Digital Design & Computer Arch.

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich
Spring 2020
5 March 2020

Assignment: Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
 - Watch Prof. Mutlu's inaugural lecture at ETH and understand it
 - https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment for 1% extra credit
 - Write a 1-page summary of the lecture and email us
 - What are your key takeaways?
 - What did you learn?
 - What did you like or dislike?
 - Submit your summary to Moodle Deadline: April 1

Assignment: Required Readings

- Last+This week
 - Combinational Logic
 - P&P Chapter 3 until 3.3 + H&H Chapter 2
- This+Next week
 - Hardware Description Languages and Verilog
 - H&H Chapter 4 until 4.3 and 4.5
 - Sequential Logic
 - P&P Chapter 3.4 until end + H&H Chapter 3 in full

- By the end of next week, make sure you are done with
 - P&P Chapters 1-3 + H&H Chapters 1-4

Combinational Logic Circuits and Design

What We Will Learn in This Lecture

- Building blocks of modern computers
 - Transistors
 - Logic gates
- Combinational circuits
- Boolean algebra
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits

Recall: Transistors and Logic Gates

- Now, we know how a MOS transistor works
- How do we build logic out of MOS transistors?
- We construct basic logic structures out of individual MOS transistors
- These logical units are named logic gates
 - They implement simple Boolean functions

Problem

Algorithm

Program/Language

Runtime System (VM, OS, MM)

ISA (Architecture)

Microarchitecture

Logic

Devices

Electrons

Recall: CMOS NOT, NAND, AND Gates

A	Y
0	1
1	0

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

<u>A</u>	В	<u> </u>
0	0	0
0	1	0
1	0	0
1	1	1

Recall: General CMOS Gate Structure

- The general form used to construct any inverting logic gate, such as: NOT, NAND, or NOR
 - The networks may consist of transistors in series or in parallel
 - When transistors are in parallel, the network is ON if one of the transistors is ON
 - When transistors are in series, the network is ON only if all transistors are ON

pMOS pull-up network inputs output nMOS pull-down network

pMOS transistors are used for pull-up nMOS transistors are used for pull-down

Recall: Digging Deeper: Power Consumption

Dynamic Power Consumption

```
- C * V^2 * f
```

- C = capacitance of the circuit (wires and gates)
- V = supply voltage
- f = charging frequency of the capacitor
- Static Power consumption
 - □ V * I_{leakage}
 - supply voltage * leakage current
- Energy Consumption
 - Power * Time
- See more in H&H Chapter 1.8

Recall: Common Logic Gates

Buffer

AND

OR

XOR

Inverter

NAND

NOR

XNOR

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Equations

Recall: Functional Specification

- Functional specification of outputs in terms of inputs
- What do we mean by "function"?
 - Unique mapping from input values to output values
 - The same input values produce the same output value every time
 - No memory (does not depend on the history of input values)

Example (full 1-bit adder – more later):

$$S = F(A, B, C_{in})$$

 $C_{out} = G(A, B, C_{in})$

$$\begin{array}{cccc}
A & & & & & & & & & & & \\
B & & & & & & & & & & & \\
C_{in} & & & & & & & & & & \\
C_{out} & & & & & & & & & \\
S & & & & & & & & & & \\
C_{out} & & & & & & & & & \\
C_{out} & & & & & & & & & \\
C_{out} & & & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
A \oplus B \oplus C_{in} \\
C_{in} & & & & & \\
C_{in} & & & & & \\
C_{in} & & & & & \\
\end{array}$$

Recall: Boolean NOT / AND / OR

$$\overline{A}$$
 (reads "not A") is 1 iff A is 0

$$A \longrightarrow \overline{A}$$

$$\begin{array}{c|c}
A & \overline{A} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

$$\begin{array}{c} A \\ B \end{array}$$

$$A + B$$
 (reads "A or B") is 1 iff either A or B is 1

A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Recall: Boolean Algebra: Big Picture

- An algebra on 1's and 0's
 - with AND, OR, NOT operations
- What you start with
 - Axioms: basic things about objects and operations you just assume to be true at the start

- What you derive first
 - Laws and theorems: allow you to manipulate Boolean expressions
 - ...also allow us to do some simplification on Boolean expressions
- What you derive later
 - More "sophisticated" properties useful for manipulating digital designs represented in the form of Boolean equations

Recall: Boolean Algebra: Axioms

Formal version	English version
1. B contains at least two elements, θ and 1, such that $\theta \neq 1$	Math formality
 2. Closure a,b ∈ B, (i) a + b ∈ B (ii) a • b ∈ B 	Result of AND, OR stays in set you start with
3. Commutative Laws: a,b ∈ B, (i) (ii)	For primitive AND, OR of 2 inputs, order doesn't matter
4. <i>Identities</i> : 0, 1 ∈ <i>B</i> (i) (ii)	There are identity elements for AND, OR, that give you back what you started with
5. Distributive Laws: (i) (ii)	• distributes over +, just like algebra but + distributes over •, also (!!)
6. Complement: (i) (ii)	There is a complement element; AND/ORing with it gives the identity elm.

Recall: Boolean Algebra: Duality

Observation

- All the axioms come in "dual" form
- Anything true for an expression also true for its dual
- So any derivation you could make that is true, can be flipped into dual form, and it stays true
- Duality More formally
 - A dual of a Boolean expression is derived by replacing
 - Every AND operation with... an OR operation
 - Every OR operation with... an AND
 - Every constant 1 with... a constant 0
 - Every constant 0 with... a constant 1
 - But don't change any of the literals or play with the complements!

Example
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

 $\rightarrow a + (b \cdot c) = (a + b) \cdot (a + c)$

Recall: Boolean Algebra: Useful Laws

Operations with 0 and 1:

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

1D.
$$X \cdot 1 = X$$

2D.
$$X \cdot 0 = 0$$

AND, OR with identities gives you back the original variable or the identity

Idempotent Law:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

AND, OR with self = self

Involution Law:

$$4.\,\overline{(\overline{X})}=X$$

double complement =
 no complement

Laws of Complementarity:

5.
$$X + \overline{X} = 1$$

5D.
$$X \cdot \overline{X} = 0$$

AND, OR with complement gives you an identity

Commutative Law:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

Just an axiom...

Recall: Useful Laws (continued)

Associative Laws:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

= $X \cdot Y \cdot Z$

Parenthesis order does not matter

Distributive Laws:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

8D.
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$
 Axiom

Simplification Theorems:

9.

9D.

10.

10D.

11

11D.

Useful for simplifying expressions

Actually worth remembering — they show up a lot in real designs...

Boolean Algebra: Proving Things

Proving theorems via axioms of Boolean Algebra:

EX: Prove the theorem: $X \cdot Y + X \cdot \overline{Y} = X$

Distributive (5)

Complement (6)

Identity (4)

EX2: Prove the theorem: $X + X \cdot Y = X$

Identity (4)

Distributive (5)

Identity (2)

Identity (4)

DeMorgan's Law: Enabling Transformations

DeMorgan's Law:

12.
$$\overline{(X + Y + Z + \cdots)} = \overline{X}.\overline{Y}.\overline{Z}...$$

12D. $\overline{(X \cdot Y.Z...)} = \overline{X} + \overline{Y} + \overline{Z} + ...$

- Think of this as a transformation
 - Let's say we have:

$$F = A + B + C$$

Applying DeMorgan's Law (12), gives us

$$F = \overline{\overline{(A + B + C)}} = \overline{(\overline{A}.\overline{B}.\overline{C})}$$

At least one of A, B, C is TRUE --> It is **not** the case that A, B, C are **all** false

DeMorgan's Law (Continued)

These are conversions between different types of logic functions. They can prove useful if you do not have every type of gate

$$A = \overline{(X + Y)} = \overline{X}\overline{Y}$$

NOR is equivalent to AND with inputs complemented

$$X \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow X$$

$$B = \overline{(XY)} = \overline{X} + \overline{Y}$$

_	X	Y				$\overline{X} + \overline{Y}$
		0	1	1	1	1
	0	1	1	1	0	1
	1	0	1	0	1	1
	1	1	0	0	1 0 1 0	0

NAND is equivalent to OR with inputs complemented

Using Boolean Equations to Represent a Logic Circuit

Sum of Products Form: Key Idea

- Assume we have the truth table of a Boolean Function
- How do we express the function in terms of the inputs in a standard manner?
- Idea: Sum of Products form
- Express the truth table as a two-level Boolean expression
 - that contains all input variable combinations that result in a 1 output
 - If ANY of the combinations of input variables that results in a
 1 is TRUE, then the output is 1
 - F = OR of all input variable combinations that result in a 1

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement A, \overline{A} , B, \overline{B} , C, \overline{C}
- Implicant: product (AND) of literals $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot C)$, $(B \cdot \overline{C})$
- Minterm: product (AND) that includes all input variables $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot \overline{B} \cdot C)$, $(\overline{A} \cdot B \cdot \overline{C})$
- Maxterm: sum (OR) that includes all input variables $(A + \overline{B} + \overline{C})$, $(\overline{A} + B + \overline{C})$, $(A + B + \overline{C})$

Two-Level Canonical (Standard) Forms

- Truth table is the unique signature of a Boolean function ...
 - But, it is an expensive representation
- A Boolean function can have many alternative Boolean expressions
 - i.e., many alternative Boolean expressions (and gate realizations) may have the same truth table (and function)
 - If they all say the same thing, why do we care?
 - Different Boolean expressions lead to different gate realizations
- Canonical form: standard form for a Boolean expression
 - Provides a unique algebraic signature

Two-Level Canonical Forms

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

SOP Form — Why Does It Work?

- Only the shaded product term $-A\overline{B}C = 1 \cdot \overline{0} \cdot 1$ will be 1
- No other product terms will "turn on" they will all be 0
- So if inputs A B C correspond to a product term in expression,
 We get 0 + 0 + ... + 1 + ... + 0 + 0 = 1 for output
- If inputs A B C do not correspond to any product term in expression \Box We get 0 + 0 + ... + 0 = 0 for output

Aside: Notation for SOP

- Standard "shorthand" notation
 - If we agree on the order of the variables in the rows of truth table...
 - then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

A	B	C	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	100 = decimal 4 so this is minterm #4, or m4
1	0	1	1	
1	1	0	1	
1	1	1	1	111 = decimal 7 so this is minterm #7, or m7

f =

We can write this as a sum of products

Or, we can use a summation notation

Canonical SOP Forms

A	В	C	minterms	
0	0	0	$\overline{A}\overline{B}\overline{C} = m0$	-
0	0	1	$\overline{A}\overline{B}C = m1$	
0	1	0	$\overline{A}B\overline{C} = m2$	
0	1	1	$\overline{A}\underline{B}\underline{C} = m3$	
1	0	0	$A\overline{B}\overline{C} = m4$	
1	0	1	$A\overline{B}\underline{C} = m5$	
1	1	0	ABC = m6	
1	1	1	ABC = m7	

Shorthand Notation for Minterms of 3 Variables

2-Level AND/OR Realization

F in canonical form:

$$F(A,B,C) = \sum m(3,4,5,6,7)$$

= m3 + m4 + m5 + m6 + m7

$$F =$$

canonical form # minimal form

F

From Logic to Gates

SOP (sum-of-products) leads to two-level logic

■ Example: $Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$

Alternative Canonical Form: POS

0

We can have another from of representation

DeMorgan of SOP of F

will equal 0

$$A + \overline{B} + C = 0 + \overline{1} + 0$$

Anything ANDed with 0 is 0; Output F will be 0

Consider A=0, B=1, C=0

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

POS: How to Write It

Maxterm form:

- 1. Find truth table rows where F is 0
- 2. 0 in input col → true literal
- 3. 1 in input col → complemented literal
- 4. OR the literals to get a Maxterm
- 5. AND together all the Maxterms

Or just remember, POS of \mathbf{F} is the same as the DeMorgan of SOP of $\mathbf{\overline{F}}$!!

Canonical POS Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

A	В	C	Maxterms
0	0	0	A + B + C = M0
0	0	1	$A + B + \overline{C} = M1$
0	1	0	$A + \overline{B} + C = M2$
0	1	1	$A + \overline{B} + \overline{C} = M3$
1	0	0	$\overline{A} + B + C = M4$
1	0	1	$\overline{A} + B + \overline{C} = M5$
1	1	0	$\overline{A} + \overline{B} + C = M6$
1	1	1	$\overline{A} + \overline{B} + \overline{C} = M7$

Maxterm shorthand notation / for a function of three variables

$$\mathbf{F} = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)$$
$$\prod M(0, 1, 2)$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Note that you form the maxterms around the "zeros" of the function

This is not the complement of the function!

Useful Conversions

1. Minterm to Maxterm conversion:

rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used

E.g.,
$$F(A, B, C) = \sum m(3, 4, 5, 6, 7) = \prod M(0, 1, 2)$$

2. Maxterm to Minterm conversion:

rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

E.g.,
$$F(A, B, C) = \prod M(0, 1, 2) = \sum m(3, 4, 5, 6, 7)$$

3. Expansion of \overline{F} to expansion of \overline{F} :

E. g.,
$$F(A, B, C) = \sum m(3, 4, 5, 6, 7)$$
 $\longrightarrow \overline{F}(A, B, C) = \sum m(0, 1, 2)$
= $\prod M(0, 1, 2)$ $\longrightarrow = \prod M(3, 4, 5, 6, 7)$

4. Minterm expansion of F to Maxterm expansion of \overline{F} : rewrite in Maxterm form, using the same indices as F

E. g.,
$$F(A, B, C) = \sum m(3, 4, 5, 6, 7)$$

$$= \prod M(0, 1, 2)$$
 $\overline{F}(A, B, C) = \prod M(3, 4, 5, 6, 7)$

$$= \sum m(0, 1, 2)$$

Combinational Building Blocks used in Modern Computers

Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- We now look at:
 - Decoder
 - Multiplexer
 - Full adder
 - PLA (Programmable Logic Array)

Decoder

- "Input pattern detector"
- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect
- Example: 2-to-4 decoder

<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	<i>Y</i> ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0 0 0 1	0	0	0

Decoder (I)

- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
 - It could be the address of a row in DRAM, that the processor intends to read from
 - It could be an instruction in the program and the processor has to decide what action to do! (based on instruction opcode)

Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
 - based on the value of a log₂ N-bit control input called select
- Example: 2-to-1 MUX

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer (MUX), or Selector (II)

- Selects one of the N inputs to connect it to the output
 - based on the value of a log₂ N-bit control input called select
- Example: 2-to-1 MUX

Multiplexer (MUX), or Selector (III)

- The output C is always connected to either the input A or the input B
 - Output value depends on the value of the select line S

- Your task: Draw the schematic for an 4-input (4:1) MUX
 - Gate level: as a combination of basic AND, OR, NOT gates
 - Module level: As a combination of 2-input (2:1) MUXes

A 4-to-1 Multiplexer

Full Adder (I)

Binary addition

- Similar to decimal addition
- From right to left
- One column at a time
- One sum and one carry bit

$$a_{n-1}a_{n-2} \dots a_1 a_0$$
 $b_{n-1}b_{n-2} \dots b_1 b_0$
 $C_n C_{n-1} \dots C_1$
 $S_{n-1} \dots S_1 S_0$

 Truth table of binary addition on one column of bits within two n-bit operands

a_i	\boldsymbol{b}_i	carry _i	carry _{i+1}	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder (II)

Binary addition

- N 1-bit additions
- SOP of 1-bit addition

$a_{n-1}a_{n-2}$	$a_1 a_0$
$b_{n-1}b_{n-2}$	$b_1 b_0$
$C_n C_{n-1}$. C ₁
S_{n-1}	S_1S_0

ai	b_i	carry _i	carry _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4-Bit Adder from Full Adders

- Creating a 4-bit adder out of 1-bit full adders
 - To add two 4-bit binary numbers A and B

Adder Design: Ripple Carry Adder

Figure 5.5 32-bit ripple-carry adder

Adder Design: Carry Lookahead Adder

49

PLA: Recall: From Logic to Gates

SOP (sum-of-products) leads to two-level logic

■ Example: $Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$

The Programmable Logic Array (PLA)

The below logic structure is a very common building block for implementing any collection of logic functions one wishes to

An array of AND gates
 followed by an array of OR c
 gates

How do we determine the number of AND gates?

 Remember SOP: the number of possible minterms

 How do we determine the number of OR gates? The number of output columns in the truth table

Connections

The Programmable Logic Array (PLA)

- How do we implement a logic function?
 - Connect the output of an AND gate to the input of an OR gate if the corresponding minterm is included in the SOP
 - This is a simple programmable Alogic
- Programming a PLA: we program the connections from AND gate outputs to OR gate inputs to implement a desired logic function

- Have you seen any other type of programmable logic?
 - Yes! An FPGA...
 - An FPGA uses more advanced structures, as we saw in Lecture 3

PLA Example (I)

PLA Example Function (II)

PLA Example Function (III)

Implementing a Full Adder Using a PLA

Truth table of a full adder

a_i	\boldsymbol{b}_i	carry _i	carry _{i+1}	S_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logical (Functional) Completeness

- Any logic function we wish to implement could be accomplished with a PLA
 - PLA consists of only AND gates, OR gates, and inverters
 - We just have to program connections based on SOP of the intended logic function
- The set of gates {AND, OR, NOT} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate
- NAND is also logically complete. So is NOR.
 - Your task: Prove this.

More Combinational Building Blocks

- H&H Chapter 2 in full
 - Required Reading
 - E.g., see Tri-state Buffer and Z values in Section 2.6
- H&H Chapter 5
 - Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
 - Sections 5.1 and 5.2

Tri-State Buffer

A tri-state buffer enables gating of different signals onto a wire

Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit
 - Open circuit, floating wire

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
 - At any time only the CPU or the memory can place a value on the wire, both not both
 - You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

60

Example Design with Tri-State Buffers

Another Example

Multiplexer Using Tri-State Buffers

Figure 2.56 Multiplexer using tristate buffers

Digital Design & Computer Arch.

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich
Spring 2020
5 March 2020

We did not cover the remaining slides. They are for your preparation for the next lecture.

Aside: Logic Using Multiplexers

Multiplexers can be used as lookup tables to perform logic functions

Figure 2.59 4:1 multiplexer implementation of two-input AND function

Aside: Logic Using Multiplexers (II)

 Multiplexers can be used as lookup tables to perform logic functions

Aside: Logic Using Multiplexers (III)

 Multiplexers can be used as lookup tables to perform logic functions

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

Aside: Logic Using Decoders (I)

 Decoders can be combined with OR gates to build logic functions.

Figure 2.65 Logic function using decoder

Logic Simplification: Karnaugh Maps (K-Maps)

Recall: Full Adder in SOP Form Logic

ai	b_i	carry _i	carry _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Goal: Simplified Full Adder

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

 The original Boolean expression (i.e., logic circuit) may not be optimal

$$F = \sim A(A + B) + (B + AA)(A + \sim B)$$

Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$F = A + B$$

- The goal of logic simplification:
 - Reduce the number of gates/inputs
 - Reduce implementation cost

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
 - amenable to automation

Key Tool: The Uniting Theorem — $F = A\overline{B} + AB$

Complex Cases

One example

$$Cout = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Problem

- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables

Question

- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?

Answer

- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
 - K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
 - □ Physical adjacency ← Logical adjacency

2-variable K-map

4-variable K-map

CD				
CD AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" — only a single bit (variable) changes from one code word and the next code word

Karnaugh Map Methods

K-map adjacencies go "around the edges"
Wrap around from first to last column
Wrap around from top row to bottom row

K-map Cover - 4 Input Variables

$$F(A, B, C, D) = \sum m(0, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15)$$

$$F = A + \overline{B}\overline{D} + B\overline{C}D$$

Strategy for "circling" rectangles on Kmap:

Biggest "oops!" that people forget:

Logic Minimization Using K-Maps

Very simple guideline:

- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
 - Each circle should be as large as possible
- Read off the implicants that were circled

More formally:

- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

What can be legally combined (circled) in the K-map?

- Rectangular groups of size 2^k for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
 - Wrap-around edge is okay

How does a group become a term in an expression?

- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
 - constant $1 \rightarrow \text{use } X$, constant $0 \rightarrow \text{use } \overline{X}$

What is a good solution?

- □ Biggest groupings → eliminate more variables (literals) in each term
- □ Fewest groupings → fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map for each of the 3 output functions

A	В	С	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-map Example: Two-bit Comparator (2)

K-map Example: Two-bit Comparator (3)

K-maps with "Don't Care"

- Don't Care really means I don't care what my circuit outputs if this appears as input
 - You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit

Example: BCD Increment Function

- BCD (Binary Coded Decimal) digits
 - □ Encode decimal digits 0 9 with bit patterns $0000_2 1001_2$
 - When incremented, the decimal sequence is 0, 1, ..., 8, 9, 0, 1

Α	В	С	D	W	X	Y	Z	
0	0	0	0	0	0	0	1	_
0	0	0	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	0	1	1	0	1	0	0	
0	1	0	0	0	1	0	1	
0	1	0	1	0	1	1	0	
0	1	1	0	0	1	1	1	
0	1	1	1	1	0	0	0	
1	0	0	0	1	0	0	1	
1	0	0	1	0	0	0	0	_
1	0	1	0	X	X	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X X	X	X	X	
1	1	0	1		X	X	X	
1	1	1	0	X	X	X	X	
1	1	1	1	X	X	X	X	

These input patterns should never be encountered in practice (hey -- it's a BCD number!)
So, associated output values are "Don't Cares"

K-map for BCD Increment Function

K-map Summary

 Karnaugh maps as a formal systematic approach for logic simplification

2-, 3-, 4-variable K-maps

K-maps with "Don't Care" outputs

H&H Section 2.7