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Assignment: Required Readings

This week

o Combinational Logic
P&P Chapter 3 until 3.3  + H&H Chapter 2

Next week

o Hardware Description Languages and Verilog
H&H Chapter 4 until 4.3 and 4.5

o Sequential Logic
P&P Chapter 3.4 untilend + H&H Chapter 3 in full

By the end of next week, make sure you are done with
o P&P Chapters 1-3 + H&H Chapters 1-4



A Note on Hardware vs. Software

This course might seem like it is only "Computer Hardware”

However, you will be much more capable if you master both
hardware and software (and the interface between them)

a Can develop better software if you understand the hardware
o Can design better hardware if you understand the software
o Can design a better computing system if you understand both

This course covers the HW/SW interface and microarchitecture
o We will focus on tradeoffs and how they affect software

Recall the four mysteries



Recap: Four Mysteries

Meltdown & Spectre (2017-2018)

Rowhammer (2012-2014)

Memory Performance Attacks (2006-2007)

Memories Forget: Refresh & RAIDR (2011-2012)




Computer Architecture as an
Enabler of the Future




Assignment: Required Iecture Video

Why study computer architecture?
Why is it important?
Future Computing Architectures

Required Assignment

o Watch my inaugural lecture at ETH and understand it
o https://www.youtube.com/watch?v=kgiZISOcGFM

Optional Assignment — for 1% extra credit

o Write a 1-page summary of the lecture and email us
What are your key takeaways?
What did you learn?
What did you like or dislike?

Email your summary to digitaltechnik@lists.inf.ethz.ch



https://www.youtube.com/watch?v=kgiZlSOcGFM
mailto:digitaltechnik@lists.inf.ethz.ch

... but, first ...

Let’s understand the fundamentals...

You can change the world only if you understand it well
enough...

o Especially the basics (fundamentals)

Past and present dominant paradigms

And, their advantages and shortcomings — tradeoffs

And, what remains fundamental across generations

And, what technigues you can use and develop to solve
problems



Fundamental Concepts




What 1s A Computer?

= Three key components

= Computation
= Communication

= Storage/memory

Computing System

A
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"
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing E a Communication E a Memory/Storage
Unit Unit Unit
Memory System Storage System

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/




What 1s A Computer?

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication Memory’”

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What 1s A Computer?

We will cover all three components

Processing

control
(sequencing)

datapath

Memory
Jorogram /0
and data)
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Recall: The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface Computer Architecture
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What We Will Cover (I)

Combinational Logic Design

Hardware Description Languages (Verilog)

Sequential Logic Design
Timing and Verification

ISA (MIPS and LC3b)

MIPS Assembly Programming

l SW/HW Interface l

13



What We Will Cover (IT)

Microarchitecture Basics: Single-cycle
Multi-cycle and Microprogrammed Microarchitectures
Pipelining

Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

Out-of-Order Execution
Other Processing Paradigms (SIMD, VLIW, Systolic, ...)
Memory and Caches

Virtual Memory

14



Processing Paradigms We Will Cover

= Pipelining
= Out-of-order execution
= Dataflow (at the ISA level)

= Superscalar Execution
= VLIW

= SIMD Processing (Vector & array, GPUS)

= Decoupled Access Execute System Software
: SW/HW Interface
= Systolic Arrays

15



Combinational Logic Circuits
and Design

16



What Will We Learn Today?

Building blocks of modern computers
o Transistors
o Logic gates

Boolean algebra
Combinational circuits

How to use Boolean algebra to represent combinational
circuits

Minimizing logic circuits (if time permits)

SAFARI
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(Micro)-Processors

& k; N
\\\

‘,ﬁ

’——’ L ~

\(Wr l‘*‘\“'

- £ _’.)\ W TN
&

P %}l v

- -3 . &

t S

SAFARI

18



H\r—:r: Th (14 ] .!:'r'

L7U”EN.2- l?jj "o

Sav-p

:

BAS Eh

RELy

.,.;

fg-n-'
I.Q-v—'
(G
mfg-—‘
[ 1w ’t— - —

i‘ XILINX

| UNIWWERSITY PROGRAM

'_"\

r’g...
IG..-—
[Q.a—

@!.A..
:m[fdh-

SAFARI

19



Custom ASICs
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They All Look the Same

=
=
=
L3
E
N

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything

SAFARI 21



They All Look the Same

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything
Program minutes days months

Development Time
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They All Look the Same

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything

Program minutes days months

Development Time

Performance 0 + ++
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They All Look the Same

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything
Program minutes days months
Development Time
Performance 0 + ++
Good for Ubiquitous Prototyping Mass production,
Simple to use Small volume Max performance
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They All Look the Same

In short: Common building Reconfigurable
block of computers  hardware, flexible

Program minutes days

Development Time

Performance 0 +

Good for Ubiquitous Prototyping
Simple to use Small volume

Programming Executable file Bit file

Languages C/C++/Java/... Verilog/VHDL

Main Companies Intel, ARM, AMD  Xilinx, Altera, Lattice

|

You customize
everything

months

++

Mass production,
Max performance

Design masks
Verilog/VHDL

TSMC, UMC, ST,
Globalfoundries

SAFARI
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They All ook the Sam

—_,

Want to o — By
learn how o T o, program
these L T ming
work e S these
Common building Reconfigurable
block of computers /\ hardware, flexible

Program minutes days months
Development Time
Performance 0
Good for Ubiquitous

] Simple to use Using this language
Programming Executable file .
Languages C/C++/Java/... Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD Xilinx, Altera, Lattice  TSMC, UMC, ST,

Globalfoundries
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Building Blocks of Modern
Computers




Transistors

28



Transistors

Computers are built from very large numbers of very
simple structures

o Intel’s Pentium IV microprocessor, first offered
for sale in 2000, was made up of more than 42 | Problem
million MOS transistors Algorithm

a Intel’s Core i7 Broadwell-E, offered for sale in | Program/Language
2016, is made up of more than 3.2 billion MOS | Runtime System

transistors (VM, OS, MM)
This lecture ISA (Architecture)
o How the MOS transistor works (as a logic Microarchitecture

element)

o How these transistors are connected to form
logic gates Electrons

o How logic gates are interconnected to form larger units that
are needed to construct a computer

29



MOS Transistor

= By combining
o Conductors (Metal)
o Insulators (Oxide)
o Semiconductors

= We get a Transistor (MOS)

= Why is this useful?
o We can combine many of these to realize simple logic gates

= The electrical properties of metal-oxide semiconductors are
well beyond the scope of what we want to understand in
this course

o They are below our lowest level of abstraction

30



Ditterent Types of MOS Transistors

There are two types of MOS transistors: n-type and p-type

Drain Source

Gate {': Gate %—L

Source

n-type p-type

They both operate “logically,” very similar to the way wall
switches work



How Does a Transistor Work?

Wall Switch @
[ —>

N
[Power Supply

o In order for the lamp to glow, electrons must flow

a In order for electrons to flow, there must be a closed circuit
from the power supply to the lamp and back to the power
supply

o The lamp can be turned on and off by simply manipulating the
wall switch to make or break the closed circuit

32



How Does a Transistor Work?

Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

Drai
jm If the gate of an n-type transistor is

supplied with a high voltage, the

@ connection from source to drain acts like a
—‘ piece of wire
Source Depending on the technology, 0.3V to 3V

Schematic of an n-type _ _
MOS transistor If the gate of the n-type transistor is

supplied with 0V, the connection between
the source and drain is broken

33



How Does a Transistor Work?

The n-type transistor in a circuit with a battery and a bulb

a N
D

Gate —|

A\

)

8 Volt—|

V | p
Qhorthand notatlcy

_

ower Supply |

The p-type transistor wor

from the n-type transistor

The circuit is closed
when the gate is
supplied with 3V

n-type

Drain

]

-

Source

Drain

Source

ks in exactly the opposite fashion

The circuit is closed
when the gate is
supplied with OV

p-type

34



Logic Gates

35



One Level Higher in the Abstraction

= Now, we know how a MOS transistor works
= How do we build logic out of MOS transistors?

Problem
= We construct basic logic structures out of | Algorithm
individual MOS transistors Program/Language
Runtime System
_ _ _ (VM, OS, MM)
= These logical units are named logic gates [ 5, (Architecture)

o They implement simple Boolean functions

36



Making LLogic Blocks Using CMOS Technology

Modern computers use both n-type and p-type transistors,
i.e. Complementary MOS (CMOS) technology

nMOS + pMOS = CMOS

The simplest logic structure that exists in a modern

computer

3V

e

In (A)—/

_|

Out (Y) What does this circuit do?

n-type

ov

37



Functionality of Our CMOS Circuit

A\

What happens when the input is connected to 0V?

oV —

— Out (Y)

3V

|

\
v

ov

|

p-type transistor
pulls the output up

Y=3V

38



Functionality of Our CMOS Circuit

A\

What happens when the input is connected to 3V?

A= 3V—

_c|

_|

3V

— Out (Y)

3V

\

Y

!

l

ov

n-type transistor pulls
the output down

39



CMOS NOT Gate

= This is actually the CMOS NOT Gate AR

= Why do we call it NOT? —p
o IfA=0VthenY =3V In (A)— out (Y)
o IfA=3VthenY =0V N

= Digital circuit: one possible interpretation

o Interpret OV as logical (binary) 0 value Vv
o Interpret 3V as logical (binary) 1 value

0 ON OFF 1 Y = A
1 OFF ON 0

SAFARI
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CMOS NOT Gate

This is actually the CMOS NOT Gate 3V

Why do we call it NOT? —
o fA=0VthenY = 3V
o fA=3VthenY =0V
Digital circuit: one possible interpretation
o Interpret OV as logical (binary) 0 value Vv

In (A)— — Out (Y)

: : ov
o Interpret 3V as logical (binary) 1 value _
Y=A
Truth table: what would be the logical
A —_— Y output of the circuit for each possible input

AlY
We call it a NOT gate 0 1
or an inverter 1 0

SAFARI



Another CMOS Gate: What Is This?

Let’s build more complex gates!

3V

—{[P1 —[P2

Out (Y)

SAFARI
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CMOS NAND Gate

= Let’s build more complex gates!

3V

|I°|Ll —<i P2
%& E Out (Y)
i In (A) N1 A B Pl P2 N1 N2 Y

n®) L m: 0 OJON ON OFF OFF| 1
| 0 1] ON OFF OFF ON | 1

o 1 OJOFF ON ON OFF] 1

1 1JOFF OFF ON ON | o

o P1 and P2 are in parallel; only one must be ON to pull the
output up to 3V

o N1 and N2 are connected in series; both must be ON to pull
the output to 0V

SAFARI 43




CMOS NAND Gate

Let’s build more complex gates!

3V

e
WL ;

In (B) o—]|[N2

SAFARI

= AB
A BlY
0 0|1
0 1|1
1 0|1
1 1|0

44



CMOS AND Gate

How can we make an AND gate?

A B Y _ _
0 1 |o A—
1 0 0 —Y
1 1 |1 B —
We make an AND gate using - =
one NAND gate and ﬁﬁ P2 {P3
one NOT gate —— out (Y)
i In(A) —® N1 —|[N3
In (8) N2 N
)\
ov

SAFARI 45



CMOS NOT, NAND, AND Gates

Aly A B |Y A B |vY
0 1 0 0 1 0 0 0
11 o 0 1 1 0 1 0
1 0 1 1 0) 0)
1 1 0) 1 1 1
£ ] - T
—LCp ‘ II{l 4 out (Y) J_@ll e |—<iII’3 out (Y)
In (A)— — Out (Y) In (A) —j[N1 In (A) N1 |—III\IZ"»
_":N Ine) ————[N2 —& N2
In (B) 0\7/
V
(1)) ov ov

SAFARI 46



General CMOS Gate Structure

The general form used to construct any inverting logic gate,

such as: NOT, NAND, or NOR

The networks may consist of
transistors in series or in
parallel

When transistors are in
parallel, the network is ON if
one of the transistors is ON

When transistors are in series,
the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up
nNMOS transistors are used for pull-down

SAFARI

iInputs

—

/

N

pMOS

pull-up
network

~

J

/

N

nMOS
pull-down
network

~

J

Y%

output
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General CMOS Gate Structure (1I)

Exactly one network should be ON, and the other network

should be OFF at any given time

If both networks are ON at the
same time, there is a short
circuit = likely incorrect
operation

If both networks are OFF at
the same time, the output is
floating = undefined

pMOS transistors are used for pull-up
nNMOS transistors are used for pull-down

SAFARI

iInputs

—

/

N

pMOS

pull-up
network

~

J

/

N

nMOS
pull-down
network

~

J

Y%

output
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Diggoing Deeper: Why This Structure?

MOS transistors are not perfect switches

pPMOS transistors pass 1’'s well but 0’s poorly
NMOS transistors pass 0’s well but 1’s poorly

pMOS transistors are good at “pulling up” the output
NMOS transistors are good at “pulling down” the output

3v 3V

pMOS

ull-u
I%ll —iF2 |_1|I>3 npetwofk
Out (Y) . t
In (A) —{[N1 LﬂB3 INpUts

In() ——&—[N2 VA

oV

output

nMOS
pull-down
network

ov

SAFARI See Section 1.7 in H&H 49



Digoing Deeper: Latency

Which one is faster?
o lransistors in series
o Transistors in parallel

Series connections are slower than parallel connections
o More resistance on the wire

How do you alleviate this latency?
o See H&H Section 1.7.8 for an example: pseudo-nMOS Logic

SAFARI
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Digoing Deeper: Power Consumption

Dynamic Power Consumption

o C*V2x*f
C = capacitance of the circuit (wires and gates)
V = supply voltage
f = charging frequency of the capacitor

Static Power consumption

o V* IIeakage
supply voltage * leakage current

Energy Consumption
o Power * Time

See more in H&H Chapter 1.8

SAFARI
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Or~r™0O0O

OO

XOR

Or~—Or

OO0 r™rr

0111

XNOR

Or@mOr

OO0 r™r

—O00O0

OR

Or~—Or

OO0 ™

COO0OOTr

NOR

Or~0Or

OO0 r™r-

-0

AND

Buffer

Or—Or

OO0 r™rr

-z

NAND

A —
B —

Inverter

Or@0Or

OO0 r™r

Common Logic Gates
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Larger Gates

We can extend the gates to more than 2 inputs
Example: 3-input AND gate, 10-input NOR gate

See your readings

SAFARI
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Aside: Moore’s Law:
Enabler of Many Gates on a Chip




An Enabler: Moore’s Law
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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Our World
in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

SAFARI

Year of introduction

Licensed under CC-BY-SA by the author Max Roser.
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Recommended Reading

Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

Only 3 pages

A quote:

"With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

Another quote:

"Will it be possible to remove the heat generated by tens of

thousands of components in a single sificon chip?”
58



How Do We Keep Moore’s Law

Manufacturing smaller transistors/structures
o Some structures are already a few atoms in size

Developing materials with better properties

o Copper instead of Aluminum (better conductor)

o Hafnium Oxide, air for Insulators

o Making sure all materials are compatible is the challenge

Optimizing the manufacturing steps
o How to use 193nm ultraviolet light to pattern 20nm structures

New technologies
o FinFET, Gate All Around transistor, Single Electron Transistor...

SAFARI 59



Combinational LLogic Circuits

60



We Can Now Build Logic Circuits

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important

components of the microarchitecture of a computer!

= A logic circuit is composed of: rf o N
- functional spec
U IanItS inputs — : OUtpUtS
o Outputs —» timing spec
\_ _/

= Functional specification (describes relationship between
inputs and outputs)

= Jiming specification (describes the delay between inputs
changing and outputs responding)

61



Types of Logic Circuits

( _ )
—» functional spec

inputs »
—»{ timing spec
\_

5 outputs

J

Combinational Logic
o Memoryless

o Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

o In some books called Combinatorial Logic
Later we will learn: Sequential Logic

2 Has memory
Structure stores history = Can “store” data values

o Outputs are determined by previous (historical) and current
values of inputs
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Boolean Equations
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Functional Specification

Functional specification of outputs in terms of inputs

What do we mean by “function”?

o Unique mapping from input values to output values

o The same input values produce the same output value every
time

2 No memory (does not depend on the history of input values)

Example (full 1-bit adder — more later):

B— ¢ S
S5 =FA B G) c — Cout
Cout = G(A4, B G,) n

S =A®B®C,
C., =AB+AC_+BC,

64



Simple Equations: NOT / AND / OR

A (reads “not A”)is 1iff A is 0 4
0

A _
o7 1

A * B (reads “A and B”)is 1iff A and B are both1 A4 B[A°*B

o = ||

0 0 0
Q: }—— AeB 0 1 0
1 0 0
1 1 1
A + B (reads “A or B”)is 1 iff either AorBis 1 A BIA+B
0 0 0
A
:\DA,,B 0 1 1
B 1 0 1
1 1 1

65



Boolean Algebra: Big Picture

An algebra on 1's and 0’s
o with AND, OR, NOT operations

What you start with

o Axioms: basic things about objects and operations
you just assume to be true at the start

What you derive first
o Laws and theorems: allow you to manipulate Boolean expressions
o ...also allow us to do some simplification on Boolean expressions

What you derive later

o More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations

George Boole, “The Mathematical Analysis of Logic,” 1847. 66



Boolean Algebra: Axioms

Formal version English version
1. B contains at least two elements, | .
Oand 1, such that 0 # 1 Math formality...
2. Closure a,b € B, _ Result of AND, OR stays
(i) a+ bEB . in set you start with
(il) asbe B
3. C.ommutative Laws: a,b € B, For primitive AND, OR of
83) 2 inputs, order doesn’t matter
4. Ic!entjtiqs: 0,1e B There are identity elements
(1) . for AND, OR, that give you back
(i1) . what you started with
5. D istributive Laws: . * distributes over +, just like algebra
83) ...but + distributes over ®, also (!!)
B o e e e
(SIHP cmen . There is a complement element;
(ii) * AND/ORing with it gives the identity elm.

67



Boolean Algebra: Duality

Observation
o All the axioms come in “dual” form
o Anything true for an expression also true for its dual

o So any derivation you could make that is true, can be flipped into
dual form, and it stays true

Duality — More formally

o A dual of a Boolean expression is derived by replacing
Every AND operation with... an OR operation
Every OR operation with... an AND
Every constant 1 with... a constant 0
Every constant 0 with... a constant 1
But dont change any of the literals or play with the complements!

Example as(b+c)=(a*b)+(a°c)

— a+(bec)=(a+b)°(a+c)
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Boolean Algebra: Useful Laws

Dual

Operations with 0 and 1: 1 AND, OR with identities

1. X+0=X 1ID. Xe1=X gives you back the original

2. X+1=1 2D, Xe0=0 variable or the identity
Idempotent Law:

S X+X=X 3D. XX =X AND, OR with self = self
Involution Law:

4. @ - X double complement =

e 0. COTOPlEMREN

Laws of Complementarity: _ AND, OR with complement

5 X +X=1 5D. XX=0 gives you an identity
Commutative Law:

6. X+Y=Y+X

6D. XeY=Y*X

Just an axiom...
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Usetul Laws (cont)

Associative Laws: .
7. X+Y)+Z=X+ (Y+2Z) 7D. X*Y)*Z=Xe(Y*Z) Parenthesis order
=X+Y+2Z =XeYeZ does not matter
Distributive Laws:

8. Xo(Y+Z)=(X*Y)+(X*Z) 8D. X+ (YeZ)=X+Y)*sX+Z) Axiom

Simplification Theorems:

9. 9D.
Useful for
10. 10D. simplifying
11. 11D.

expressions

Actually worth remembering — they show up a lot in real designs...
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Boolean Algebra: Proving Things

Proving theorems via axioms of Boolean Algebra:
EX: Prove the theorem: XY + Xey =X
Distributive (5)
Complement (6)
Identity (4)

EX2: Prove the theorem: X + XeY = X
Identity (4)
Distributive (5)
Identity (2)
Identity (4)
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DeMorgan’s Law: Enabling Transformations

DeMorgan's Law:
12.(X +Y+Z+-)=X.

12D.(X.Y.Z..)=X+Y +

Y.Z...
Z +

Think of this as a transformation

Let’s say we have:

F=A+B+C

Applying DeMorgan’s Law (12), gives us

F=(A+B+C)=(A.B.0)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false
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DeMorgan’s LLaw (Continued)

These are conversions between different types of logic functions

They can prove useful if you do not have every type of gate

A=(X+Y)=XY

NOR is equivalent to AND
with inputs complemented

B=XY)=X+Y

NAND is equivalent to OR
with inputs complemented

X Y|X+Y [X|V | XY
00 1 11| 1
0 1 0o |1(o] O
10 0 |01 0
1 1 0 |o0fo| O
XY| XY |[X|V]|X+Y
00 1 [1(1] 1
01| 1 [1|o] 1
10 1 |01 1
11 0 [0|O| O
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Using Boolean Equations
to Represent a Logic Circuit
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Sum of Products Form: Key Idea

Assume we have the truth table of a Boolean Function

How do we express the function in terms of the inputs in a
standard manner?

Idea: Sum of Products form

Express the truth table as a two-level Boolean expression

o that contains all input variable combinations that result in a 1
output

o If ANY of the combinations of input variables that results in a
1 is TRUE, then the output is 1

o F = OR of all input variable combinations that result in a 1
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Some Definitions

s Complement: variable with a bar over it

A,B,C

m Literal: variable or its complement
A, A,B,B,C,C

= Implicant: product (AND) of literals
(A-B-C) ,(A-C) ,(B-C)

= Minterm: product (AND) that includes all input variables
(A-B-C) ,(A-B-C) ,(4-B-0)

m Maxterm: sum (OR) that includes all input variables
(A+B+C) ,(A+B+C) ,(A+B+0)
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Two-Level Canonical (Standard) Forms

Truth table is the unique signature of a Boolean function ...

o But, it Is an expensive representation

A Boolean function can have many alternative Boolean
expressions

o i.e., many alternative Boolean expressions (and gate
realizations) may have the same truth table (and function)

Canonical form: standard form for a Boolean expression
o Provides a unique algebraic signature

o If they all say the same thing, why do we care?
Different Boolean expressions lead to different gate realizations
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Two-Level Canonical Forms

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

011 100 101 110 111
F=ABC + ABC + ABC + ABC + ABC

_/

&
«-"-*

<
T

<
<«

P
<«

== ==0000|x
= EEOOKEKOO|®
= OROFROKEO|IN
HEREREEO OO

Each row in a truth table has a minterm
A minterm is a product (AND) of literals
Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

Find all the input combinations (minterms) for which the output of the function is TRUES



SOP Form — Why Does It Work?

This input
011 1700 10147110 111

F=ABC + ABC +[ABC |+ ABC + ABC

-/
Activates
this ter

=== 00 0|”

(== O O O™

OO RKOO|W
OO OKRO|IO

Only the shaded productterm — ABC =1-0-1— willbe 1

No other product terms will “turn on” — they will all be 0

So if inputs A B C correspond to a product term in expression,
o Weget 0+0+...+1+...+0+ 0 =1 for output

If inputs A B C do not correspond to any product term in expression
o Weget0+ 0+ ...+ 0 =0 for output
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Aside: Notation for SOP

Standard “shorthand” notation

o If we agree on the order of the variables in the rows of truth
table...

then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

"y

100 = decimal 4 so this is minterm #4, or m4

_—_--- 00 OO0

_—_ OO0 = 00|W
2] OO =000 NM
_eed e e = OO0

111 = decimal 7 so this is minterm #7, or m7

=h
]

We can write this as a sum of products

Or, we can use a summation notation
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Canonical SOP Forms

Shorthand Notation for
Minterms of 3 Variables

A B C | minterms

0O 0 O ABC =m0
0 0 1| ABC =ml
0 1 0| ABC =m2
0 1 1| ABC =m3
1 0 0| ABC =m4
1 0 1| ABC =m5
1 1 0 ABC =m6
1 1 11 ABC =m7

2-Level AND/OR

Realization

F in canonical form:

F(A,B,C) = > m(3,4,5,6,7)
=m3 +m4 +m5+ m6 +m7

F =

canonical form # minimal form

F




From Logic to Gates

m SOP (sum-of-products) leads to two-level logic
s Example:Y=(A-B-C)+(A-B-C)+(A-B-C)

A B C

Vil Vs | Ve

—— minterm: ABC

Y

minterm: ABC

Rj minterm: ABC

Y

U




Alternative Canonical Form: POS

We can have another from of representation

DeMorgan of SOP of F

products
A product of sums (POS) _
_ (A+B+C)(A+€+C}+B+C)
Each sum term represents one of the SUMS This input
“zeros” of the function /
0O 0 O1 0 10

F=(A+B+ )( +B+C) (A+ B+ 0)

Activates this term

For the given input, only the shaded sum term
will equal O

A+B+C=0+1+0

=== =O0 00O
= == O0O0FREOOI®W
= OROROEKEO|IO
O O O™

Anything ANDed with 0 is 0; Output F will be 0
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Consider A=0, B=1, C=0

Input

= == =000 0>

01 0> £ +£B+£C)(:+f 1 TT:
N1 NI N
v U U
'~
0

= =200k EKEOOIW
HOHROKORO|O
O O Ol

\

Only one of the products will be 0, anything ANDed with 0 is 0
Therefore, the outputis F=0
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POS: How to Write It

F=(A+B+C0)(A+B+C)(A+B+0()
I

1k

t

ﬂk

= -0 000>
= = O0O0KEOOIW
= ORROKEROKROIO
SRl N D - =N =] L

+

= W

+

Maxterm form:
1. Find truth table rows where Fis 0

2. 0 in input col = true literal
3. 1 in input col — complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of F is the same as the DeMorgan of SOP of F /!

85



Canonical POS Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Maxterms

A+B+C =Mo
A+B+C =M1
A+B+C =M2
A+B+C =M3
A+B+C =M4
A+B+C =M5
A+B+C =M6

A+B+C =M7 v
Maxterm shorthand notation

for a function of three variables

_ e =S =22 OO 0O >
L G U = T = R G U o T = wel

_ O ) OO0l NM

F=(A+B+C0)(A+B+C)(A+B+ ()

1_[ M(0,1,2)

HHERROOOO|L

HHEOOKKOO|xm

HORROKEORO|A

O O Oy

Note that you
form the
maxterms around
the “zeros” of the
function

This is not the
complement of
the function!
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Usetul Conversions

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(4,B,C) = Y m(3,4,5,6,7) = [[ M(0,1,2)

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(4,B,C) = [ M(0,1,2) = Y m(3,4,5,6,7)
3. Expansion of F to expansion of F:

E.g.,F(A,B,C)=Zm(3,4,5,6,7) — F(A,B,C)=Zm(0,1,2)

_ 1_[ M(0,1,2) . — 1_[ M(3,4,5,6,7)

4. Minterm expansion of F to Maxterm expansion of F:
rewrite in Maxterm form, using the same indices as F

E.g.,F(4,B,C) = Zm(S, 4,5,6,7) ___, F(A,B,C)=][IM(3,4,5,6,7)

= 1_[ M(0,1,2) - = 2 m(0,1,2)




Combinational Building Blocks
used 1n Modern Computers




Combinational Building Blocks

Combinational logic is often grouped into larger building
blocks to build more complex systems

Hides the unnecessary gate-level details to emphasize the
function of the building block

We now look at:

o Decoders

o Multiplexers

o Full adder

o PLA (Programmable Logic Array)



Decoder

n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The one output that is logically 1 is the output
corresponding to the input pattern that the logic circuit is
expected to detect

A L Q
B—e—+ ¢

1ifABis 00 A=l79
v B=0—g—— ¢

1ifABis 01

1ifABis 10

Ti:
i

1ifABis 11




Decoder

The decoder is useful in determining how to interpret a bit
pattern

a It could be the A=1
address of a row in ig 0 —e

®
O O

DRAM, that the
processor intends to |
read from

instruction in the
program and the
processor has to

decide what action to .
do! (based on

instruction opcode)

}
}
o It could be an }
}
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Multiplexer (MUX), or Selector

Selects one of the NVinputs to connect it to the output
Needs log, V-bit control input
2:1 MUX A B A B

S S=0i




Multiplexer (MUX)

The output C is always connected to either the input A or
the input B

o Output value depends on the value of the select line S

A B

| |
H

C

Your task: Draw the schematic for an 8-input (8:1) MUX
o Gate level: as a combination of basic AND, OR, NOT gates
o Module level: As a combination of 2-input (2:1) MUXes
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Full Adder (I)

Binary addition

o Similar to decimal addition Ap-1an—2 ...A1049

o From right to left b,_1b,,_» ..b1b

o One column at a time C,C, 1 .. Cq
One sum and one carry bit

- Y Sn-1 5180

Truth table of binary addition on one column of bits within
two n-bit operands

a; b; carry; |carry;.; S;
0 0 O 0 0
0o 0 1 0 1
0o 1 0 0 1
o 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1




Full Adder (IT)

Binary addition
o N 1-bit additions
o SOP of 1-bit addition

Full Adder (1 bit)

Ci+1

a,-1a,,—» ...aA1Qy

b, 1b,_ 5 ..bib,

Cn Cn—l Cl
Sn-1 5150

a; b; carry;|carry;.; S;
0 0 O 0 0
0O 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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4-Bit Adder from Full Adders

Creating a 4-bit adder out of 1-bit full adders
o To add two 4-bit binary numbers A and B

rorro e 1T

<C—4 Full Adder <C—3 Full Adder <«— Full Adder <«— Full Adder «—Q0

C> Ci
S T T
a; d, a4 Qg 1 0 1 1
+ b, b, b, b, + 1 0 o0 1
cy C3 Cp Cq 1 0 1 1
S3 S2 S§1 So 0 1 0 0
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The Programmable Logic Array (PLA)

The below logic structure is a very common building block
for implementing any collection of logic functions one

wishes to A — ) .
An array of AND gates B T ) =
followed by an array of OR D=
gates OD— Connections = .
How do we determine the =
number of AND gates? 4 - = >z
2 Remember SOP: the = -

number of possible minterms B

o For an n-input logic function, we need a PLA with 2" n-input
AND gates

How do we determine the number of OR gates? The

number of output columns in the truth table
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The Programmable Logic Array (PLA)

How do we implement a logic function?

o Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

o This is a simple programmable a — )
. — = X
logic . e 5 X
Programming a PLA: we ¢ 1 - .,
program the connections from ) Connections =
AND gate outputs to OR gate = -
inputs to implement a desired { = 2
logic function = -
-

Have you seen any other type of programmable logic?
o Yes! An FPGA...

a An FPGA uses more advanced structures, as we saw in Lecture 3
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Implementing a Full Adder Using a PLLA

AT =
— 0 X
B ﬁg} %:)7
c 1 This input should not be
9 Y We do not need
" ) connections = _-— connected to any outputs !
) this output
[ | |
O a;
- = 2 % T
. T\ _|
—o} b; 9 ) |
) — | I
¢ ) |
9 ) L I Ci
Truth table of a full adder __/
—_| |
a; b; carry;|carryi,; S; — ) | |
0 0 O 0 0 - ,
o 0 1 0 1 D || | Ji
0 1 0 0 1 —1 ) I I
o 1 1 1 0 — | }
1 0 0 0 1 | ==
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Logical (Functional) Completeness

Any logic function we wish to implement could be
accomplished with a PLA

o PLA consists of only AND gates, OR gates, and inverters

o We just have to program connections based on SOP of the
intended logic function

The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

NAND is also logically complete. So is NOR.
o Your task: Prove this.

100



More Combinational Building Blocks

H&H Chapter 2 in full
o Required Reading
o E.g., see Tri-state Buffer and Z values in Section 2.6

H&H Chapter 5
o Will be required reading soon.

You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

o Sections 5.1 and 5.2

101



Tri-State Buffer

A tri-state buffer enables gating of different signals onto a
wire

Tristate

Buffer

E

-

H o olm

HoRr ols
B o N N|<

Figure 2.40 Tristate buffer

Floating signal (Z): Signal that is not driven by any circuit
o Open circuit, floating wire
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Example: Use of Tri-State Butters

Imagine a wire connecting the CPU and memory

o At any time only the CPU or the memory can place a value on
the wire, both not both

o You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time
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Example Design with Tri-State Butfers

GateCPU

4 )
CPU
g J
GateMem
4 )
Memory
L ) Shared Bus
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Logic Simplification:
Karnaugh Maps (IK-Maps)




Recall: Full Adder in SOP Form Logic

O 11 O+ O O

OO O O « 1

b; carry; |carry;.; S;

d;

Ci+1

O 1O d0O+dA O

OO —=H =1 OO

OO OO ™ v+

)

Full Adder
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Goal: Simplified Full Adder

Full
Adder
f 5 S=A®B® Cj,

COL“A\ Y /L C. COUt= AB+ ACin"' BCin

|

S
Ch, A B | Cyu S
0O 0 0| 0 O
O 0 1| 0 1
o 1 0| 0 1
o 1 1 1 0 o _
1 0 0| O 1 How do we simplify Boolean logic?
1 0 1 1 0
1 1 0| 1 o0
1 1 1 1 1
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Quick Recap on Logic Simplitication

The original Boolean expression (i.e., logic circuit) may not
be optimal

[ F=~A(A +B) + (B + AA)(A + ~B) ]

Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

E=T

The goal of logic simplification:
o Reduce the number of gates/inputs
o Reduce implementation cost

A basis for what the automated design tools are doing today
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Logic Simplification

= Systematic techniques for simplifications

0 amenable to automation
Key Tool: The Uniting Theorem — F = AB + AB

A B |[F F= AB+AB=AB+B)=41)=4

Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

— B is eliminated, A remains

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows
1 0 — A is eliminated, B remains

@\& G= AB+AB=(A+AB=B
0 1

1

1
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Complex Cases

One example

Cout = ABC + ABC + ABC + ABC

Problem

o Easy to see how to apply Uniting Theorem...

o Hard to know if you applied it in all the right places...
o ...especially in a function of many more variables

Question
o Is there an easier way to find potential simplifications?
o i.e., potential applications of Uniting Theorem...?

Answer
o Need an intrinsically geometric representation for Boolean f( )
o Something we can draw, see...
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Karnaugh Map

= Karnaugh Map (K-map) method

o K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

a Physical adjacency < Logical adjacency

2-variable K-map
~2o 1
0| oo

01

1] 10 | 11

BC
A

3-variable K-map

00 01 11 10

0

000

001

011

010

1

100

101

111

110

CD
AB

00
01
11
10

4-variable K-map
00 01 11 10

0000 |0001 |0011 |0010

0100 |0101 |0111 |0110

1100 |1101 |1111 |1110

1000 |1001 {1011 |1010

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word
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Karnaugh Map Methods

BC

00 01 11 10

000

001

011

010

100

101

111

110

00
01

010

110

011

111

Adjacent

100
101

e

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column
Wrap around from top row to bottom row
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K-map Cover - 4 Input Variables

F(A,B,C,D) = z m(0,2,5,8,9,10,11,12,13,14,15)

L F=A+BD + BCD

Strategy for “circling” rectangles on Kmap:

Biggest “"oops!” that people forget:
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Logic Minimization Using K-Maps

Very simple guideline:

o Circle all the rectangular blocks of 1's in the map, using the
fewest possible number of circles

Each circle should be as large as possible
o Read off the implicants that were circled

More formally:

o A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

o Each circle on the K-map represents an implicant
o The largest possible circles are prime implicants
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K-map Rules

What can be legally combined (circled) in the K-map?
o Rectangular groups of size 2% for any integer k
o Each cell has the same value (1, for now)

o All values must be adjacent
Wrap-around edge is okay

How does a group become a term in an expression?
o Determine which literals are constant, and which vary across group

o Eliminate varying literals, then AND the constant literals
constant 1 = use X, constant 0 = use X

What is a good solution?
o Biggest groupings = eliminate more variables (literals) in each term
o Fewest groupings = fewer terms (gates) all together
o OR together all AND terms you create from individual groups
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: Two-bit Comparator

K-map Example

0

1

1

1

1

1
1

0O O

1

1
1

0O O

A B C D |F1 F2 F3

O 0 0 O

1

O 0 O

1 0 |0

0

O 0 |0 O

1

0O |0

1

O 0 O |0 O

1
1

1

O O

F2 IAB < CD

O 0 |0 O

1

Design Approach:

O |0 O

1

Write a 4-Variable K-map
for each of the 3

output functions
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K-map Example: Two-bit Comparator (2)

A B C Dj|F1 JF2 F3

K-map for F1

O 0 Oj|0 O

1

10

11

F1 =
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K-map Example: Two-bit Comparator (3)

MO 0 (=) 0 © o
LW ©O O O:0H O 0C:0 O = 0 © O =
Qo = © 1m0 - O 1m0 - O 0 - O =
Ol ©O = 1.0 © w 1.0 ©C w .0 © w w
Nnj|lo ©o 00 "W W = = O O O - v =
<|O ©O O 0O 0O 00 O =W =W = - vl e
aa
4 )
C /o
z o |

W _t
S \ ~ 5
WO\ 3
Q- = >
R o
m =i y“—
\ = Q
¢ L
(&)
o o
S 1
Q) —
O/ 0 =W = o o

BO o | =i

< L LL
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K-maps with “Don’t Care”

Don’t Care really means 7 don't care what my circuit outputs if this
appears as input

o You have an engineering choice to use DON'T CARE patterns
intelligently as 1 or 0 to better simplify the circuit

A BCDIFG

| can pick 00, 01, 10, 11

X X <—/ independently of below

X X \
| can pick 00, 01, 10, 11

independently of above
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Example: BCD Increment Function

BCD (Binary Coded Decimal) digits
o Encode decimal digits 0 - 9 with bit patterns 0000, — 1001,
o When incremented, the decimal sequenceis O, 1, ..., 8,9, 0, 1

A B C D WX Y 2z

0 0 0 O 0 0 1

0 0 0 1 0 1 0

0 0 1 O 0 1 1

0 0 1 1 1 0 O

0 1 0 O 1 0 1

0 1 0 1 1 1 0

0 1 1 0 1 1 1

0 1 1 1 g4 0 0 O

1 0 0 0 L 0 o0 1

1 0 0 1 o 0 0 _

1 0 1 0 X X X

: (1) (1, (1, § ; ; These input patterns should

1 1 0 1 X X X never be encountered in practice
1 1 1 0 X X X (hey -- it’s a BCD number!)

1 1 1 1 X X X So, associated output values are

“Don’t Cares”
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K-map tor BCD Increment Function

4 )
Z (without don't cares) = D

AB
= z (with don't cares) =
WX

10 1 X [ X 10 X | X |

YCD
45N, 00 01 11 10

00 1 1
01 1
11| X | X
10

X

1
X
X

X




K-map Summary

Karnaugh maps as a formal systematic approach
for logic simplification

2-, 3-, 4-variable K-maps

K-maps with “"Don‘t Care” outputs

H&H Section 2.7
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