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Four Mysteries, Continued

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memories Forget: Refresh (2011-2012)

◼ Memory Performance Attacks (2006-2007)
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Mystery #3:  DRAM Refresh
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Recall: DRAM Refresh

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to refresh each row periodically 
to restore charge

❑ Activate each row every N ms

❑ Typical N = 64 ms

◼ Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling 
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Recall: How Do We Solve the Problem?

◼ Observation: All DRAM rows are refreshed every 64ms.

◼ Critical thinking: Do we need to refresh all rows every 64ms?

◼ What if we knew what happened underneath and exposed 
that information to upper layers?
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Underneath: Retention Time Profile of DRAM

6Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Aside: Why Do We Have Such a Profile?

◼ Answer: Manufacturing is not perfect

◼ Not all DRAM cells are exactly the same 

◼ Some are more leaky than others

◼ This is called Manufacturing Process Variation
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Opportunity: Taking Advantage of This Profile

◼ Assume we know the retention time of each row exactly

◼ What can we do with this information?

◼ Who do we expose this information to?

◼ How much information do we expose?

❑ Affects hardware/software overhead, power consumption, 
verification complexity, cost

◼ How do we determine this profile information?

❑ Also, who determines it?
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Retention Time of DRAM Rows

◼ Observation: Overwhelming majority of DRAM rows can be 
refreshed much less often without losing data

◼ Can we exploit this to reduce refresh operations at low cost?
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Only ~1000 rows in 32GB DRAM need refresh every 64 ms,

but we refresh all rows every 64ms
Key Idea of RAIDR: Refresh weak rows more frequently,

all other rows less frequently 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Eliminating 

Unnecessary DRAM Refreshes
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Liu, Jaiyen, Veras, Mutlu, 
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf


1. Profiling: Identify the retention time of all DRAM rows

→ can be done at design time or during operation

2. Binning: Store rows into bins by retention time

→ use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates

→ check the bins to determine refresh rate of a row

RAIDR: Mechanism
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1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Results and Takeaways
◼ System: 32GB DRAM, 8-core; Various workloads

◼ RAIDR hardware cost: 1.25 kB (2 Bloom filters)

◼ Refresh reduction: 74.6%

◼ Dynamic DRAM energy reduction: 16%

◼ Idle DRAM power reduction: 20%

◼ Performance improvement: 9%

◼ Benefits increase as DRAM scales in density
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Reading for the Really Interested

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention -Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA ), Portland, OR, June 2012. Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


Really Interested? … Further Readings

◼ Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. 
Slides (pptx) (pdf) Video

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, 
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing 
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Mystery #4: 

Memory Performance Attacks

16



Multi-Core Systems
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A Trend: Many Cores on Chip

◼ Simpler and lower power than a single large core

◼ Parallel processing on single chip → faster, new applications
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IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
ппу άŎƻǊŜǎέ

AMD Barcelona
4 cores

Sun Niagara II
8 cores



Many Cores on Chip

◼ What we want:

❑ N times the system performance with N times the cores

◼ What do we get today?
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Unexpected Slowdowns in Multi-Core
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Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, Memory performance attacks: Denial of memory service 
in multi-core systems, USENIX Security 2007.



Three Questions

◼ Can you figure out why the applications slow down if you 
do not know the underlying system and how it works?

◼ Can you figure out why there is a disparity in slowdowns if 
you do not know how the system executes the programs?

◼ Can you fix the problem without knowing what is 
happening “underneath”?
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Three Questions

◼ Why is there any slowdown?

◼ Why is there a disparity in slowdowns?

◼ How can we solve the problem if we do not want that 
disparity?

❑ What do we want (the system to provide)?
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Why Is This Important?

◼ We want to execute applications in parallel in multi-core 
systems → consolidate more and more

❑ Cloud computing

❑ Mobile phones

◼ We want to mix different types of applications together

❑ those requiring QoS guarantees (e.g., video, pedestrian detection)

❑ those that are important but less so

❑ those that are less important

◼ We want the system to be controllable and high performance
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Why the Disparity in Slowdowns?
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Digging Deeper: DRAM Bank Operation
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DRAM Controllers

◼ A row-conflict memory access takes significantly longer 
than a row-hit access

◼ Current controllers take advantage of this fact

◼ Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

◼ This scheduling policy aims to maximize DRAM throughput

*Rixner et al., Memory Access Scheduling, ISCA 2000.

*Zuravleff and Robinson, Controller for a synchronous DRAM …,US Patent 5,630,096, May 1997.
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The Problem

◼ Multiple applications share the DRAM controller

◼ DRAM controllers designed to maximize DRAM data 
throughput

◼ DRAM scheduling policies are unfair to some applications

❑ Row-hit first: unfairly prioritizes apps with high row buffer locality

◼ Threads that keep on accessing the same row

❑ Oldest-first: unfairly prioritizes memory-intensive applications

◼ DRAM controller vulnerable to denial of service attacks

❑ Can write programs to exploit unfairness



// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming

(in sequence)

random

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.
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What Does the Memory Hog Do?
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Row size: 8KB, request size: 64B

128 (8KB/64B) requests of STREAM serviced 

before a single request of RANDOM

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.



Now That We Know What Happens Underneath

◼ How would you solve the problem?

◼ What is the right place to solve the problem?

❑ Programmer?

❑ System software?

❑ Compiler?

❑ Hardware (Memory controller)?

❑ Hardware (DRAM)?

❑ Circuits?

◼ Two other goals of this course:

❑ Enable you to think critically

❑ Enable you to think broadly
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For the Really Interested…

◼ Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi -Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY ), 
pages 257-274, Boston, MA, August 2007. Slides (ppt)

32

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


Really Interested? … Further Readings

◼ Onur Mutlu and Thomas Moscibroda, 

"Stall -Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO ), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

◼ Onur Mutlu and Thomas Moscibroda, 

"Parallelism -Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systemsò

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ) [Slides (ppt)]

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut 
Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application -Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO ), Porto Alegre, Brazil, December 2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Takeaway I

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Takeaway II

Cooperation between 

multiple components and layers 

can enable 

more effective 

solutions and systems
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Recap: Mysteries No Longer!

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memories Forget: Refresh (2011-2012)

◼ Memory Performance Attacks (2006-2007)
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Takeaways
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Takeaways

◼ It is an exciting time to be understanding and designing 
computing architectures

◼ Many challenging and exciting problems in platform design

❑ That no one has tackled (or thought about) before

❑ That can have huge impact on the world’s future

◼ Driven by huge hunger for data (Big Data), new applications 
(ML/AI, graph analytics, genomics), ever-greater realism, …

❑ We can easily collect more data than we can analyze/understand

◼ Driven by significant difficulties in keeping up with that 
hunger at the technology layer

❑ Five walls: Energy, reliability, complexity, security, scalability
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Computer Architecture as an 

Enabler of the Future
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Assignment: Required Lecture Video

◼ Why study computer architecture?

◼ Why is it important?

◼ Future Computing Architectures

◼ Required Assignment

❑ Watch Prof. Mutlu’s inaugural lecture at ETH and understand it

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM

◼ Optional Assignment ïfor 1% extra credit

❑ Write a 1 -page summary of the lecture and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle
40

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558
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Backup Slides For Your Benefit. 

Not Covered in Lecture.
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Bloom Filters
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Approximate Set Membership
◼ Suppose you want to quickly find out:

❑ whether an element belongs to a set

◼ And, you can tolerate mistakes of the sort:

❑ The element is actually not in the set, but you are incorrectly 
told that it is → false positive

◼ But, you cannot tolerate mistakes of the sort:

❑ The element is actually in the set, but you are incorrectly told 
that it is not → false negative

◼ Example task: You want to quickly identify all Mobile Phone 
Model X owners among all possible people in the world

❑ Perhaps you want to give them free replacement phones
44



Example Task

◼ World population

❑ ~8 billion (and growing)

❑ 1 bit per person to indicate Model X owner or not

❑ 2^33 bits needed to represent the entire set accurately

◼ 8 Gigabits → large storage cost, slow access

◼ Mobile Phone Model X owner population

❑ Say 1 million (and growing)

◼ Can we represent the Model X owner set approximately, 
using a much smaller number of bits?

❑ Record the ID’s of owners in a much smaller Bloom Filter
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Example Task II

◼ DRAM row population

❑ ~8 billion (and growing)

❑ 1 bit per row to indicate Refresh-often or not

❑ 2^33 bits needed to represent the entire set accurately

◼ 8 Gigabits → large storage cost, slow access

◼ Refresh-often population

❑ Say 1 million

◼ Can we represent Refresh-often set approximately, using a 
much smaller number of bits?

❑ Record the ID’s of Refresh-Often rows in a much smaller 
Bloom Filter

46



Bloom Filter

◼ [Bloom, CACM 1970]

◼ Probabilistic data structure that compactly represents set 
membership (presence or absence of element in a set)

◼ Non-approximate set membership: Use 1 bit per element to 
indicate absence/presence of each element from an element 
space of N elements

◼ Approximate set membership: use a much smaller number of 
bits and indicate each element’s presence/absence with a 
subset of those bits 

❑ Some elements map to the bits other elements also map to

◼ Operations: 1) insert, 2) test, 3) remove all elements

47Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Bloom Filter Operation Example

48Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Bloom Filter Operation Example
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Bloom Filter Operation Example
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Bloom Filter Operation Example
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Bloom Filter Operation Example
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Bloom Filters

53Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Bloom Filters: Pros and Cons

◼ Advantages

+ Enables storage-efficient representation of set membership

+ Insertion and testing for set membership (presence) are fast

+ No false negatives: If Bloom Filter says an element is not 
present in the set, the element must not have been inserted

+ Enables tradeoffs between time & storage efficiency & false 
positive rate (via sizing and hashing)

◼ Disadvantages

-- False positives: An element may be deemed to be present in 
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false 
positives

54Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Benefits of Bloom Filters as Refresh Rate Bins

◼ False positives: a row may be declared present in the 
Bloom filter even if it was never inserted

❑ Not a problem: Refresh some rows more frequently than 
needed

◼ No false negatives: rows are never refreshed less 
frequently than needed (no correctness problems)

◼ Scalable: a Bloom filter never overflows (unlike a fixed-size 
table)

◼ Efficient: No need to store info on a per-row basis; simple 
hardware → 1.25 KB for 2 filters for 32 GB DRAM system
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