Digital Design & Computer Arch.

Lecture 6: Sequential Logic Design

Prof. Onur Mutlu

ETH Zürich
Spring 2020
6 March 2020

We Are Almost Done with This

- Building blocks of modern computers
 - Transistors
 - Logic gates
- Combinational circuits
- Boolean algebra
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits

Agenda for Today and Next Week

Today

- Wrap up Combinational Logic and Circuit Minimization
- Start (and finish) Sequential Logic

Next week

- Hardware Description Languages and Verilog
 - Combinational Logic
 - Sequential Logic
- Timing and Verification

Assignment: Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
 - Watch Prof. Mutlu's inaugural lecture at ETH and understand it
 - https://www.youtube.com/watch?v=kgiZlSOcGFM
- Optional Assignment for 1% extra credit
 - Write a 1-page summary of the lecture and email us
 - What are your key takeaways?
 - What did you learn?
 - What did you like or dislike?
 - Submit your summary to <u>Moodle</u> Deadline: March 25

Extra Assignment: Moore's Law (I)

- Paper review
- G.E. Moore. "Cramming more components onto integrated circuits," Electronics magazine, 1965

- Optional Assignment for 1% extra credit
 - Write a 1-page review
 - Upload PDF file to Moodle Deadline: April 1

 I strongly recommend that you follow my guidelines for (paper) review (see next slide)

Extra Assignment 2: Moore's Law (II)

- Guidelines on how to review papers critically
 - Guideline slides: pdf ppt
 - Video: https://www.youtube.com/watch?v=tOL6FANAJ8c
 - Example reviews on "Main Memory Scaling: Challenges and Solution Directions" (link to the paper)
 - Review 1
 - Review 2
 - Example review on "Staged memory scheduling: Achieving high performance and scalability in heterogeneous systems" (link to the paper)
 - Review 1

Assignment: Required Readings

- Combinational Logic
 - P&P Chapter 3 until 3.3 + H&H Chapter 2
- Sequential Logic
 - P&P Chapter 3.4 until end + H&H Chapter 3 in full
- Hardware Description Languages and Verilog
 - H&H Chapter 4 in full
- Timing and Verification
 - H&H Chapters 2.9 and 3.5 + (start Chapter 5)

- By the end of next week, make sure you are done with
 - P&P Chapters 1-3 + H&H Chapters 1-4

Wrap-Up Combinational Logic Circuits and Design

Recall: Tri-State Buffer

A tri-state buffer enables gating of different signals onto a wire

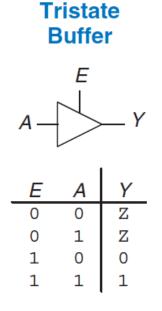


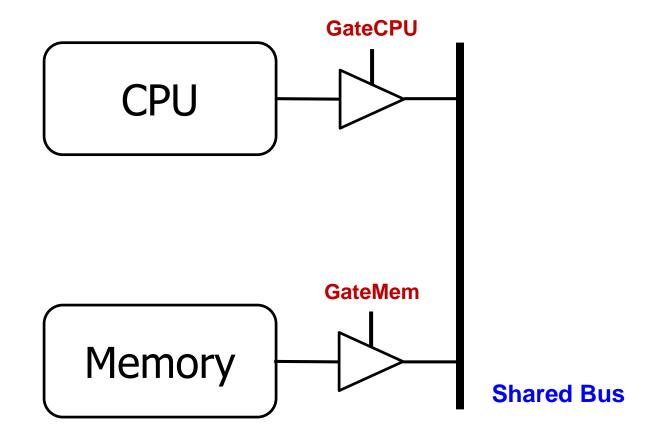
Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit
 - Open circuit, floating wire

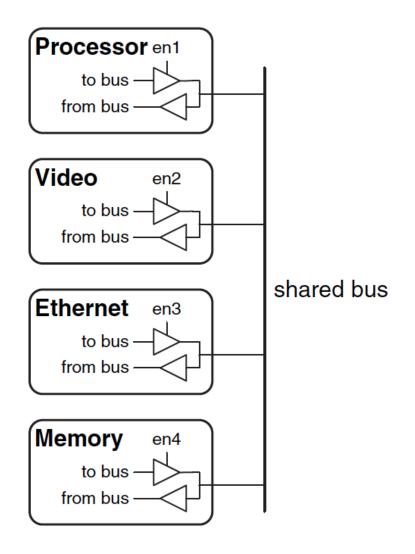
Recall: Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
 - At any time only the CPU or the memory can place a value on the wire, both not both
 - You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Recall: Example Design with Tri-State Buffers



Recall: Another Example



Multiplexer Using Tri-State Buffers

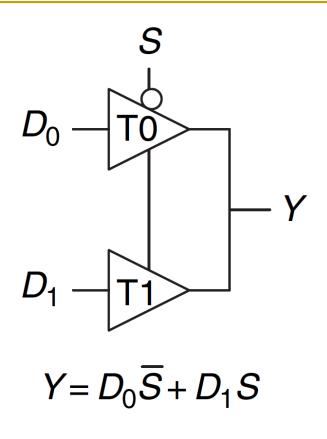
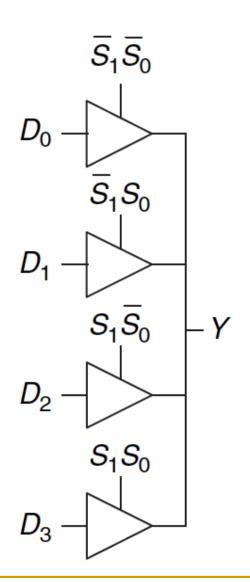
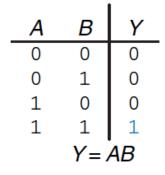


Figure 2.56 Multiplexer using tristate buffers



Aside: Logic Using Multiplexers

Multiplexers can be used as lookup tables to perform logic functions



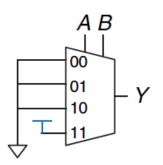
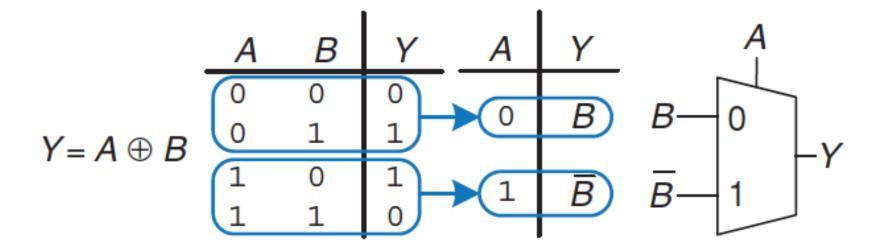


Figure 2.59 4:1 multiplexer implementation of two-input AND function

Aside: Logic Using Multiplexers (II)

 Multiplexers can be used as lookup tables to perform logic functions



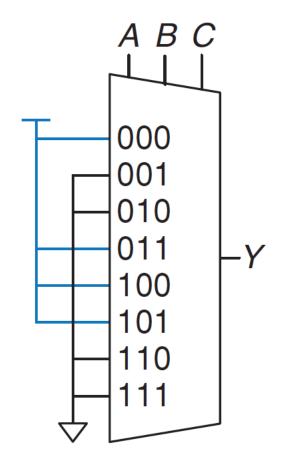
Aside: Logic Using Multiplexers (III)

Multiplexers can be used as lookup tables to perform logic functions

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

SAFARI



Aside: Logic Using Decoders (I)

 Decoders can be combined with OR gates to build logic functions.

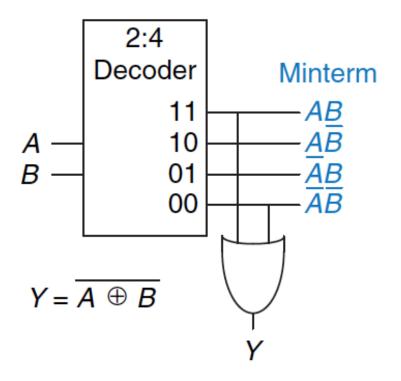
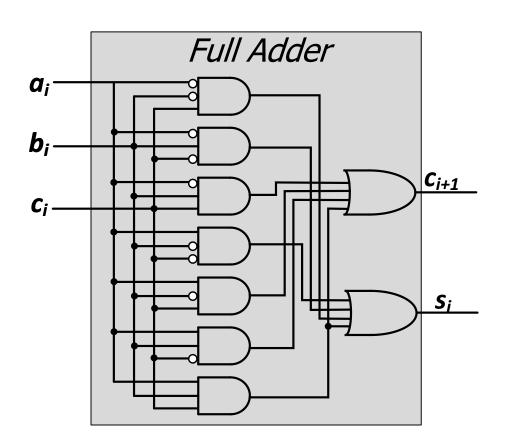


Figure 2.65 Logic function using decoder

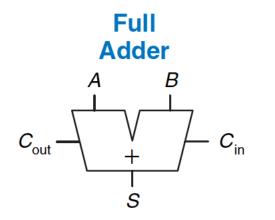
Logic Simplification using Boolean Algebra Rules

Recall: Full Adder in SOP Form Logic



ai	\boldsymbol{b}_i	carry _i	carry _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Goal: Simplified Full Adder



$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

 The original Boolean expression (i.e., logic circuit) may not be optimal

$$F = \sim A(A + B) + (B + AA)(A + \sim B)$$

Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$F = A + B$$

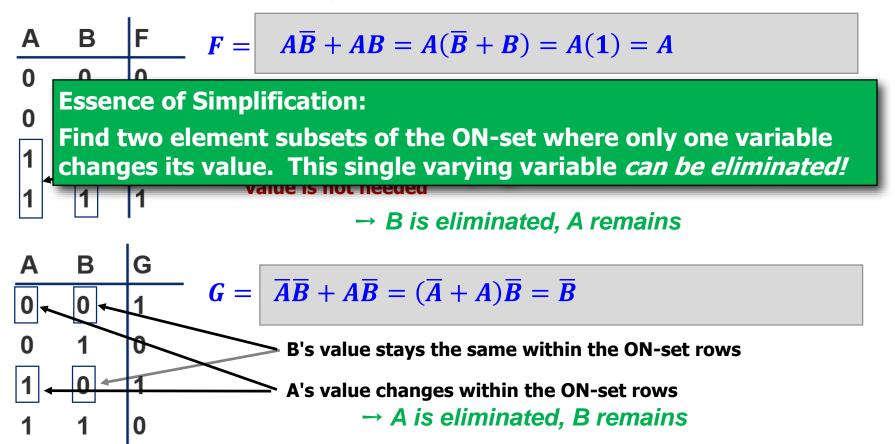
- The goal of logic simplification:
 - Reduce the number of gates/inputs
 - Reduce implementation cost

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
 - amenable to automation

Key Tool: The Uniting Theorem — $F = A\overline{B} + AB$



Logic Simplification: Karnaugh Maps (K-Maps)

Karnaugh Maps are Fun...

- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...
- See Backup Slides
- Read H&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 Digitech course:
 - https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF QFHRO3GrXxA9&t=4570
 - https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN FQFHRO3GrXxA9&t=220

Sequential Logic Circuits and Design

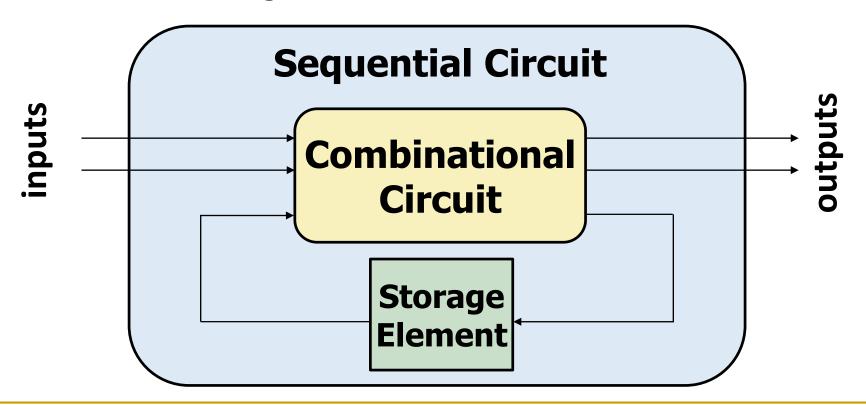
What We Will Learn Today

- Circuits that can store information
 - Cross-coupled inverter
 - R-S Latch
 - Gated D Latch
 - D Flip-Flop
 - Register
- Finite State Machines (FSM)
 - Moore Machine
 - Mealy Machine
- Verilog implementations of sequential circuits (next week)

Circuits that Can Store Information

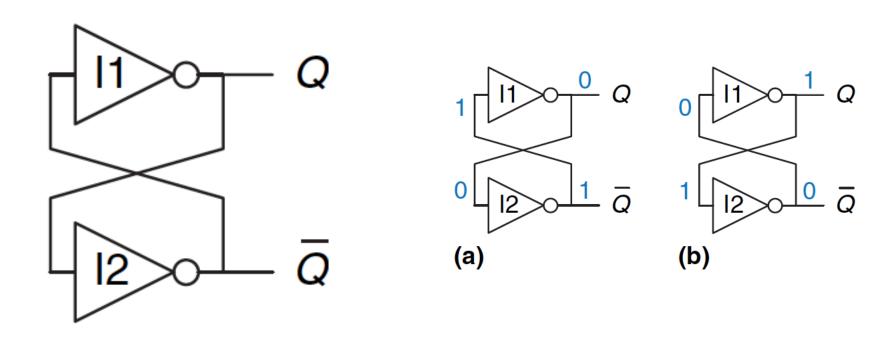
Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that stores information?



Capturing Data

Basic Element: Cross-Coupled Inverters

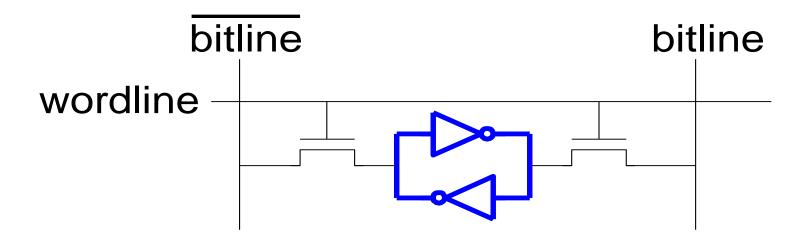


- Has two stable states: Q=1 or Q=0.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a control mechanism for setting Q

More Realistic Storage Elements

Have a control mechanism for setting Q

- We will see the R-S latch soon
- □ Let's look at an SRAM (static random access memory) cell first



SRAM cell

We will get back to SRAM (and DRAM) later

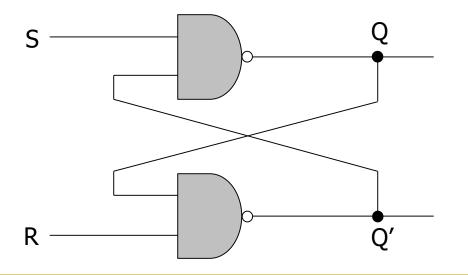
The Big Picture: Storage Elements

- Latches and Flip-Flops
 - Very fast, parallel access
 - Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
 - Relatively fast, only one data word at a time
 - Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
 - Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
 - Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
 - Much slower, access takes a long time, non-volatile
 - Very cheap

Basic Storage Element: The R-S Latch

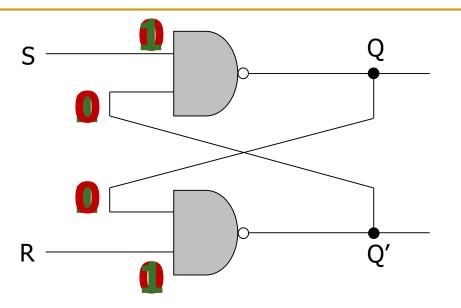
The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
 - Data is stored at Q (inverse at Q')
 - S and R are control inputs
 - In quiescent (idle) state, both S and R are held at 1
 - S (set): drive S to 0 (keeping R at 1) to change Q to 1
 - R (reset): drive R to 0 (keeping S at 1) to change Q to 0
- S and R should never both be 0 at the same time



Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Forbidden

Why not R=S=0?



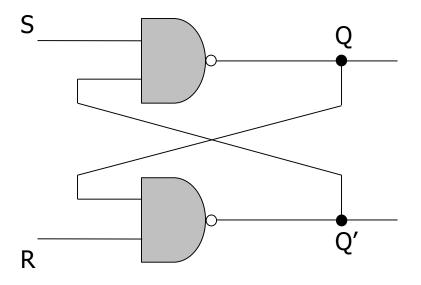
Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Forbidden

- 1. If **R=S=0**, **Q** and **Q'** will both settle to 1, which **breaks** our invariant that **Q** = !**Q'**
- 2. If **S** and **R** transition back to 1 at the same time, **Q** and **Q'** begin to oscillate between 1 and 0 because their final values depend on each other (**metastability**)
 - This eventually settles depending on variation in the circuits (more metastability to come in Lecture 8)

The Gated D Latch

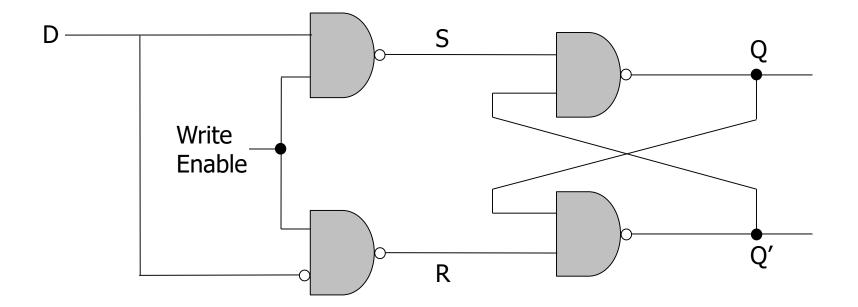
The Gated D Latch

How do we guarantee correct operation of an R-S Latch?



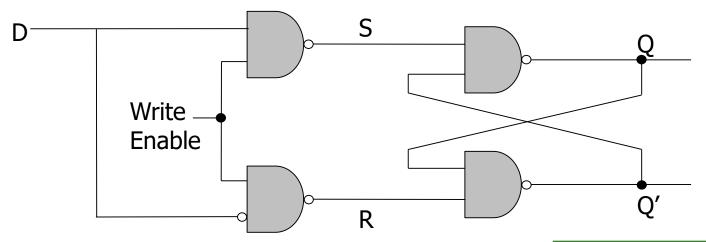
The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?
 - Add two more NAND gates!



- Q takes the value of D, when write enable (WE) is set to 1
- S and R can never be 0 at the same time!

The Gated D Latch



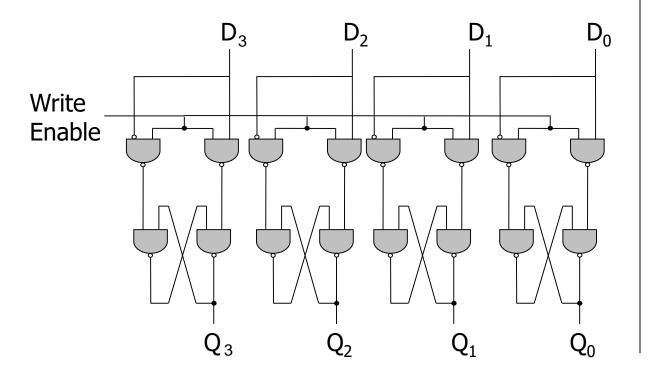
Input		Output	
WE	D	Q	
0	0	Q_{prev}	
0	1	Q_{prev}	
1	0	0	
1	1	1	

The Register

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes



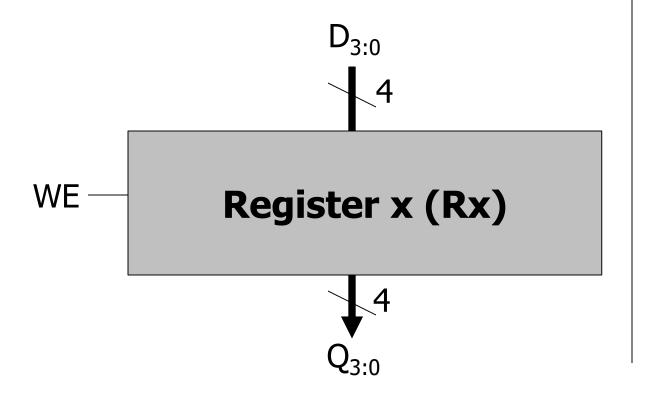
Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes



Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

Memory

Memory

Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

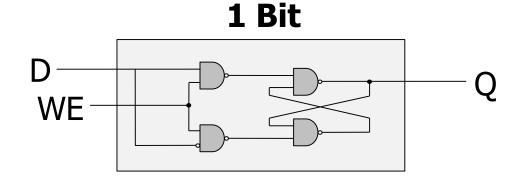
Addr (00):	0100 1001	Addr (01):	0100 1011
Addr (10):	0010 0010	Addr (11):	1100 1001

- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The entire set of unique locations in memory is referred to as the address space.
- Typical memory is **MUCH** larger (billions of locations)

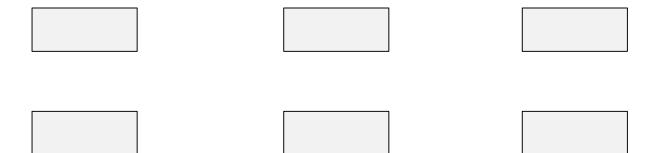
Addressing Memory

Let's implement a simple memory array with:

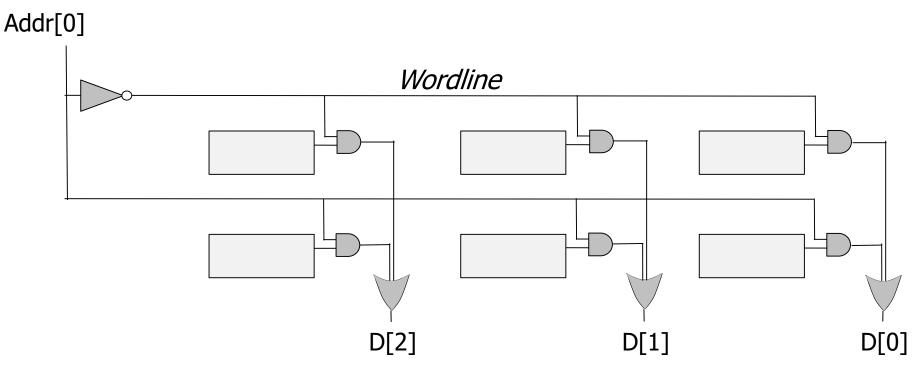
• 3-bit addressability & address space size of 2 (total of 6 bits)



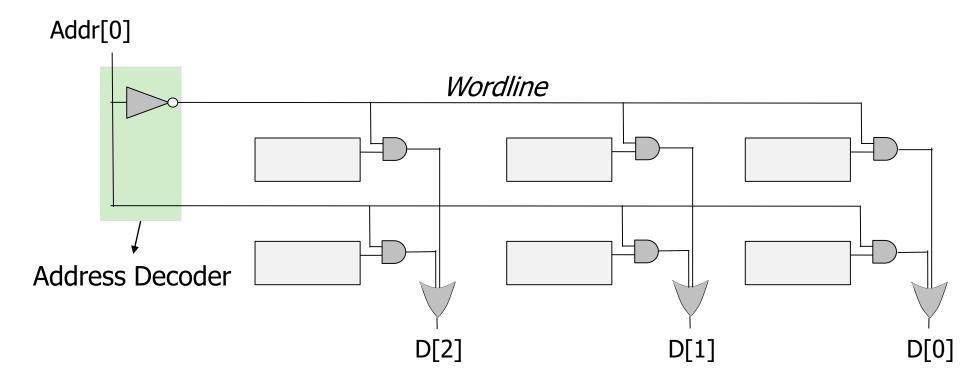
How can we select the address to read?



How can we select an address to read?



How can we select an address to read?

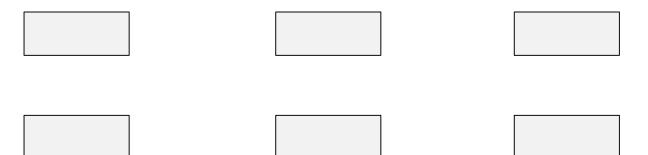


How can we select an address to read?



Writing to Memory

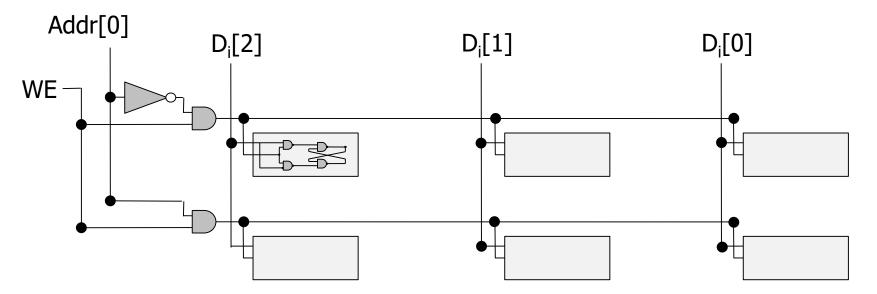
How can we select an address and write to it?



Writing to Memory

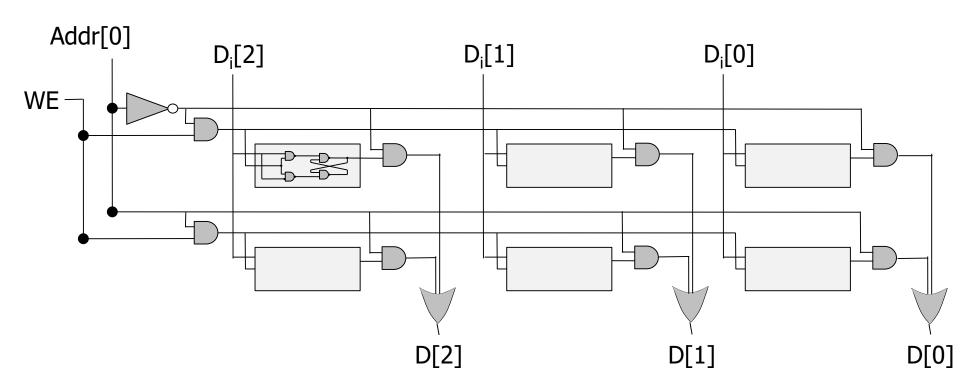
How can we select an address and write to it?

Input is indicated with D_i

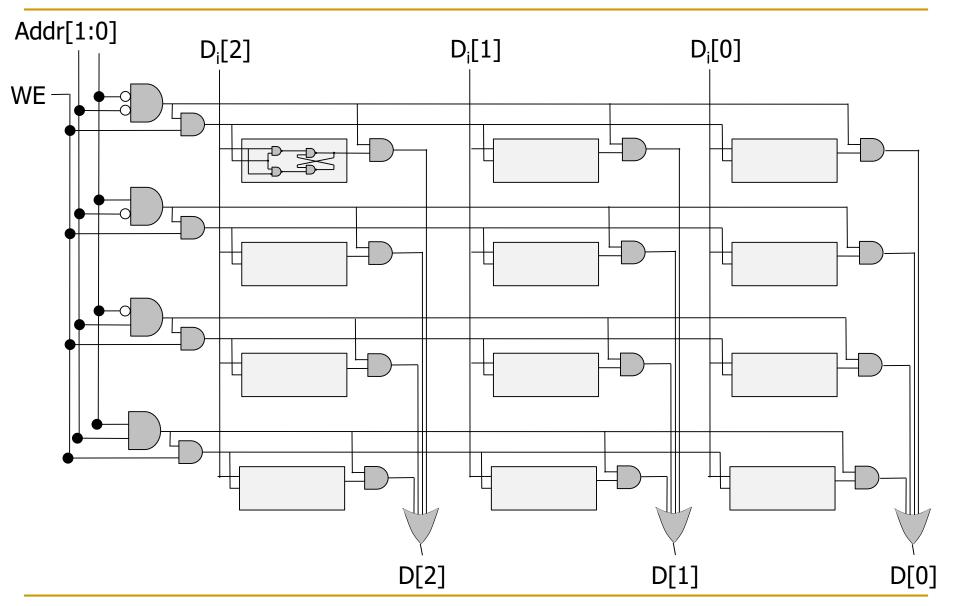


Putting it all Together

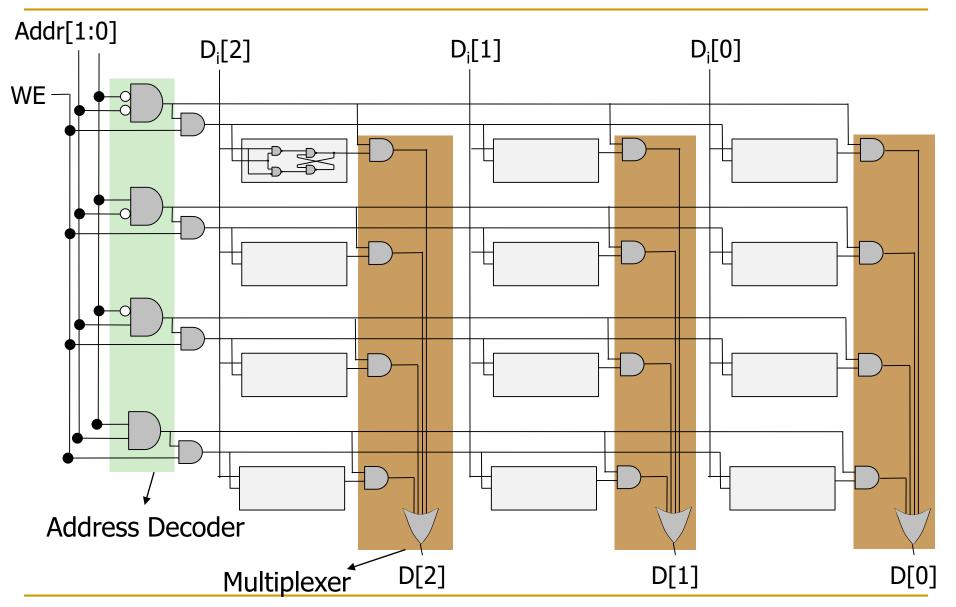
Let's enable reading and writing to a memory array



A Bigger Memory Array



A Bigger Memory Array



Sequential Logic Circuits

Sequential Logic Circuits

- We have looked at designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

SequentialOpens depending on past inputs

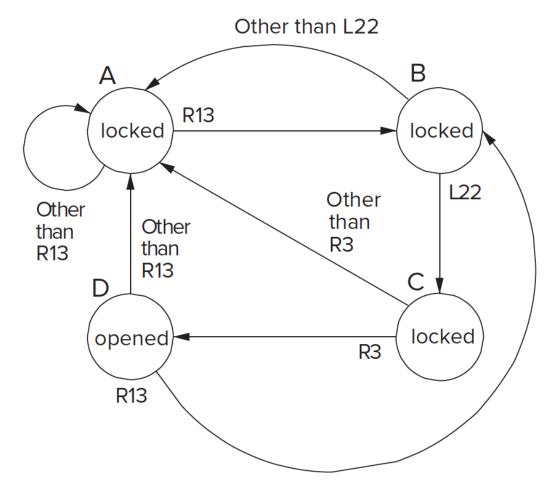
State

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
 - A. The lock is not open (locked), and no relevant operations have been performed
 - B. Locked but user has completed R13
 - C. Locked but user has completed R13-L22
 - D. Unlocked: user has completed R13-L22-R3

- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
 - □ To open the lock, states A-D must be completed in order
 - If anything else happens (e.g., L5), lock returns to state A

State Diagram of Our Sequential Lock

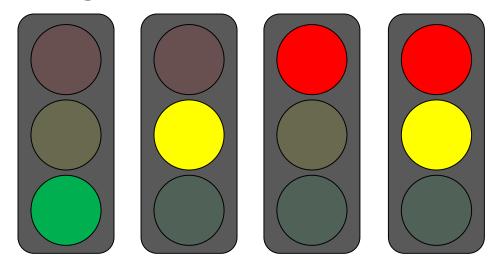
Completely describes the operation of the sequential lock



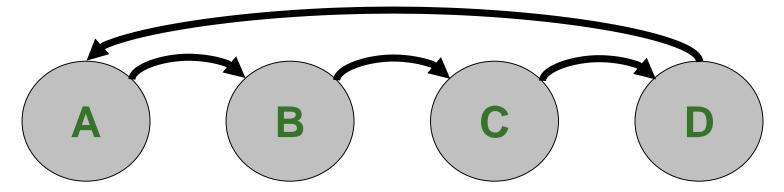
We will understand "state diagrams" fully later today

Another Simple Example of State

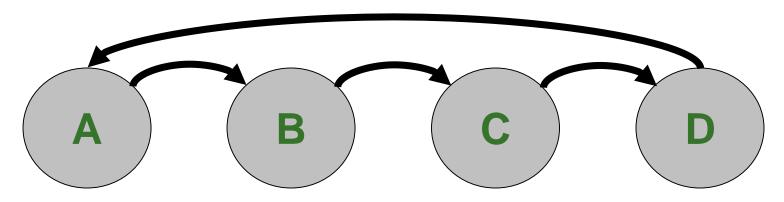
- A standard Swiss traffic light has 4 states
 - A. Green
 - B. Yellow
 - C. Red
 - D. Red and Yellow



The sequence of these states are always as follows



Changing State: The Notion of Clock (I)



- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

CLK: 1_0

- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
 - More on this later, when we discuss timing

Finite State Machines

Finite State Machines

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
 - 1. the set of all possible **states** that a system can be in
 - 2. how the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

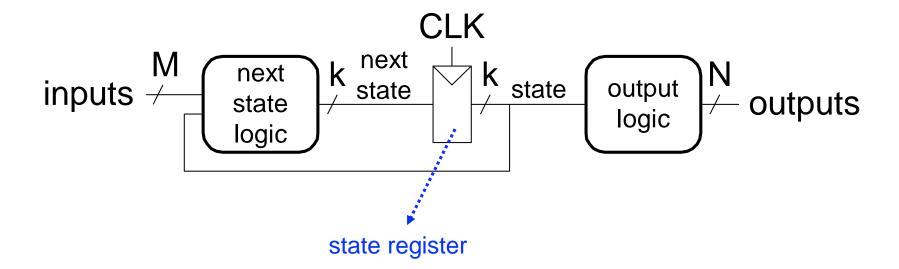
Finite State Machines (FSMs) Consist of:

Five elements:

- 1. A **finite** number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
 - How to get from one state to another
- 5. An explicit specification of what determines each external output value

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

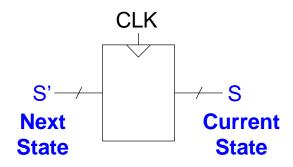


At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:

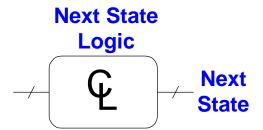
Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

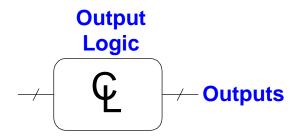


Combinational Circuits

- Next state logic
 - Determines what the next state will be



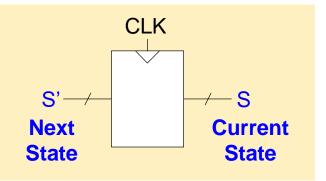
- Output logic
 - Generates the outputs



Finite State Machines (FSMs) Consist of:

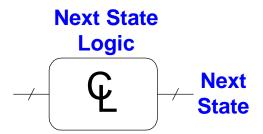
Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

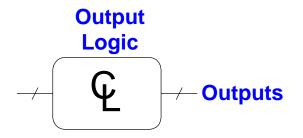


Combinational Circuits

- Next state logic
 - Determines what the next state will be

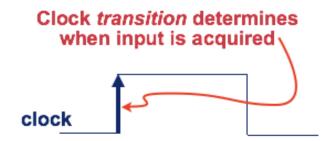


- Output logic
 - Generates the outputs

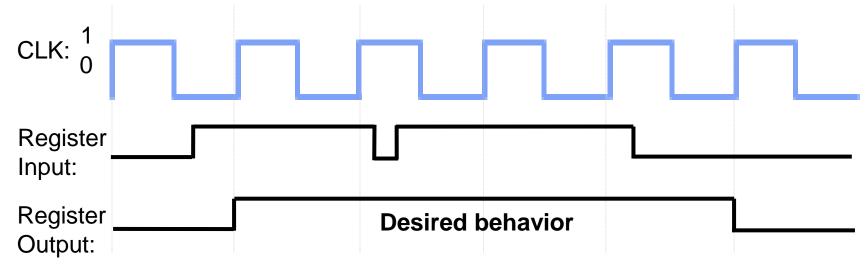


State Register Implementation

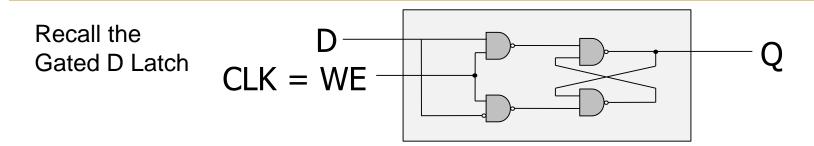
- How can we implement a state register? Two properties:
 - 1. We need to store data at the **beginning** of every clock cycle



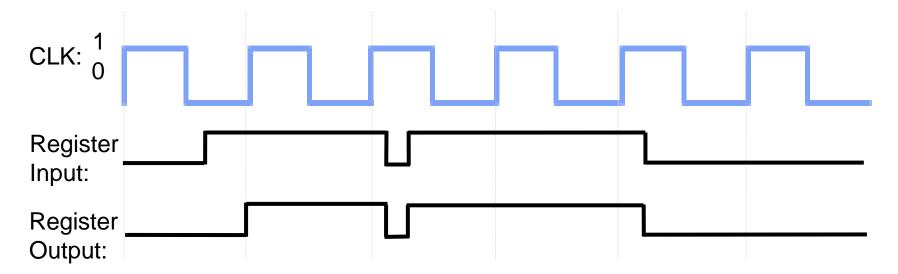
2. The data must be **available** during the entire clock cycle



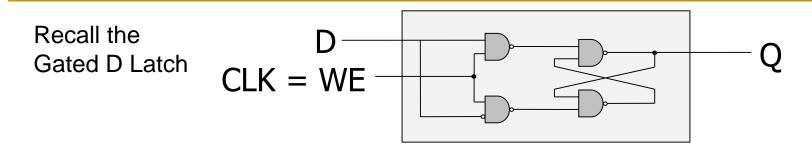
The Problem with Latches



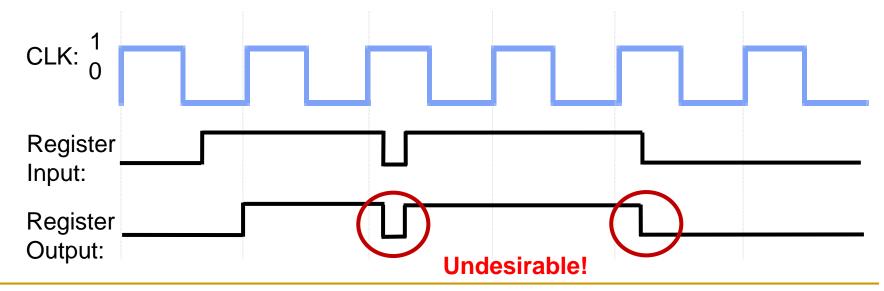
- Currently, we cannot simply wire a clock to WE of a latch
 - Whenever the clock is high, the latch propagates D to Q
 - The latch is transparent



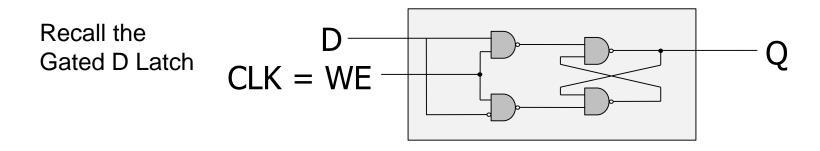
The Problem with Latches



- Currently, we cannot simply wire a clock to WE of a latch
 - Whenever the clock is high, the latch propagates D to Q
 - The latch is transparent



The Problem with Latches



How can we change the latch, so that

- 1) D (input) is observable at Q (output) only at the beginning of next clock cycle?
- 2) Q is available for the full clock cycle

The Need for a New Storage Element

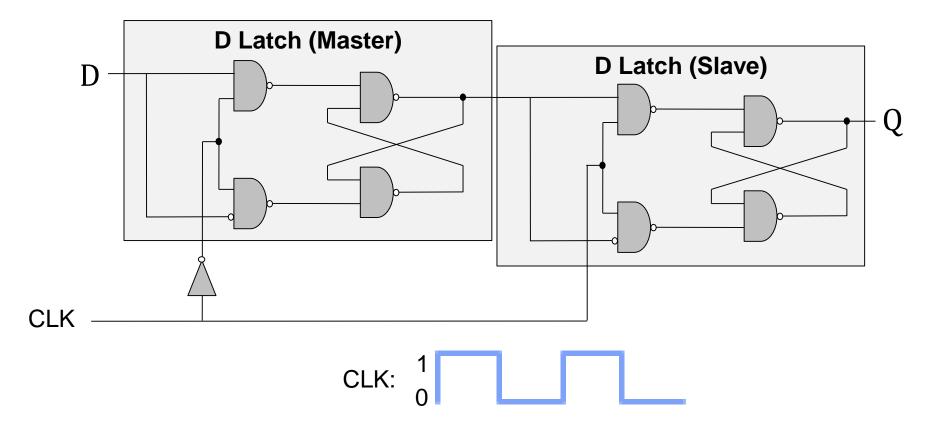
- To design viable FSMs
- We need storage elements that allow us
 - to read the current state throughout the current clock cycle

AND

 not write the next state values into the storage elements until the beginning of the next clock cycle.

The D Flip-Flop

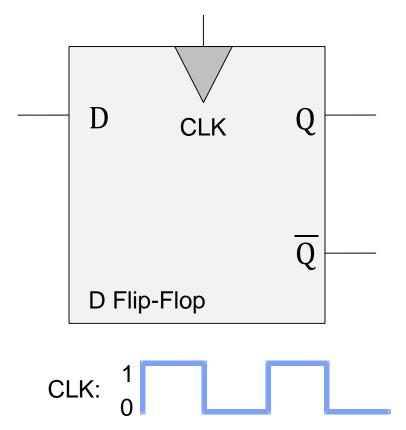
1) state change on clock edge, 2) data available for full cycle



- When the clock is low, master propagates D to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
 - At the rising edge of clock (clock going from 0->1), Q gets assigned D

The D Flip-Flop

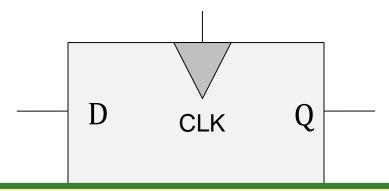
1) state change on clock edge, 2) data available for full cycle



- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

The D Flip-Flop

How do we implement this?



We can use these Flip-Flops to implement the state register!

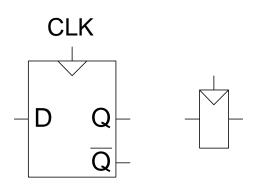
- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Rising-Clock-Edge Triggered Flip-Flop

Two inputs: CLK, D

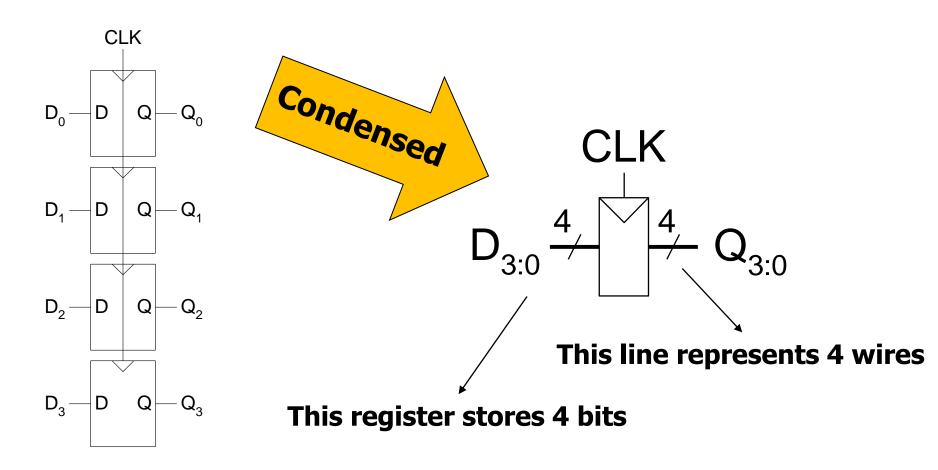
Function

- The flip-flop "samples" D on the rising edge of CLK (positive edge)
- When CLK rises from 0 to 1, **D** passes
 through to **Q**
- Otherwise, Q holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
 - A latch is a level-triggered state element

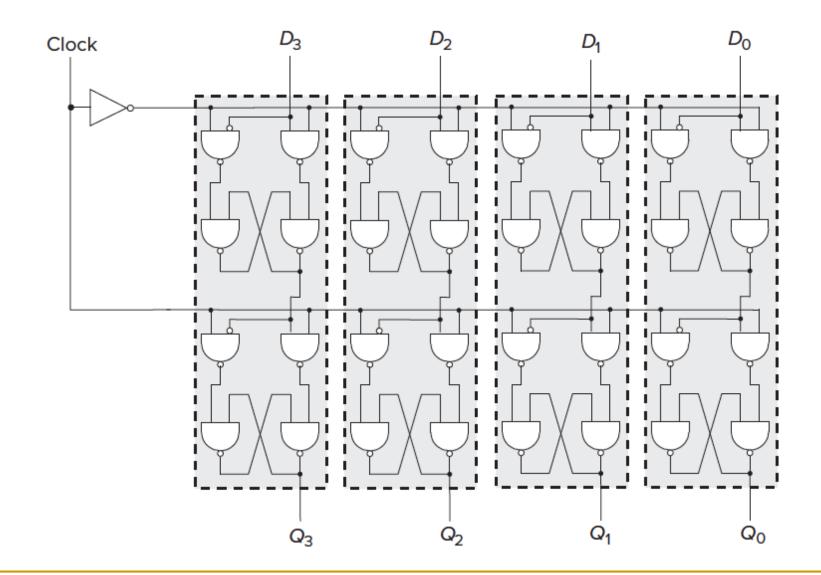


Register

Multiple parallel flip-flops, each of which storing 1 bit



A 4-Bit D-Flip-Flop-Based Register (Internally)



Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state

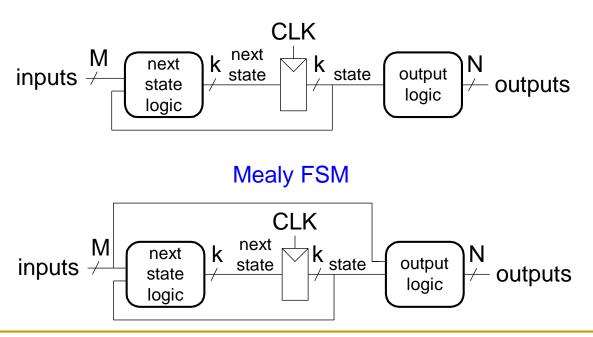
inputs M next state | k state | v state | logic | N output | N ou

Moore FSM

Finite State Machines (FSMs)

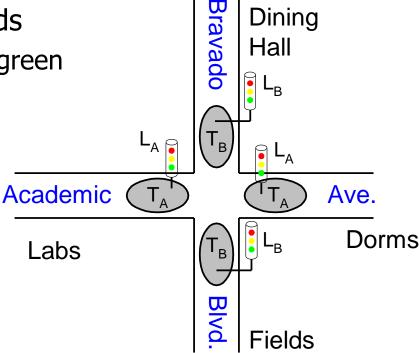
- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

 Moore FSM



Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - 2 outputs:
 - Lights: L_A , L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

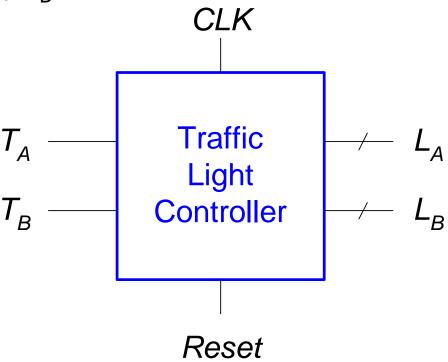


From H&H Section 3.4.1

Finite State Machine Black Box

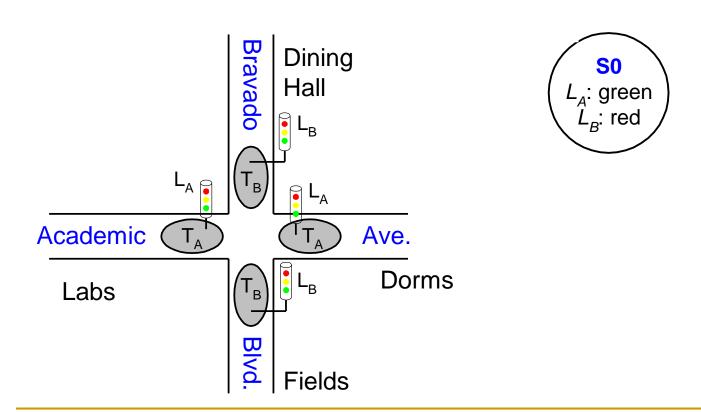
Inputs: CLK, Reset, T_A, T_B

Outputs: L_A, L_B



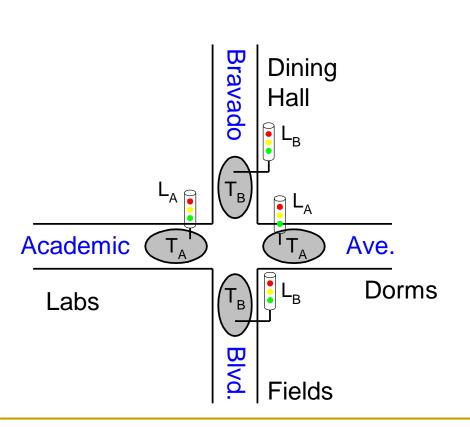
Moore FSM: outputs labeled in each state

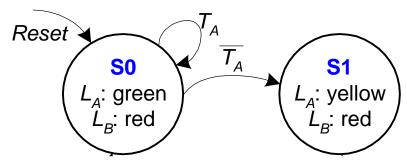
States: Circles



Moore FSM: outputs labeled in each state

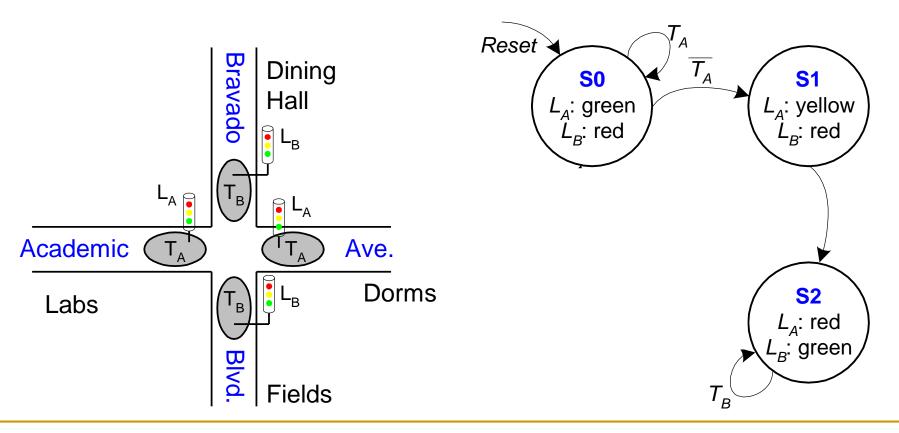
States: Circles





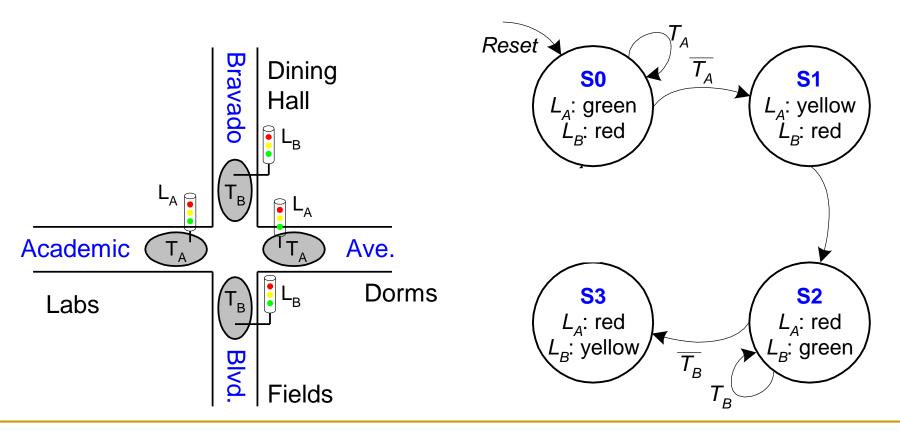
Moore FSM: outputs labeled in each state

States: Circles



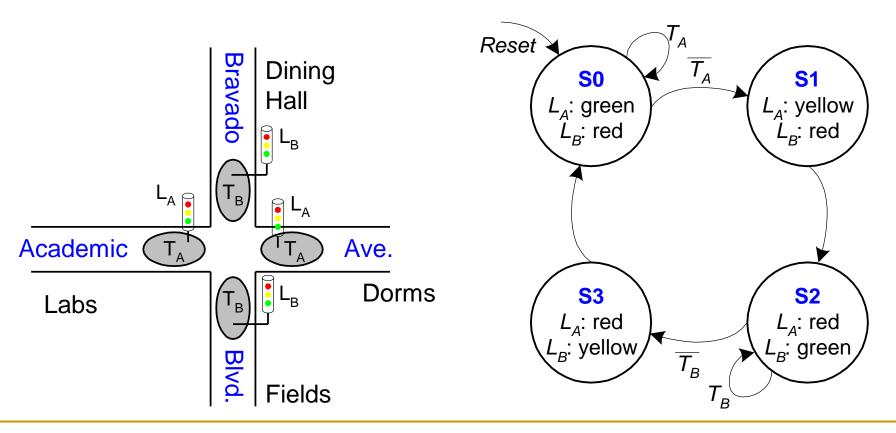
Moore FSM: outputs labeled in each state

States: Circles

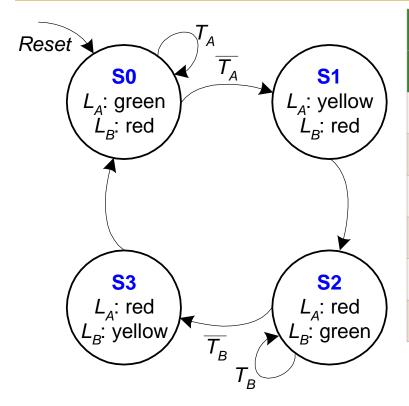


Moore FSM: outputs labeled in each state

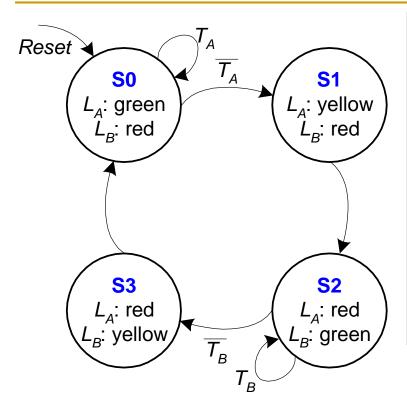
States: Circles



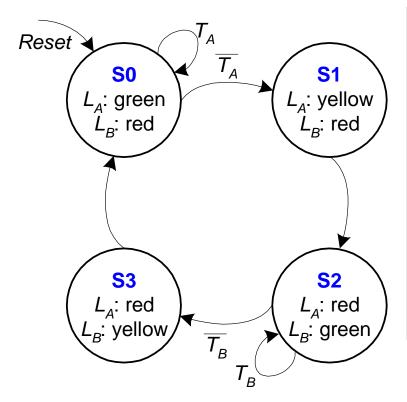
Finite State Machine: State Transition Table



Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

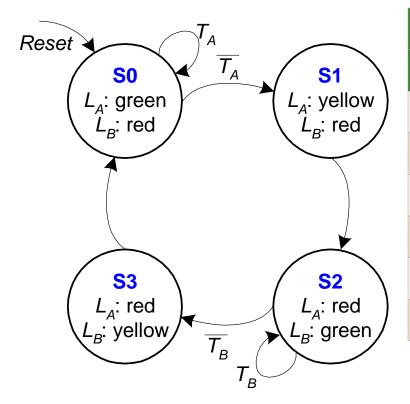


Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0



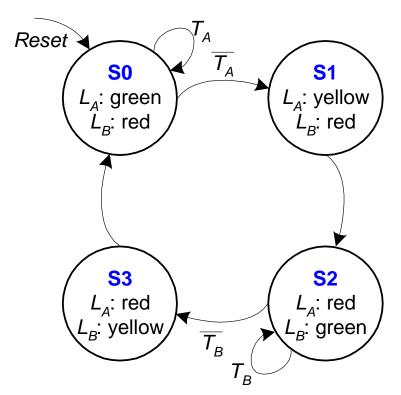
Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11



Curren	it State	Inputs		Inputs Next Sta	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

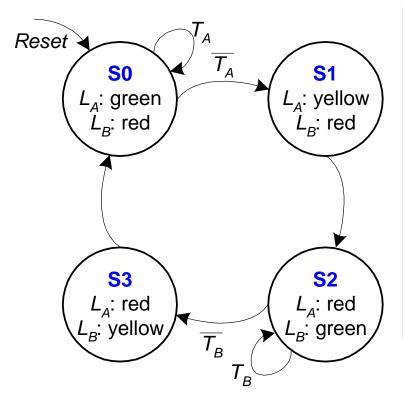
State	Encoding
S0	00
S1	01
S2	10
S3	11



Currer	ıt State	Inputs		State Inp		Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀		
0	0	0	X	0	1		
0	0	1	X	0	0		
0	1	X	X	1	0		
1	0	X	0	1	1		
1	0	X	1	1	0		
1	1	X	X	0	0		

S' ₁	=	?
_		-

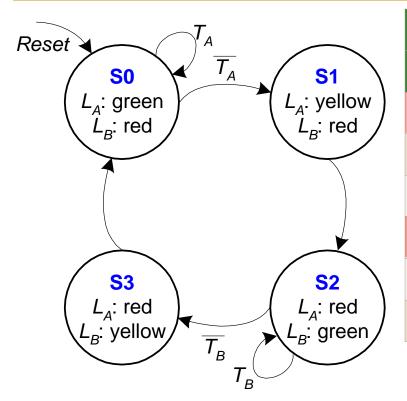
State	Encoding
S0	00
S1	01
S2	10
S3	11



Currer	it State	Inputs		Next	State
S_1	S_0	T_{A}	$T_{\rm B}$	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

State	Encoding
S0	00
S1	01
S2	10
S 3	11

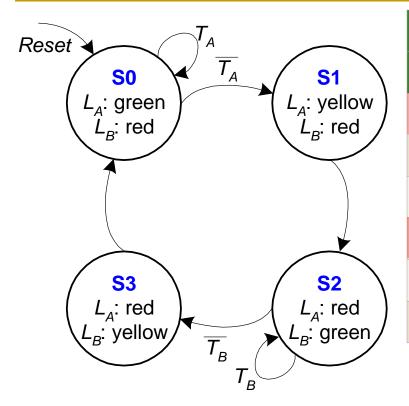


Curren	it State	Inputs		Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = ?$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

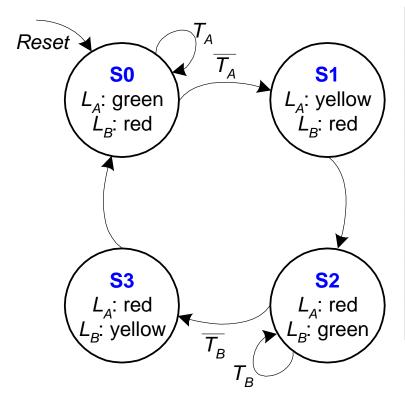


Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11



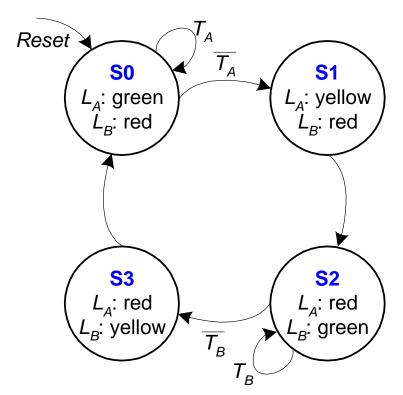
Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$S'_1 = S_1 \times S_0$	(Simplified)
-------------------------	--------------

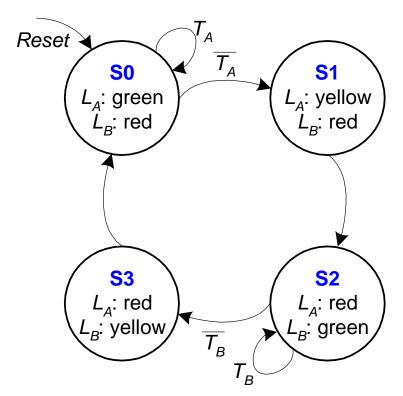
$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Finite State Machine: Output Table

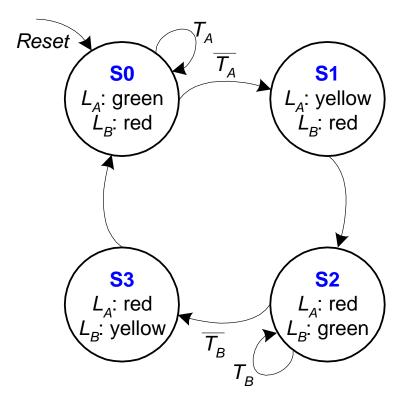


Currer	nt State	Outputs	
S_1	S_0	L_{A}	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow



Currer	it State	Out	puts
S_1	S_0	L_{A}	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow

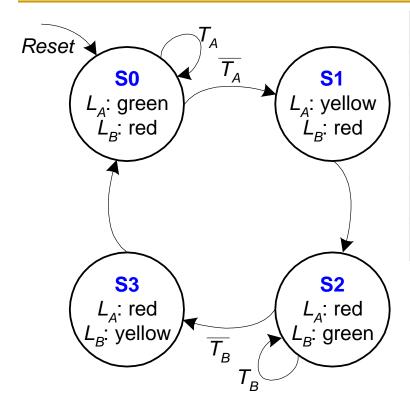
Output	Encoding
green	00
yellow	01
red	10



Current State			Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1
----------	---	-------

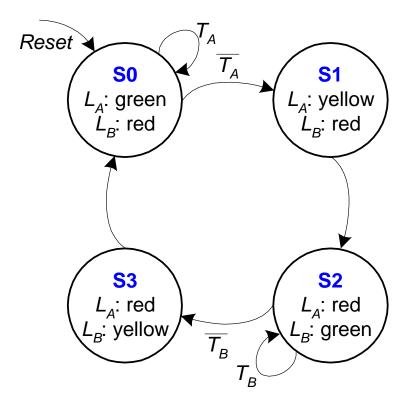
Output	Encoding	
green	00	
yellow	01	
red	10	



Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L _{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1		
L_{A0}	=	$\overline{S_1}$	•	S_0

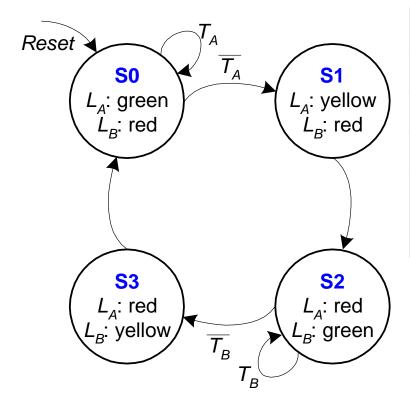
Output	Encoding
green	00
yellow	01
red	10



Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$ ·	S_0
$L_{B1} =$	$\overline{S_1}$	

Output	Encoding
green	00
yellow	01
red	10



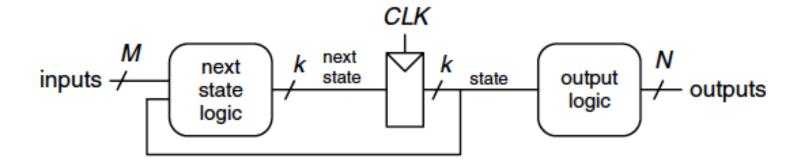
Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$	S_0
$L_{B1} =$	$\overline{S_1}$	
$L_{B0} =$	S_1	S_0

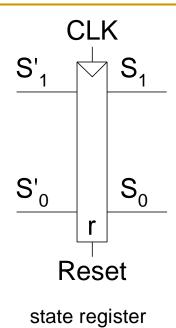
Output	Encoding
green	00
yellow	01
red	10

Finite State Machine: Schematic

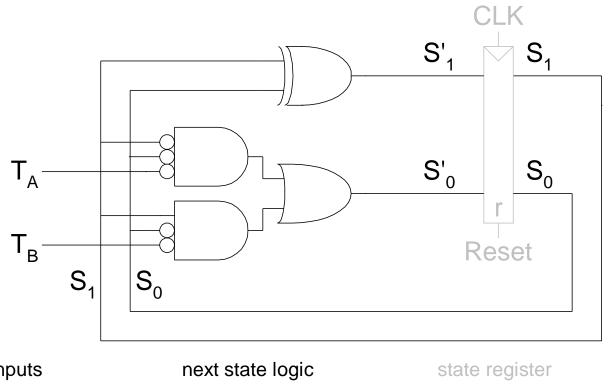
FSM Schematic: State Register



FSM Schematic: State Register



FSM Schematic: Next State Logic

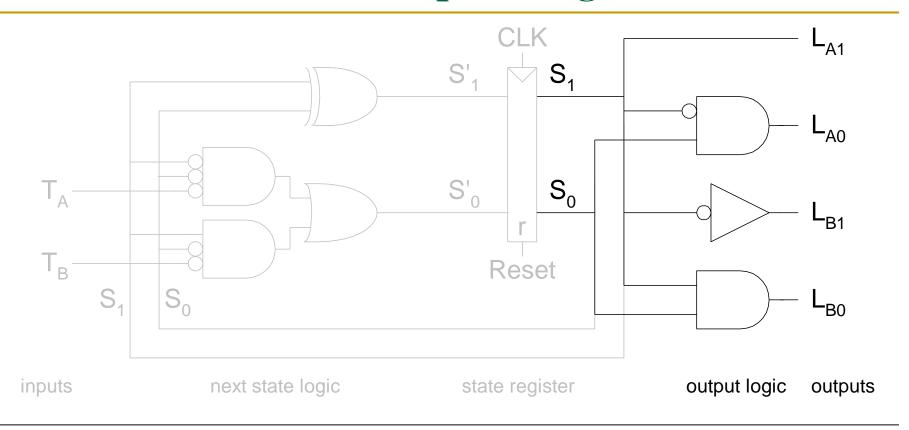


inputs

$$S'_1 = S_1 \times S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

FSM Schematic: Output Logic

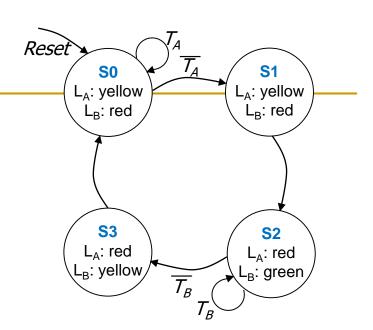


$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \overline{S_1} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 \cdot S_0$$



CLK_

Reset_

 T_A_-

 T_B _

 $S^{\prime}_{1:0} \stackrel{-}{_-}$

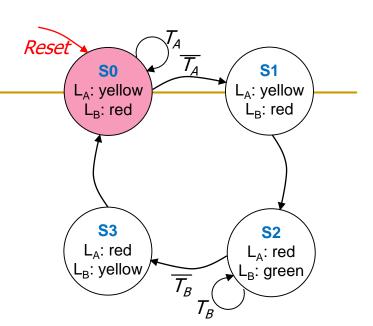
1.0 =

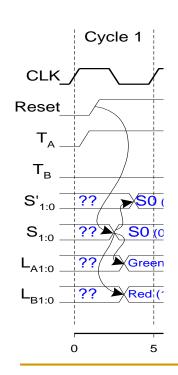
 $S_{1:0} \stackrel{-}{_-}$

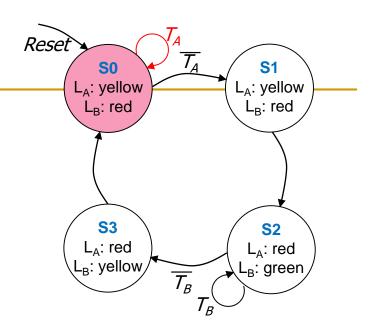
 $L_{\Delta_{1:0}}$

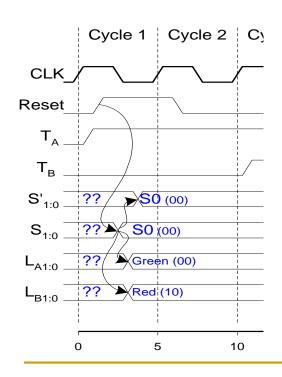
. -

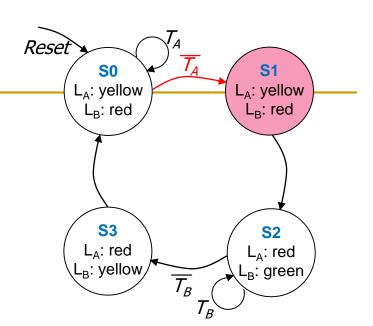
 $L_{\rm B1:0}$ $_-$

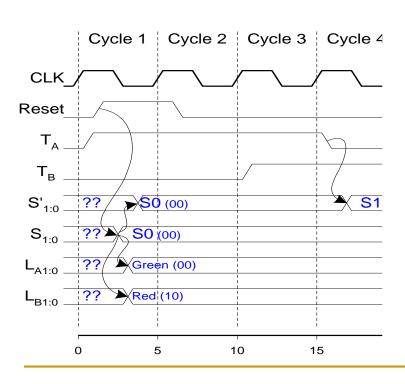


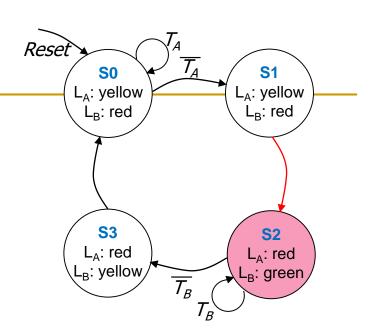


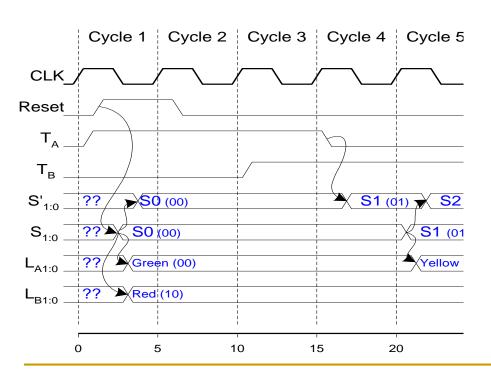


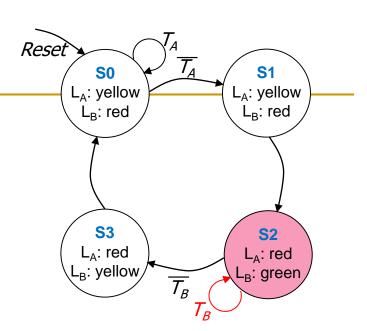


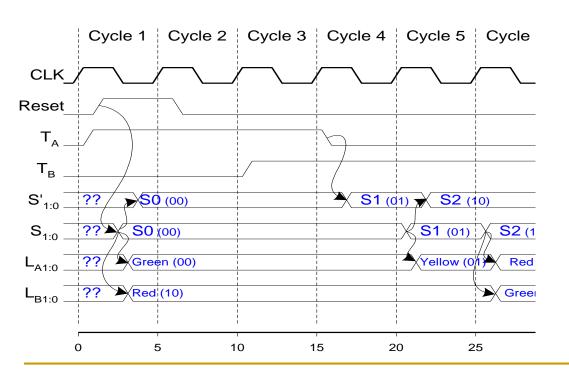


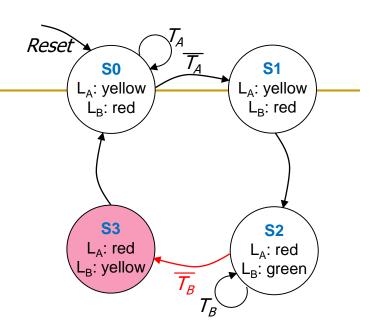


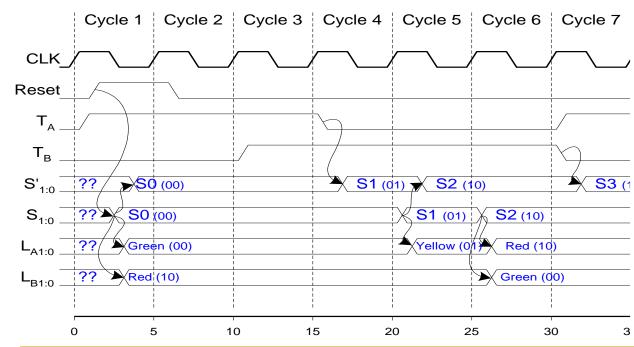


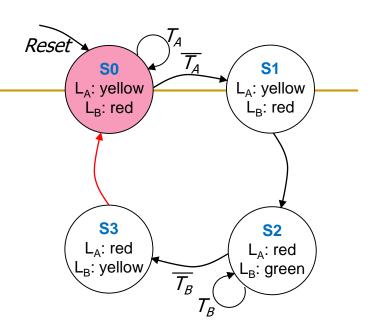




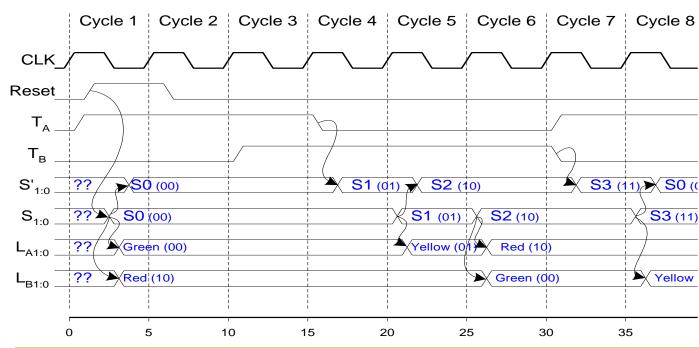


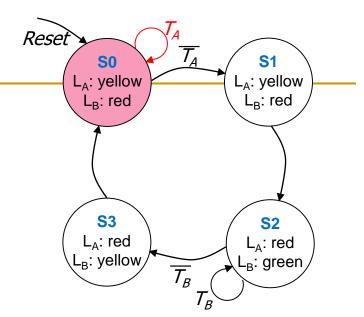


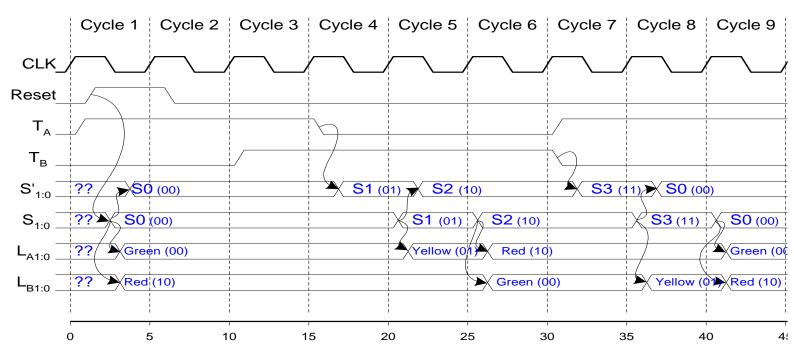


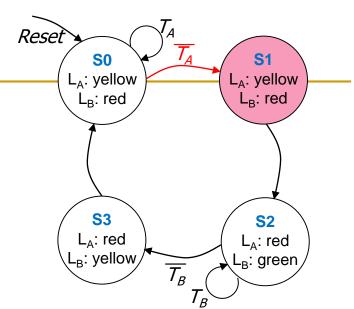


This is from H&H Section 3.4.1

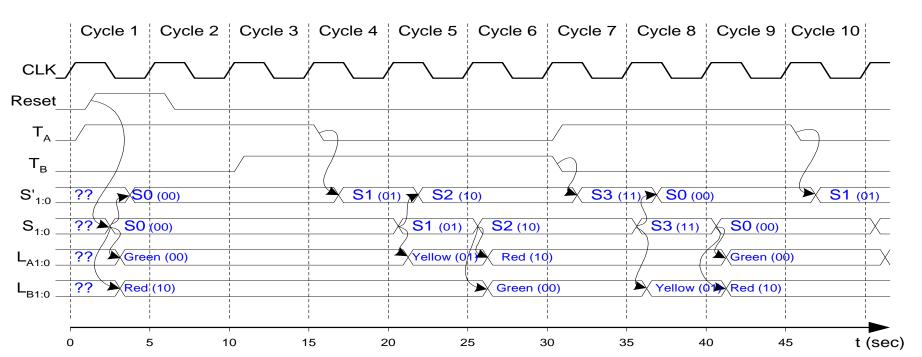








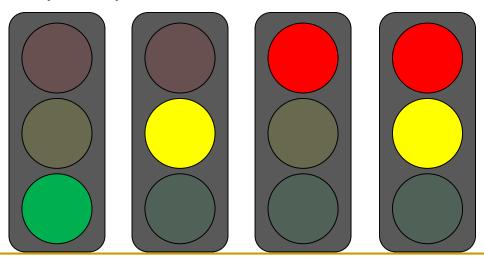
See H&H Chapter 3.4



Finite State Machine: State Encoding

FSM State Encoding

- How do we encode the state bits?
 - Three common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - Green, Yellow, Red, Yellow+Red



FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
 - Use log₂(num_states) bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes green light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes **red** light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

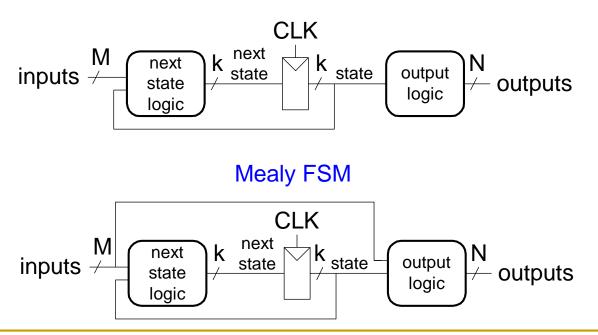
- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

 Moore FSM

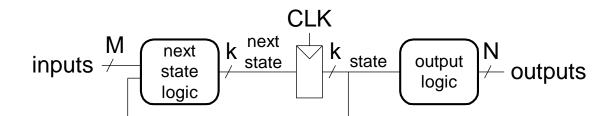


Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM





Moore vs. Mealy FSM Examples

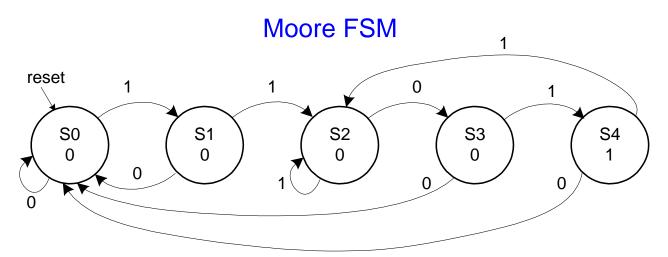
- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

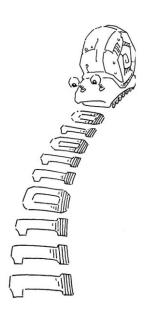
Moore FSM

Design Moore and Mealy FSMs of the snail's brain.

CLK inputs + state state output state - outputs logic logic Mealy FSM CLK next k state next output inputs state outputs state logic logic

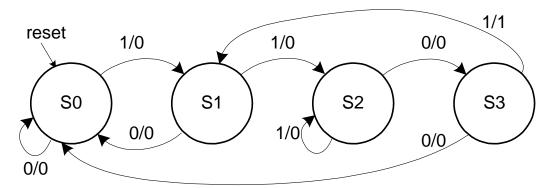
State Transition Diagrams





What are the tradeoffs?

Mealy FSM



FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
 - Generally this is done from a textual description
 - You need to 1) determine the inputs and outputs for each state and
 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is **like** programming (but it is not programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

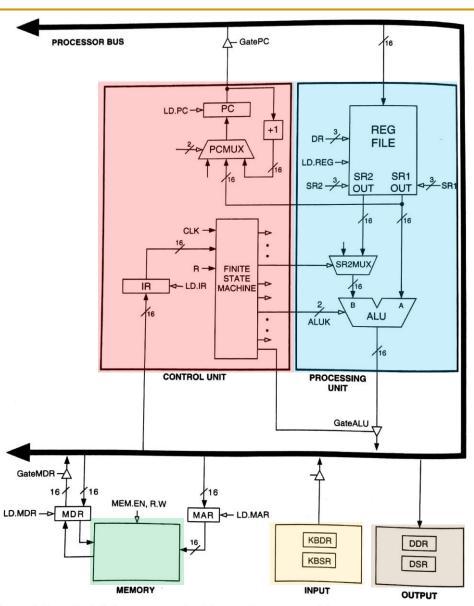
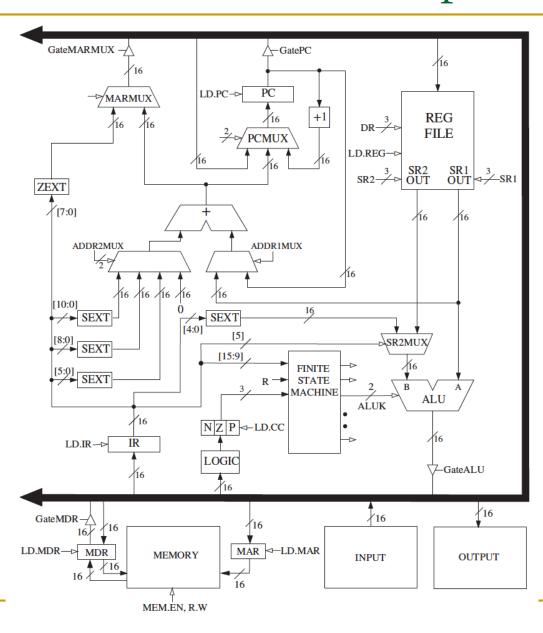


Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath



Digital Design & Computer Arch.

Lecture 6: Sequential Logic Design

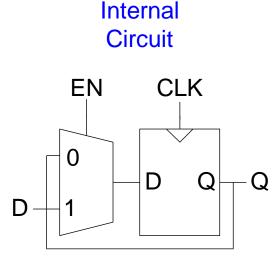
Prof. Onur Mutlu

ETH Zürich
Spring 2020
6 March 2020

Backup Slides: Different Types of Flip Flops

Enabled Flip-Flops

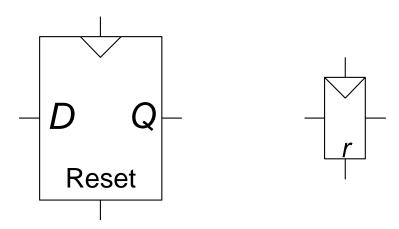
- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function:
 - \blacksquare **EN** = **1**: D passes through to Q on the clock edge
 - □ **EN** = **0**: the flip-flop retains its previous state



Resettable Flip-Flop

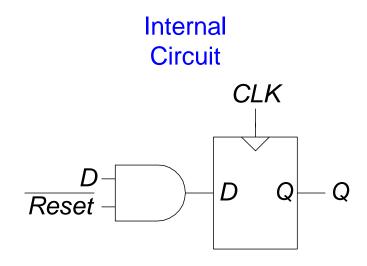
- **Inputs:** CLK, D, Reset
 - The Reset is used to set the output to 0.
- Function:
 - Reset = 1: Q is forced to 0
 - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols



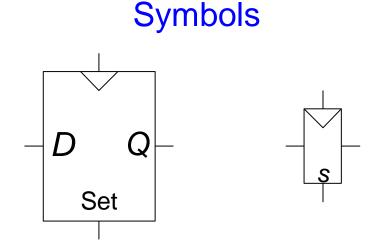
Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?



Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
 - □ **Set** = **1**: Q is set to 1
 - Set = 0: the flip-flop behaves like an ordinary D flip-flop

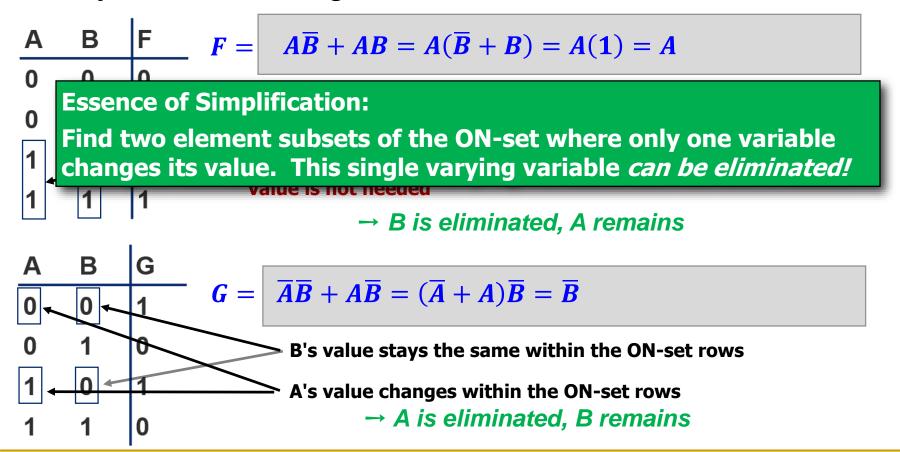


Logic Simplification: Karnaugh Maps (K-Maps)

Logic Simplification

- Systematic techniques for simplifications
 - amenable to automation

Key Tool: The Uniting Theorem — $F = A\overline{B} + AB$



Complex Cases

One example

$$Cout = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Problem

- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables

Question

- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?

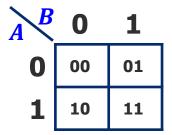
Answer

- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

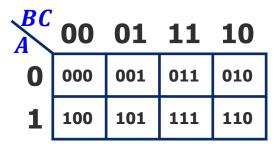
Karnaugh Map

- Karnaugh Map (K-map) method
 - K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
 - □ Physical adjacency ← Logical adjacency

2-variable K-map



3-variable K-map

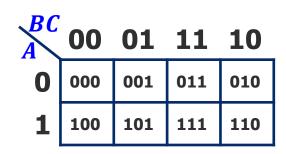


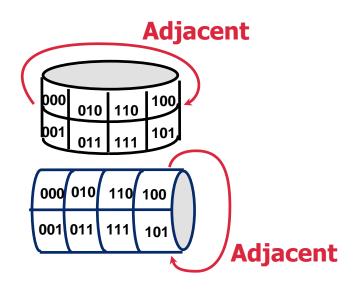
4-variable K-map

	_			
AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" — only a single bit (variable) changes from one code word and the next code word

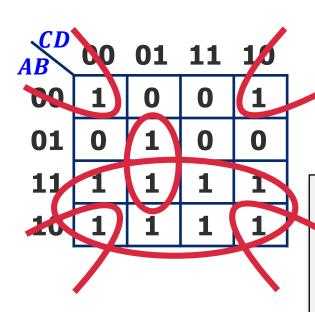
Karnaugh Map Methods





K-map adjacencies go "around the edges"
Wrap around from first to last column
Wrap around from top row to bottom row

K-map Cover - 4 Input Variables



$$F(A, B, C, D) = \sum_{m} m(0, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15)$$

$$F = A + \overline{B}\overline{D} + B\overline{C}D$$

Strategy for "circling" rectangles on Kmap:

Biggest "oops!" that people forget:

Logic Minimization Using K-Maps

Very simple guideline:

- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
 - Each circle should be as large as possible
- Read off the implicants that were circled

More formally:

- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

What can be legally combined (circled) in the K-map?

- Rectangular groups of size 2^k for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
 - Wrap-around edge is okay

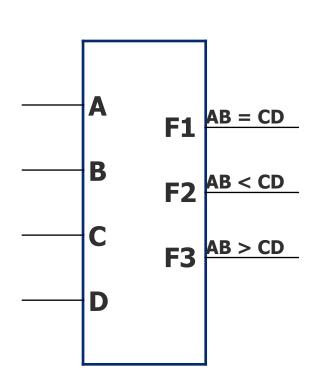
How does a group become a term in an expression?

- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
 - constant $1 \rightarrow \text{use } X$, constant $0 \rightarrow \text{use } \overline{X}$

What is a good solution?

- □ Biggest groupings → eliminate more variables (literals) in each term
- □ Fewest groupings → fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

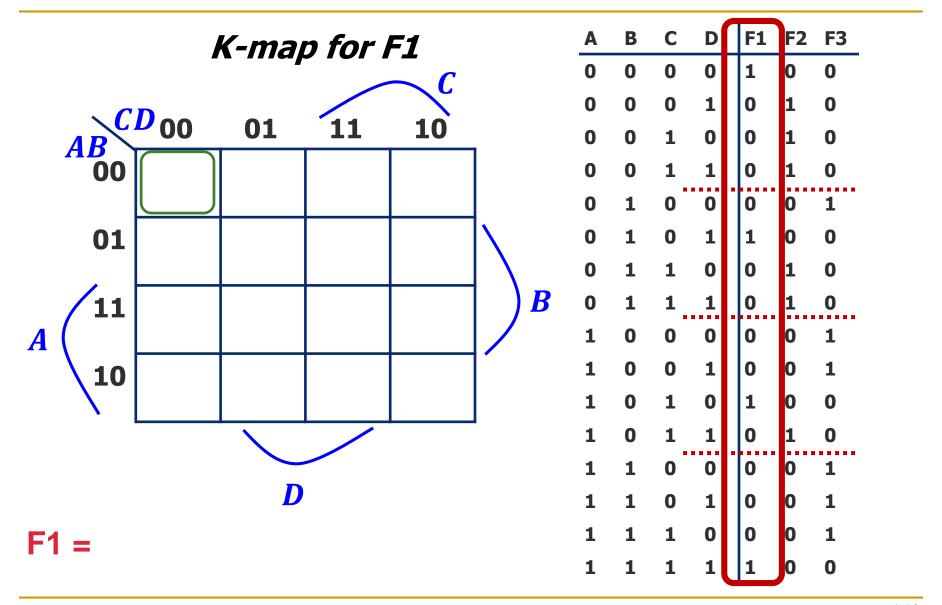


Design Approach:

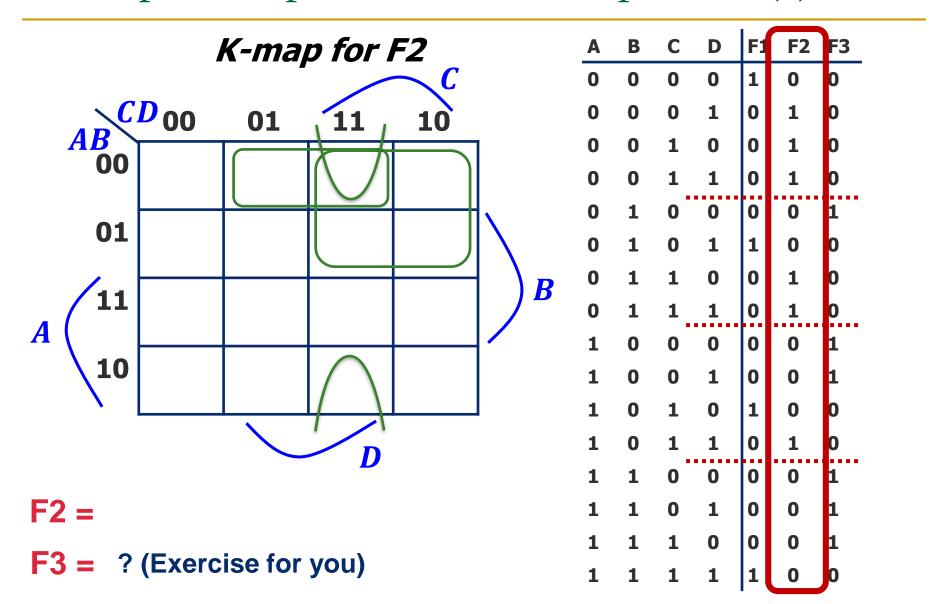
Write a 4-Variable K-map for each of the 3 output functions

A	В	С	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-map Example: Two-bit Comparator (2)

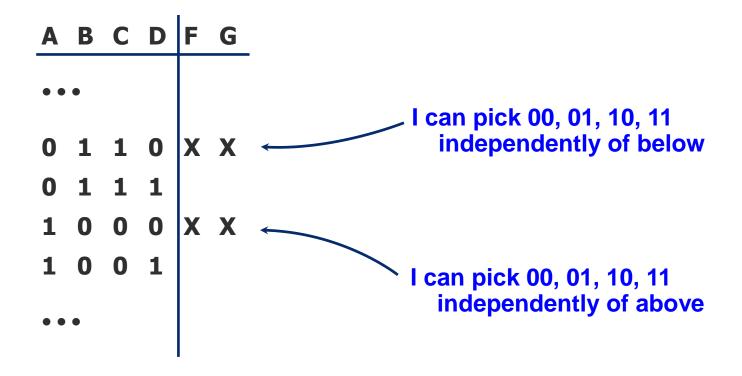


K-map Example: Two-bit Comparator (3)



K-maps with "Don't Care"

- Don't Care really means I don't care what my circuit outputs if this appears as input
 - You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit



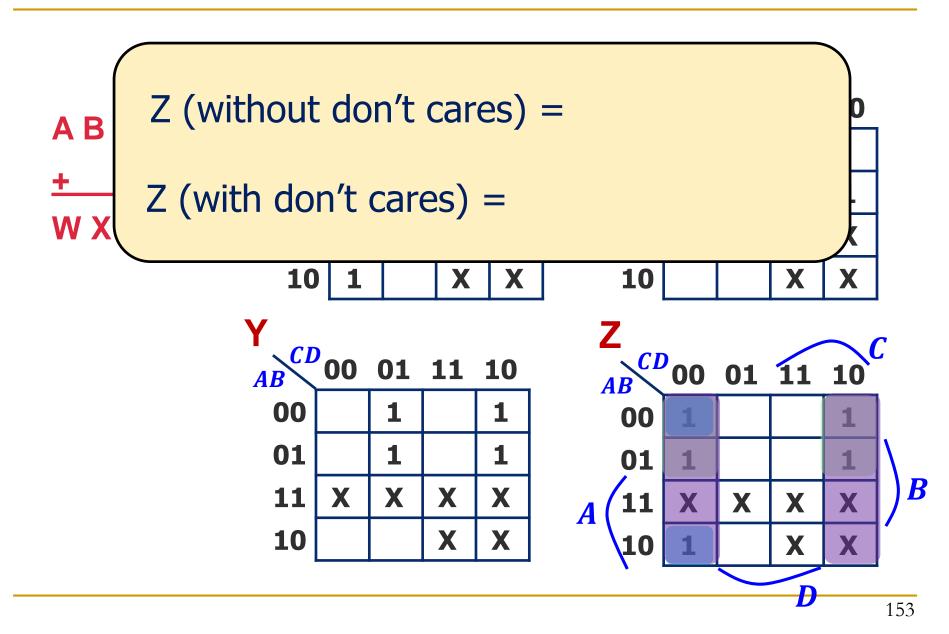
Example: BCD Increment Function

- BCD (Binary Coded Decimal) digits
 - \Box Encode decimal digits 0 9 with bit patterns $0000_2 1001_2$
 - When incremented, the decimal sequence is 0, 1, ..., 8, 9, 0, 1

Α	В	С	D	W	X	Y	Z	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	0	1	1	0	1	0	0	
0	1	0	0	0	1	0	1	
0	1	0	1	0	1	1	0	
0	1	1	0	0	1	1	1	
0	1	1	1	1	0	0	0	
1	0	0	0	1 0	0	0	1	
1	0	0	1	0	0	0	0	_
1	0	1	0	X	X	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X X	X	X	X	
1	1	0	1	X	X	X	X	
1	1	1	0	X	X	X	X	
1	1	1	1	X	X	X	X	

These input patterns should never be encountered in practice (hey -- it's a BCD number!)
So, associated output values are "Don't Cares"

K-map for BCD Increment Function



K-map Summary

 Karnaugh maps as a formal systematic approach for logic simplification

2-, 3-, 4-variable K-maps

K-maps with "Don't Care" outputs

H&H Section 2.7