Digital Design \& Computer Arch.

 Lecture 6: Sequential Logic DesignProf. Onur Mutlu

ETH Zürich
Spring 2020
6 March 2020

We Are Almost Done with This

- Building blocks of modern computers
- Transistors
- Logic gates
- Combinational circuits
- Boolean algebra
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits

Agenda for Today and Next Week

- Today
- Wrap up Combinational Logic and Circuit Minimization
- Start (and finish) Sequential Logic
- Next week
- Hardware Description Languages and Verilog
- Combinational Logic
- Sequential Logic
- Timing and Verification

Assignment: Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
- Watch Prof. Mutlu's inaugural lecture at ETH and understand it
- https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment - for 1\% extra credit
- Write a 1-page summary of the lecture and email us
- What are your key takeaways?
- What did you learn?
- What did you like or dislike?
- Submit your summary to Moodle - Deadline: April 1

Extra Assignment: Moore's Law (I)

- Paper review
- G.E. Moore. "Cramming more components onto integrated circuits," Electronics magazine, 1965
- Optional Assignment - for 1\% extra credit - Write a 1-page review
- Upload PDF file to Moodle - Deadline: April 1
- I strongly recommend that you follow my guidelines for (paper) review (see next slide)

Extra Assignment 2: Moore's Law (II)

- Guidelines on how to review papers critically
- Guideline slides: pdf ppt
- Video: https://www.youtube.com/watch?v=tOL6FANAJ8c
- Example reviews on "Main Memory Scaling: Challenges and Solution Directions" (link to the paper)
- Review 1
- Review 2
- Example review on "Staged memory scheduling: Achieving high performance and scalability in heterogeneous systems" (link to the paper)
- Review 1

Assignment: Required Readings

- Combinational Logic
- P\&P Chapter 3 until $3.3 \quad+\quad$ H\&H Chapter 2
- Sequential Logic
- P\&P Chapter 3.4 until end + H\&H Chapter 3 in full
- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Timing and Verification
- H\&H Chapters 2.9 and $3.5+$ (start Chapter 5)
- By the end of next week, make sure you are done with - P\&P Chapters 1-3 + H\&H Chapters 1-4

Wrap-Up Combinational Logic Circuits and Design

Recall: Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

Tristate
Buffer

$$
\begin{array}{cc|c}
E & A & Y \\
\hline 0 & 0 & \mathrm{Z} \\
0 & 1 & \mathrm{Z} \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit - Open circuit, floating wire

Recall: Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Recall: Example Design with Tri-State Buffers

Recall: Another Example

Multiplexer Using Tri-State Buffers

Figure 2.56 Multiplexer using tristate buffers

Aside: Logic Using Multiplexers

- Multiplexers can be used as lookup tables to perform logic functions

Figure 2.59 4:1 multiplexer implementation of two-input AND function

Aside: Logic Using Multiplexers (II)

- Multiplexers can be used as lookup tables to perform logic functions

Aside: Logic Using Multiplexers (III)

- Multiplexers can be used as lookup tables to perform logic functions

Aside: Logic Using Decoders (I)

- Decoders can be combined with OR gates to build logic functions.

Figure 2.65 Logic function using decoder

Logic Simplification using Boolean Algebra Rules

Recall: Full Adder in SOP Form Logic

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}+\boldsymbol{1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Goal: Simplified Full Adder

Full
Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
S & =A \oplus B \oplus C_{\mathrm{in}} \\
C_{\mathrm{out}} & =A B+A C_{\mathrm{in}}+B C_{\mathrm{in}}
\end{aligned}
$$

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

- The original Boolean expression (i.e., logic circuit) may not be optimal

$$
F=\sim A(A+B)+(B+A A)(A+\sim B)
$$

- Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$
F=A+B
$$

- The goal of logic simplification:
- Reduce the number of gates/inputs
- Reduce implementation cost

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem - F $=A \bar{B}+A B$

Logic Simplification:

 Karnaugh Maps (K-Maps)
Karnaugh Maps are Fun...

- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...
- See Backup Slides
- Read H\&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 Digitech course:
- https://youtu.be/OksOPeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF QFHRO3GrXxA9\&t=4570
- https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN FQFHRO3GrXxA9\&t=220

Sequential Logic Circuits and Design

What We Will Learn Today

- Circuits that can store information
- Cross-coupled inverter
- R-S Latch
- Gated D Latch
- D Flip-Flop
- Register
- Finite State Machines (FSM)
- Moore Machine
- Mealy Machine
- Verilog implementations of sequential circuits (next week)

Circuits that Can
Store Information

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values - circuits with memory
- How can we design a circuit that stores information?

Capturing Data

Basic Element: Cross-Coupled Inverters

(a)

(b)

- Has two stable states: $\mathrm{Q}=1$ or $\mathrm{Q}=0$.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a control mechanism for setting Q

More Realistic Storage Elements

- Have a control mechanism for setting Q
- We will see the R-S latch soon
- Let's look at an SRAM (static random access memory) cell first

SRAM cell

- We will get back to SRAM (and DRAM) later

The Big Picture: Storage Elements

- Latches and Flip-Flops
- Very fast, parallel access
- Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
- Relatively fast, only one data word at a time
- Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
- Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
- Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
- Much slower, access takes a long time, non-volatile
- Very cheap

Basic Storage Element:

 The R-S Latch
The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
- Data is stored at \mathbf{Q} (inverse at \mathbf{Q}^{\prime})
- \mathbf{S} and \mathbf{R} are control inputs
- In quiescent (idle) state, both \mathbf{S} and \mathbf{R} are held at 1
- \mathbf{S} (set): drive \mathbf{S} to 0 (keeping \mathbf{R} at 1) to change \mathbf{Q} to 1
- \mathbf{R} (reset): drive \mathbf{R} to 0 (keeping \mathbf{S} at 1) to change \mathbf{Q} to 0
- \mathbf{S} and \mathbf{R} should never both be 0 at the same time

Input		Output
R	S	Q
1	1	$\mathrm{Q}_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

Why not $\mathrm{R}=\mathrm{S}=0$?

Input		Output
R	S	Q
1	1	$\mathrm{Q}_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

1. If $\mathbf{R}=\mathbf{S}=\mathbf{0}, \mathbf{Q}$ and \mathbf{Q}^{\prime} will both settle to 1 , which breaks our invariant that $\mathbf{Q}=!\mathbf{Q}^{\prime}$
2. If \mathbf{S} and \mathbf{R} transition back to 1 at the same time, \mathbf{Q} and \mathbf{Q}^{\prime} begin to oscillate between 1 and 0 because their final values depend on each other (metastability)

- This eventually settles depending on variation in the circuits (more metastability to come in Lecture 8)

The Gated D Latch

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?
- Add two more NAND gates!

- \mathbf{Q} takes the value of \mathbf{D}, when write enable (WE) is set to 1
- \mathbf{S} and \mathbf{R} can never be 0 at the same time!

The Gated D Latch

The Register

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as Q [3:0]

Memory

Memory

- Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

Addr(00):	0100	1001	Addr(01):	0100	1011
$\boldsymbol{A d d r}(10):$	0010	0010	Addr(11):	1100	1001

- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[\#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The entire set of unique locations in memory is referred to as the address space.
- Typical memory is MUCH larger (billions of locations)

Addressing Memory

Let's implement a simple memory array with:

- 3 -bit addressability \& address space size of 2 (total of 6 bits) 1 Bit

6-Bit Memory Array

Addr(0)	Bit_{2}	Bit_{1}	Bit_{0}
$\boldsymbol{A d d r}(\mathbf{1})$	Bit_{2}	Bit_{1}	Bit_{0}

Reading from Memory

How can we select the address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

How can we select an address and write to it?

Writing to Memory

How can we select an address and write to it?

- Input is indicated with D_{i}

Putting it all Together

Let's enable reading and writing to a memory array

A Bigger Memory Array

A Bigger Memory Array

Sequential Logic Circuits

Sequential Logic Circuits

- We have looked at designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

Combinational
Only depends on current inputs

Sequential
Opens depending on past inputs

State

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
A. The lock is not open (locked), and no relevant operations have been performed
B. Locked but user has completed R13
C. Locked but user has completed R13-L22
D. Unlocked: user has completed R13-L22-R3
- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
- To open the lock, states A-D must be completed in order
- If anything else happens (e.g., L5), lock returns to state A

State Diagram of Our Sequential Lock

- Completely describes the operation of the sequential lock

- We will understand "state diagrams" fully later today

Another Simple Example of State

- A standard Swiss traffic light has 4 states
A. Green
B. Yellow
C. Red
D. Red and Yellow

- The sequence of these states are always as follows

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
- Clock signal alternates between 0 \& 1

CLK: ${ }_{0}^{1} \sqcap \square \square$

- At the start of a clock cycle ($\square \square$), system state changes
- During a clock cycle, the state stays constant
- In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
- More on this later, when we discuss timing

Finite State Machines

Finite State Machines

- What is a Finite State Machine (FSM)?
- A discrete-time model of a stateful system
- Each state represents a snapshot of the system at a given time
- An FSM pictorially shows

1. the set of all possible states that a system can be in
2. how the system transitions from one state to another

- An FSM can model
- A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

Finite State Machines (FSMs) Consist of:

- Five elements:

1. A finite number of states

- State: snapshot of all relevant elements of the system at the time of the snapshot

2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions - How to get from one state to another
5. An explicit specification of what determines each external output value

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
- next state logic
- state register
- output logic

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:

- Sequential circuits
- State register(s)
- Store the current state and
- Load the next state at the clock edge
- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

Finite State Machines (FSMs) Consist of:

- Sequential circuits
- State register(s)
- Store the current state and
- Load the next state at the clock edge

- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

State Register Implementation

- How can we implement a state register? Two properties: 1 . We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle

Register

Desired behavior
Output:

The Problem with Latches

Recall the
Gated D Latch

- Currently, we cannot simply wire a clock to WE of a latch - Whenever the clock is high, the latch propagates \mathbf{D} to \mathbf{Q}
- The latch is transparent

CLK: ${ }_{0}^{1}$

Register
 Output:

The Problem with Latches

Recall the
Gated D Latch

- Currently, we cannot simply wire a clock to WE of a latch - Whenever the clock is high, the latch propagates \mathbf{D} to \mathbf{Q}
- The latch is transparent

The Problem with Latches

Recall the
Gated D Latch

How can we change the latch, so that

1) \mathbf{D} (input) is observable at \mathbf{Q} (output) only at the beginning of next clock cycle?
2) \mathbf{Q} is available for the full clock cycle

The Need for a New Storage Element

- To design viable FSMs
- We need storage elements that allow us
- to read the current state throughout the current clock cycle

AND

- not write the next state values into the storage elements until the beginning of the next clock cycle.

The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- When the clock is low, master propagates \mathbf{D} to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
- At the rising edge of clock (clock going from $0->1$), Q gets assigned D

The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

The D Flip-Flop

- How do we implement this?

We can use these Flip-Flops to implement the state register!

- At the rising edge of clock (clock going from 0->1), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

Rising-Clock-Edge Triggered Flip-Flop

- Two inputs: CLK, D
- Function
- The flip-flop "samples" \mathbf{D} on the rising edge of CLK (positive edge)
- When CLK rises from 0 to 1, D passes through to \mathbf{Q}

- Otherwise, \mathbf{Q} holds its previous value
- \mathbf{Q} changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
- A latch is a level-triggered state element

Register

- Multiple parallel flip-flops, each of which storing 1 bit

A 4-Bit D-Flip-Flop-Based Register (Internally)

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state

Moore FSM

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

Finite State Machine Example

- "Smart" traffic light controller
- 2 inputs:
- Traffic sensors: T_{A}, T_{B} (TRUE when there's traffic)
- 2 outputs:
- Lights: L_{A}, L_{B} (Red, Yellow, Green)
- State can change every 5 seconds
- Except if green and traffic, stay green

From H\&H Section 3.4.1

Finite State Machine Black Box

- Inputs: CLK, Reset, T_{A}, T_{B}
- Outputs: L_{A}, L_{B}

Reset

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine:

State Transition Table

FSM State Transition Table

Current State	Inputs	
Next State		
S	T_{A}	T_{B}
S^{\prime}		
S 0	0	X
S 0	1	X
S 1	X	X
S 2	X	0
S 2	X	1
S 3	X	X

FSM State Transition Table

Current State	Inputs	
S	T_{A}	T_{B}
S 0	0	X
S ' State		
S 0	1	X
S 1	X	X
S 2	X	0
S 2	X	1
S 3	X	X

FSM State Transition Table

Current State	Inputs		Next State
S	T_{A}	T_{B}	S^{\prime}
S 0	0	X	S 1
S 0	1	X	S 0
S 1	X	X	S 2
S 2	X	0	S 3
S 2	X	1	S 2
S 3	X	X	S 0
		State	Encoding
		S 0	00
		S 1	01
		S 2	10
		S 3	11

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	
0	0	$\mathrm{~S}_{0}^{\prime}$			
0	0	X	0	1	
0	1	X	X	0	
1	0	X	1	0	
1	0	X	0	1	
1	1	X	1	1	

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	$\mathrm{S}_{0}{ }_{0}$
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	
0	0	0	S	0	
0	0	1	X	0	
0	1	X	X	1	
1	0	X	0	1	
1	0	X	1	1	
1	1	X	X	0	

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

$$
\mathrm{S}_{1}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \mathrm{~S}_{0}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \bar{T}_{\mathrm{B}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~T}_{\mathrm{B}}\right)
$$

$$
\mathrm{S}_{0}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{A}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)
$$

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	
0	0	0	X	0	
0	0	1	X	0	
0	1	X	X	1	
1	0	X	0	1	
1	0	X	1	1	
1	1	X	X	0	

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

$$
\begin{aligned}
& \mathrm{S}_{1}^{\prime}=\mathrm{S}_{1} \text { xor } \mathrm{S}_{0} \quad \text { (Simplified) } \\
& \mathrm{S}_{0}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{A}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}_{0}} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)
\end{aligned}
$$

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	
0	0	0	X	0	
$\mathrm{~S}_{0}^{\prime}$					
0	0	1	X	0	
0	1	X	X	1	
1	0	X	0	1	
1	0	X	1	1	
1	1	X	X	0	

State	Encoding
S0	00
S1	01
S2	10
S3	11

Finite State Machine:
Output Table

FSM Output Table

Current State		Outputs		
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A}}$	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

FSM Output Table

Current State		Outputs		
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A}}$	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Current State		Outputs			
S_{1}	S_{0}	$\mathrm{L}_{\text {A1 }}$	$\mathrm{L}_{\text {A0 }}$	$\mathrm{L}_{\text {B1 }}$	$\mathrm{L}_{\text {B0 }}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1
			Output		ding
			green		
			yellow		
			red		

FSM Output Table

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

Digital Design \& Computer Arch.

 Lecture 6: Sequential Logic DesignProf. Onur Mutlu

ETH Zürich
Spring 2020
6 March 2020

We did not cover the remaining slides. They are for your preparation for the next lecture.

Finite State Machine:

Schematic

FSM Schematic: State Register

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

inputs
next state logic
state register

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \operatorname{xor} S_{0} \\
& S_{0}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{A}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)
\end{aligned}
$$

FSM Schematic: Output Logic

output logic outputs

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}} \\
& \mathrm{~L}_{\mathrm{B} 0}=\mathrm{S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

FSM Timing Diagram

$$
\begin{gathered}
\text { CLK_ } \\
\text { Reset_ } \\
\mathrm{T}_{\mathrm{A}-} \\
\mathrm{T}_{\mathrm{B}}- \\
\mathrm{S}_{1: 0}^{\prime}= \\
\mathrm{S}_{1: 0}- \\
\mathrm{S}_{1:}^{-} \\
\mathrm{L}_{\mathrm{A} 1: 0}- \\
\mathrm{L}_{\mathrm{B} 1: 0}-
\end{gathered}
$$

FSM Timing Diagram

FSM Timing Diagram

This is from H\&H Section 3.4.1

FSM Timing Diagram

FSM Timing Diagram

See H\&H Chapter 3.4

Finite State Machine:
State Encoding

FSM State Encoding

- How do we encode the state bits?
- Three common state binary encodings with different tradeoffs 1. Fully Encoded

2. 1-Hot Encoded
3. Output Encoded

- Let's see an example Swiss traffic light with 4 states
- Green, Yellow, Red, Yellow+Red

FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
- Use $\log _{2}$ (num_states) bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes \# flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
- Uses num_states bits to represent the states
- Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process - very automatable
- Maximizes \# flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
- Bit $_{0}$ encodes green light output,
- Bit $_{1}$ encodes yellow light output
- Bit ${ }_{2}$ encodes red light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams

FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
- Generally this is done from a textual description
- You need to 1) determine the inputs and outputs for each state and 2) figure out how to get from one state to another
- Approach
- Start by defining the reset state and what happens from it - this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is like programming (but it is not programming!)
- An FSM has a sequential "control-flow" like a program with conditionals and goto's
- The if-then-else construct is controlled by one or more inputs
- The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath

Backup Slides:

Different Types of Flip Flops

Enabled Flip-Flops

- Inputs: CLK, D, EN
- The enable input (EN) controls when new data (D) is stored Function:
- $\mathbf{E N}=1$: D passes through to Q on the clock edge
- $\mathbf{E N}=\mathbf{0}$: the flip-flop retains its previous state

Internal

Circuit

Resettable Flip-Flop

- Inputs: CLK, D, Reset
- The Reset is used to set the output to 0 .

Function:

- Reset $=1$: Q is forced to 0
- Reset $=0$: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
- Set = 1: Q is set to 1
- Set = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols

Logic Simplification:

 Karnaugh Maps (K-Maps)
Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem - F $=A \bar{B}+A B$

Complex Cases

- One example

$$
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map

3-variable K-map

4-variable K-map

$C D$		00	01	11
$A B$	00	10		
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" - only a single bit (variable) changes from one code word and the next code word

Karnaugh Map Methods

> K-map adjacencies go "around the edges"
> Wrap around from first to last column
> Wrap around from top row to bottom row

K-map Cover - 4 Input Variables

Logic Minimization Using K-Maps

- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

- What can be legally combined (circled) in the K-map?
- Rectangular groups of size 2^{k} for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant $1 \rightarrow$ use \mathbf{X}, constant $0 \rightarrow$ use \bar{X}
- What is a good solution?
- Biggest groupings \rightarrow eliminate more variables (literals) in each term
- Fewest groupings \rightarrow fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

K-map Example: Two-bit Comparator (2)

K-map Example: Two-bit Comparator (3)

K-maps with "Don't Care"

- Don't Care really means I don't care what my circuit outputs if this appears as input
- You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit

Example: BCD Increment Function

- BCD (Binary Coded Decimal) digits
- Encode decimal digits $0-9$ with bit patterns $0000_{2}-1001_{2}$
- When incremented, the decimal sequence is $0,1, \ldots, 8,9,0,1$
$\left.\begin{array}{llll|llll}\text { A } & \text { B } & \text { C } & \text { D } & \text { W } & \text { X } & Y & Z \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & X & X & X & X \\ 1 & 0 & 1 & 1 & X & X & X & X \\ 1 & 1 & 0 & 0 & X & X & X & X \\ 1 & 1 & 0 & 1 & X & X & X & X \\ 1 & 1 & 1 & 0 & X & X & X & X \\ 1 & 1 & 1 & 1 & X & X & X & X\end{array}\right]$

These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are
"Don't Cares"

K-map for BCD Increment Function

K-map Summary

- Karnaugh maps as a formal systematic approach for logic simplification
- 2-, 3-, 4-variable K-maps
- K-maps with "Don't Care" outputs
- H\&H Section 2.7

