
Digital Design & Computer Arch.
Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich
Spring 2020

5 March 2020

Assignment: Required Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch Prof. Mutlu’s inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle – Deadline: April 1

2

https://www.youtube.com/watch%3Fv=kgiZlSOcGFM
https://moodle-app2.let.ethz.ch/mod/assign/view.php%3Fid=421558

Assignment: Required Readings
n Last+This week

q Combinational Logic
n P&P Chapter 3 until 3.3 + H&H Chapter 2

n This+Next week
q Hardware Description Languages and Verilog

n H&H Chapter 4 until 4.3 and 4.5
q Sequential Logic

n P&P Chapter 3.4 until end + H&H Chapter 3 in full

n By the end of next week, make sure you are done with
q P&P Chapters 1-3 + H&H Chapters 1-4

3

Combinational Logic Circuits
and Design

4

What We Will Learn in This Lecture
n Building blocks of modern computers

q Transistors
q Logic gates

n Combinational circuits

n Boolean algebra

n How to use Boolean algebra to represent combinational
circuits

n Minimizing logic circuits

5

Recall: Transistors and Logic Gates
n Now, we know how a MOS transistor works
n How do we build logic out of MOS transistors?

6

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

n We construct basic logic structures
out of individual MOS transistors

n These logical units are named logic gates
q They implement simple Boolean functions

Recall: CMOS NOT, NAND, AND Gates

7

A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

BA Y

NOT

Y = A

A Y
0 1
1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Recall: General CMOS Gate Structure
n The general form used to construct any inverting logic gate,

such as: NOT, NAND, or NOR

8

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

q The networks may consist of
transistors in series or in
parallel

q When transistors are in
parallel, the network is ON if
one of the transistors is ON

q When transistors are in series,
the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

Recall: Digging Deeper: Power Consumption
n Dynamic Power Consumption

q C * V2 * f
n C = capacitance of the circuit (wires and gates)
n V = supply voltage
n f = charging frequency of the capacitor

n Static Power consumption
q V * Ileakage

n supply voltage * leakage current

n Energy Consumption
q Power * Time

n See more in H&H Chapter 1.8
9

Recall: Common Logic Gates

10

Boolean Equations

11

Recall: Functional Specification
n Functional specification of outputs in terms of inputs
n What do we mean by “function”?

q Unique mapping from input values to output values
q The same input values produce the same output value every

time
q No memory (does not depend on the history of input values)

n Example (full 1-bit adder – more later):

S = F(A, B, Cin)
Cout = G(A, B, Cin)

12

A S

S = A Å B Å Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Recall: Boolean NOT / AND / OR

13

A
B A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A
B A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨
0 1
1 0

𝑨 𝑩 𝑨 • 𝑩
0 0 0
0 1 0
1 0 0
1 1 1

𝑨 𝑩 𝑨 + 𝑩
0 0 0
0 1 1
1 0 1
1 1 1

Recall: Boolean Algebra: Big Picture
n An algebra on 1’s and 0’s

q with AND, OR, NOT operations

n What you start with
q Axioms: basic things about objects and operations

you just assume to be true at the start

n What you derive first
q Laws and theorems: allow you to manipulate Boolean expressions
q …also allow us to do some simplification on Boolean expressions

n What you derive later
q More “sophisticated” properties useful for manipulating digital

designs represented in the form of Boolean equations

14George Boole, “The Mathematical Analysis of Logic,” 1847.

Recall: Boolean Algebra: Axioms

15

1. B contains at least two elements,
0 and 1, such that 0 ≠ 1

2. Closure a,b ∈ B,
(i) a + b ∈ B
(ii) a • b ∈ B

3. Commutative Laws: a,b ∈ B,
(i) a + b = b + a
(ii) a • b = b • a

4. Identities: 0, 1 ∈ B
(i) a + 0 = a
(ii) a • 1 = a

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

6. Complement:
(i) 𝐚 + %𝒂= 1
(ii) 𝐚 • %𝒂 = 0

English version

Result of AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra
…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...

Recall: Boolean Algebra: Duality
n Observation

q All the axioms come in “dual” form
q Anything true for an expression also true for its dual
q So any derivation you could make that is true, can be flipped into

dual form, and it stays true

n Duality — More formally
q A dual of a Boolean expression is derived by replacing

n Every AND operation with... an OR operation
n Every OR operation with... an AND
n Every constant 1 with... a constant 0
n Every constant 0 with... a constant 1
n But don’t change any of the literals or play with the complements!

16

➙ a + (b • c) = (a + b) • (a + c)
a • (b + c) = (a • b) + (a • c) Example

Recall: Boolean Algebra: Useful Laws

17

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

$𝐗$𝐗

($𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

%𝒀

%𝒀

%𝒀

%𝒀

Recall: Useful Laws (continued)

18

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z
7D. (X • Y) • Z = X • (Y • Z)

= X • Y • Z
Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

"𝐘X • (Y +) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things

19

Proving theorems via axioms of Boolean Algebra:

EX: Prove the theorem: X • Y + X • = X

EX2: Prove the theorem: X + X • Y = X
X • 1 + X • Y = X Identity (4)

X • (1 + Y) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

$𝒀

DeMorgan’s Law: Enabling Transformations

20

¢ Think of this as a transformation
§ Let’s say we have:

F = A + B + C

§ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:
12.

12D. (𝑿 . 𝒀. 𝒁.…) = $𝑿 + $𝒀 + $𝒁 + …
(𝑿 + 𝒀 + 𝒁 +⋯) = $𝑿. $𝒀. $𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = ($𝑨. $𝑩. $𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan’s Law (Continued)

21

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate

𝑨 = (𝑿 + 𝒀) = $𝑿$𝒀

𝑩 = (𝑿𝒀) = $𝑿 + $𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀 𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 #𝑿 #𝒀 !𝑿 + !𝒀

0 0 1 1 1 1
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 #𝑿 #𝒀 #𝑿#𝒀
0 0 1 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 0

Using Boolean Equations
to Represent a Logic Circuit

22

Sum of Products Form: Key Idea
n Assume we have the truth table of a Boolean Function

n How do we express the function in terms of the inputs in a
standard manner?

n Idea: Sum of Products form
n Express the truth table as a two-level Boolean expression

q that contains all input variable combinations that result in a 1
output

q If ANY of the combinations of input variables that results in a
1 is TRUE, then the output is 1

q F = OR of all input variable combinations that result in a 1

23

Some Definitions
¢ Complement: variable with a bar over it
𝑨 , 𝑩 , 𝑪

¢ Literal: variable or its complement
𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

¢ Implicant: product (AND) of literals
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑪) , (𝑩 1 𝑪)

¢ Minterm: product (AND) that includes all input variables
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪)

¢ Maxterm: sum (OR) that includes all input variables
(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)

24

Two-Level Canonical (Standard) Forms
n Truth table is the unique signature of a Boolean function …

q But, it is an expensive representation

n A Boolean function can have many alternative Boolean
expressions
q i.e., many alternative Boolean expressions (and gate

realizations) may have the same truth table (and function)
q If they all say the same thing, why do we care?

n Different Boolean expressions lead to different gate realizations

n Canonical form: standard form for a Boolean expression
q Provides a unique algebraic signature

25

Two-Level Canonical Forms

26

Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does It Work?

27

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

n Only the shaded product term — 𝐀$𝑩𝐂 = 𝟏 1 $𝟎 1 𝟏— will be 1

n No other product terms will “turn on” — they will all be 0
n So if inputs A B C correspond to a product term in expression,

q We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output
n If inputs A B C do not correspond to any product term in expression

q We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝐀 𝐁 𝐂 𝐅
This input

Activates
this term

Aside: Notation for SOP

28

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

n Standard “shorthand” notation
q If we agree on the order of the variables in the rows of truth

table…
n then we can enumerate each row with the decimal number that

corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Canonical SOP Forms

29

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:
F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪
+ 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀$𝑩 𝑪 + $𝑪 + $𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + $𝑪)

= 𝐀$𝑩 + $𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀($𝑩 + 𝑩) + $𝑨𝐁𝐂

= 𝐀 + $𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

%𝑨%𝑩%𝑪
%𝑨%𝑩𝑪
%𝑨𝑩%𝑪
%𝑨𝑩𝑪
𝑨%𝑩%𝑪
𝑨%𝑩𝑪
𝑨𝑩%𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

30

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS

31

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

A product of sums (POS)

0 0 0 0 0 1

sums

products

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + %𝑪 (𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + %𝑩 + 𝑪 = 𝟎 + %𝟏 + 𝟎

0 1 0

We can have another from of representation

DeMorgan of SOP of %𝑭

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0

32

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 %𝟏 𝟎𝟎 𝟏 %𝟎𝟎 𝟏 𝟎

0 1 0
Input

POS: How to Write It

33

Maxterm form:
1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of %𝑭 !!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 %𝑩 𝑪

𝑨 + %𝑩 + 𝑪

Canonical POS Forms

34

Maxterms
0 0 0 = M0
0 0 1 = M1
0 1 0 = M2
0 1 1 = M3
1 0 0 = M4
1 0 1 = M5
1 1 0 = M6
1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you
form the

maxterms around
the “zeros” of the

function
This is not the
complement of
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩 + 𝑪
𝑨 + 𝑩 + %𝑪
𝑨 + %𝑩 + 𝑪
𝑨 + %𝑩 + %𝑪
%𝑨 + 𝑩 + 𝑪
%𝑨 + 𝑩 + %𝑪
%𝑨 + %𝑩 + 𝐂
%𝑨 + %𝑩 + %𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

5𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅

Useful Conversions

35

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ∏𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∏𝑴(𝟎, 𝟏, 𝟐) = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 =D𝒎(𝟎, 𝟏, 𝟐)

=5𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 = ∏𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=D𝒎(𝟎, 𝟏, 𝟐)=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭
𝐅

Combinational Building Blocks
used in Modern Computers

36

Combinational Building Blocks
n Combinational logic is often grouped into larger building

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the
function of the building block

n We now look at:
q Decoder
q Multiplexer
q Full adder
q PLA (Programmable Logic Array)

Decoder
n “Input pattern detector”
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect

n Example: 2-to-4 decoder

38

Decoder (I)
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0

Decoder (II)
n The decoder is useful in determining how to interpret a bit

pattern

40

A = 1 0B = 0

0

1

0

q It could be the
address of a row in
DRAM, that the
processor intends to
read from

q It could be an
instruction in the
program and the
processor has to
decide what action to
do! (based on
instruction opcode)

Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

Multiplexer (MUX), or Selector (II)
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

A B

S

C

ba

A B

S = 0

C

0A

A

Multiplexer (MUX), or Selector (III)
n The output C is always connected to either the input A or

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 4-input (4:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes

43

A B

S

C

S C
0 A
1 B

A 4-to-1 Multiplexer

44

Full Adder (I)
n Binary addition

q Similar to decimal addition
q From right to left
q One column at a time
q One sum and one carry bit

n Truth table of binary addition on one column of bits within
two n-bit operands

45

𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder (II)
n Binary addition

q N 1-bit additions
q SOP of 1-bit addition

46

𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Full Adder (1 bit)

4-Bit Adder from Full Adders
n Creating a 4-bit adder out of 1-bit full adders

q To add two 4-bit binary numbers A and B

47

𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎
𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏
+

𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏
+

Full Adder

a0b0

s0

0c1Full Adder

a1b1

s1

c2Full Adder

a2b2

s2

c3Full Adder

a3b3

s3

c4

Adder Design: Ripple Carry Adder

48

Adder Design: Carry Lookahead Adder

49

PLA: Recall: From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

50

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

The Programmable Logic Array (PLA)
n The below logic structure is a very common building block

for implementing any collection of logic functions one
wishes to

51

n An array of AND gates
followed by an array of OR
gates

n How do we determine the
number of AND gates?
q Remember SOP: the

number of possible minterms
q For an n-input logic function, we need a PLA with 2n n-input

AND gates
n How do we determine the number of OR gates? The

number of output columns in the truth table

A

B

C

X

Y

Z

Connections

n How do we implement a logic function?
q Connect the output of an AND gate to the input of an OR gate

if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)

52

q This is a simple programmable
logic

n Programming a PLA: we
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

n Have you seen any other type of programmable logic?
q Yes! An FPGA…
q An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

PLA Example (I)

53Read H&H Chapter 5.6.1

PLA Example Function (II)

54Read H&H Chapter 5.6.1

PLA Example Function (III)

55Read H&H Chapter 5.6.1

Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

56

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output

Logical (Functional) Completeness
n Any logic function we wish to implement could be

accomplished with a PLA
q PLA consists of only AND gates, OR gates, and inverters
q We just have to program connections based on SOP of the

intended logic function

n The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

n NAND is also logically complete. So is NOR.
q Your task: Prove this.

57

More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.
q Sections 5.1 and 5.2

58

Tri-State Buffer
n A tri-state buffer enables gating of different signals onto a

wire

n Floating signal (Z): Signal that is not driven by any circuit
q Open circuit, floating wire

59

Example: Use of Tri-State Buffers
n Imagine a wire connecting the CPU and memory

q At any time only the CPU or the memory can place a value on
the wire, both not both

q You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

60

Example Design with Tri-State Buffers

61

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

62

Multiplexer Using Tri-State Buffers

63

Digital Design & Computer Arch.
Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich
Spring 2020

5 March 2020

We did not cover the remaining slides.
They are for your preparation for the

next lecture.

65

Aside: Logic Using Multiplexers
n Multiplexers can be used as lookup tables to perform logic

functions

66

Aside: Logic Using Multiplexers (II)
n Multiplexers can be used as lookup tables to perform logic

functions

67

Aside: Logic Using Multiplexers (III)
n Multiplexers can be used as lookup tables to perform logic

functions

68

Aside: Logic Using Decoders (I)
n Decoders can be combined with OR gates to build logic

functions.

69Read H&H Chapter 2.8

Logic Simplification:
Karnaugh Maps (K-Maps)

70

Recall: Full Adder in SOP Form Logic

71

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Goal: Simplified Full Adder

72

How do we simplify Boolean logic?

Quick Recap on Logic Simplification
n The original Boolean expression (i.e., logic circuit) may not

be optimal

n Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

n The goal of logic simplification:
q Reduce the number of gates/inputs
q Reduce implementation cost

73

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

74

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨$𝑩 + 𝑨𝑩

𝑨$𝑩 + 𝑨𝑩 = 𝑨 $𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = $𝑨$𝑩 + 𝑨$𝑩 = $𝑨 + 𝑨 $𝑩 = $𝑩

Essence of Simplification:
Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Complex Cases
n One example

n Problem
q Easy to see how to apply Uniting Theorem…
q Hard to know if you applied it in all the right places…
q …especially in a function of many more variables

n Question
q Is there an easier way to find potential simplifications?
q i.e., potential applications of Uniting Theorem…?

n Answer
q Need an intrinsically geometric representation for Boolean f()
q Something we can draw, see…

75

𝑪𝒐𝒖𝒕 = &𝑨𝑩𝑪 + 𝑨&𝑩𝑪 + 𝑨𝑩&𝑪 + 𝑨𝑩𝑪

Karnaugh Map
n Karnaugh Map (K-map) method

q K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

q Physical adjacency ↔ Logical adjacency

76

2-variable K-map
0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10
00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨 𝑩 𝑪𝑫
𝑨
𝑩𝑪

Karnaugh Map Methods

77

Adjacent

000

001

010

011

110

111

100

101

000

001
010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”
Wrap around from first to last column
Wrap around from top row to bottom row

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

78

00 01 11 10
00 1 0 0 1
01 0 1 0 0
11 1 1 1 1
10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =D𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + %𝑩%𝑫 + 𝐁%𝑪𝑫𝐀 + %𝑩%𝑫𝐀

Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants

80

K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 ➙ use 𝐗, constant 0 ➙ use %𝑿

n What is a good solution?
q Biggest groupings ➙ eliminate more variables (literals) in each term
q Fewest groupings ➙ fewer terms (gates) all together
q OR together all AND terms you create from individual groups

81

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

82

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D

K-map Example: Two-bit Comparator (2)

83

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

84

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨
𝑩

𝑫

𝑪

K-maps with “Don’t Care”
n Don’t Care really means I don’t care what my circuit outputs if this

appears as input
q You have an engineering choice to use DON’T CARE patterns

intelligently as 1 or 0 to better simplify the circuit

85

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment Function
n BCD (Binary Coded Decimal) digits

q Encode decimal digits 0 - 9 with bit patterns 00002 — 10012
q When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

86

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment Function

A B C D
+ 1
W X Y Z

87

00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
𝑨𝑩

𝑪𝑫
X
𝑨𝑩

𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫 ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

n Karnaugh maps as a formal systematic approach
for logic simplification

n 2-, 3-, 4-variable K-maps

n K-maps with “Don’t Care” outputs

n H&H Section 2.7
88

