu and Thomas Moscibroda,

"Parallelism -Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systemsò

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application -Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

33

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Takeaway I

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

34

Takeaway II

Cooperation between

multiple components and layers

can enable

more effective

solutions and systems

35

Recap: Mysteries No Longer!

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memories Forget: Refresh (2011-2012)

◼ Memory Performance Attacks (2006-2007)

36

Takeaways

37

Takeaways

◼ It is an exciting time to be understanding and designing
computing architectures

◼ Many challenging and exciting problems in platform design

❑ That no one has tackled (or thought about) before

❑ That can have huge impact on the world’s future

◼ Driven by huge hunger for data (Big Data), new applications
(ML/AI, graph analytics, genomics), ever-greater realism, …

❑ We can easily collect more data than we can analyze/understand

◼ Driven by significant difficulties in keeping up with that
hunger at the technology layer

❑ Five walls: Energy, reliability, complexity, security, scalability

38

Computer Architecture as an

Enabler of the Future

39

Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch Prof. Mutlu’s inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment ïfor 1% extra credit

❑ Write a 1 -page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle
40

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558

Digital Design & Computer Arch.

Lecture 3a: Mysteries in Comp. Arch.

Prof. Onur Mutlu

ETH Zürich

Spring 2020

27 February 2020

Backup Slides For Your Benefit.

Not Covered in Lecture.

42

Bloom Filters

43

Approximate Set Membership
◼ Suppose you want to quickly find out:

❑ whether an element belongs to a set

◼ And, you can tolerate mistakes of the sort:

❑ The element is actually not in the set, but you are incorrectly
told that it is → false positive

◼ But, you cannot tolerate mistakes of the sort:

❑ The element is actually in the set, but you are incorrectly told
that it is not → false negative

◼ Example task: You want to quickly identify all Mobile Phone
Model X owners among all possible people in the world

❑ Perhaps you want to give them free replacement phones
44

Example Task

◼ World population

❑ ~8 billion (and growing)

❑ 1 bit per person to indicate Model X owner or not

❑ 2^33 bits needed to represent the entire set accurately

◼ 8 Gigabits → large storage cost, slow access

◼ Mobile Phone Model X owner population

❑ Say 1 million (and growing)

◼ Can we represent the Model X owner set approximately,
using a much smaller number of bits?

❑ Record the ID’s of owners in a much smaller Bloom Filter

45

Example Task II

◼ DRAM row population

❑ ~8 billion (and growing)

❑ 1 bit per row to indicate Refresh-often or not

❑ 2^33 bits needed to represent the entire set accurately

◼ 8 Gigabits → large storage cost, slow access

◼ Refresh-often population

❑ Say 1 million

◼ Can we represent Refresh-often set approximately, using a
much smaller number of bits?

❑ Record the ID’s of Refresh-Often rows in a much smaller
Bloom Filter

46

Bloom Filter

◼ [Bloom, CACM 1970]

◼ Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

◼ Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

◼ Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

❑ Some elements map to the bits other elements also map to

◼ Operations: 1) insert, 2) test, 3) remove all elements

47Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

48Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

49

Bloom Filter Operation Example

50

Bloom Filter Operation Example

51

Bloom Filter Operation Example

52

Bloom Filters

53Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filters: Pros and Cons

◼ Advantages

+ Enables storage-efficient representation of set membership

+ Insertion and testing for set membership (presence) are fast

+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted

+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

◼ Disadvantages

-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

54Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Benefits of Bloom Filters as Refresh Rate Bins

◼ False positives: a row may be declared present in the
Bloom filter even if it was never inserted

❑ Not a problem: Refresh some rows more frequently than
needed

◼ No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

◼ Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

◼ Efficient: No need to store info on a per-row basis; simple
hardware → 1.25 KB for 2 filters for 32 GB DRAM system

55

