
Digital Design & Computer Arch.
Lecture 6: Sequential Logic Design

Prof. Onur Mutlu

ETH Zürich
Spring 2020

6 March 2020

We Are Almost Done with This
n Building blocks of modern computers

q Transistors
q Logic gates

n Combinational circuits

n Boolean algebra

n How to use Boolean algebra to represent combinational
circuits

n Minimizing logic circuits

2

Agenda for Today and Next Week
n Today

q Wrap up Combinational Logic and Circuit Minimization

q Start (and finish) Sequential Logic

n Next week

q Hardware Description Languages and Verilog
n Combinational Logic
n Sequential Logic

q Timing and Verification
3

Assignment: Required Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch Prof. Mutlu’s inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle – Deadline: April 1

4

https://www.youtube.com/watch%3Fv=kgiZlSOcGFM
https://moodle-app2.let.ethz.ch/mod/assign/view.php%3Fid=421558

Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review
q Upload PDF file to Moodle – Deadline: April 1

n I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

5

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
n Review 1

6

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch%3Fv=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php%3Fmedia=review-sms.pdf

Assignment: Required Readings
n Combinational Logic

q P&P Chapter 3 until 3.3 + H&H Chapter 2
n Sequential Logic

q P&P Chapter 3.4 until end + H&H Chapter 3 in full
n Hardware Description Languages and Verilog

q H&H Chapter 4 in full
n Timing and Verification

q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By the end of next week, make sure you are done with
q P&P Chapters 1-3 + H&H Chapters 1-4

7

Wrap-Up Combinational Logic
Circuits and Design

8

Recall: Tri-State Buffer
n A tri-state buffer enables gating of different signals onto a

wire

n Floating signal (Z): Signal that is not driven by any circuit
q Open circuit, floating wire

9

Recall: Example: Use of Tri-State Buffers
n Imagine a wire connecting the CPU and memory

q At any time only the CPU or the memory can place a value on
the wire, both not both

q You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

10

Recall: Example Design with Tri-State Buffers

11

CPU

Memory

GateMem

GateCPU

Shared Bus

Recall: Another Example

12

Multiplexer Using Tri-State Buffers

13

Aside: Logic Using Multiplexers
n Multiplexers can be used as lookup tables to perform logic

functions

14

Aside: Logic Using Multiplexers (II)
n Multiplexers can be used as lookup tables to perform logic

functions

15

Aside: Logic Using Multiplexers (III)
n Multiplexers can be used as lookup tables to perform logic

functions

16Read H&H Chapter 2.8

Aside: Logic Using Decoders (I)
n Decoders can be combined with OR gates to build logic

functions.

17Read H&H Chapter 2.8

Logic Simplification using
Boolean Algebra Rules

18

Recall: Full Adder in SOP Form Logic

19

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Goal: Simplified Full Adder

20

How do we simplify Boolean logic?

Quick Recap on Logic Simplification
n The original Boolean expression (i.e., logic circuit) may not

be optimal

n Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

n The goal of logic simplification:
q Reduce the number of gates/inputs
q Reduce implementation cost

21

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

22

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨$𝑩 + 𝑨𝑩

𝑨$𝑩 + 𝑨𝑩 = 𝑨 $𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = $𝑨$𝑩 + 𝑨$𝑩 = $𝑨 + 𝑨 $𝑩 = $𝑩

Essence of Simplification:
Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Logic Simplification:
Karnaugh Maps (K-Maps)

23

Karnaugh Maps are Fun…
n A pictorial way of minimizing circuits by visualizing

opportunities for simplification
n They are for you to study on your own…

n See Backup Slides
n Read H&H Section 2.7
n Watch videos of Lectures 5 and 6 from 2019 Digitech

course:
q https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF

QFHRO3GrXxA9&t=4570
q https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN

FQFHRO3GrXxA9&t=220

24

https://youtu.be/0ks0PeaOUjE%3Flist=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s%3Flist=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

Sequential Logic Circuits and
Design

25

What We Will Learn Today
n Circuits that can store information

q Cross-coupled inverter
q R-S Latch
q Gated D Latch
q D Flip-Flop
q Register

n Finite State Machines (FSM)
q Moore Machine
q Mealy Machine

n Verilog implementations of sequential circuits (next week)

26

Circuits that Can
Store Information

27

Introduction
n Combinational circuit output depends only on current input
n We want circuits that produce output depending on

current and past input values – circuits with memory
n How can we design a circuit that stores information?

28

Sequential Circuit

Combinational
Circuitin

pu
ts

ou
tp
ut
s

Storage
Element

Capturing Data

29

Basic Element: Cross-Coupled Inverters

n Has two stable states: Q=1 or Q=0.
n Has a third possible “metastable” state with both outputs

oscillating between 0 and 1 (we will see this later)
n Not useful without a control mechanism for setting Q

30Image source: Harris and Harris, Digital Design and Computer Architecture, 2nd Ed., p.110.

More Realistic Storage Elements
n Have a control mechanism for setting Q

q We will see the R-S latch soon
q Let’s look at an SRAM (static random access memory) cell first

n We will get back to SRAM (and DRAM) later

31

wordline
bitline bitline

SRAM cell

The Big Picture: Storage Elements
n Latches and Flip-Flops

q Very fast, parallel access
q Very expensive (one bit costs tens of transistors)

n Static RAM (SRAM)
q Relatively fast, only one data word at a time
q Expensive (one bit costs 6+ transistors)

n Dynamic RAM (DRAM)
q Slower, one data word at a time, reading destroys content

(refresh), needs special process for manufacturing
q Cheap (one bit costs only one transistor plus one capacitor)

n Other storage technology (flash memory, hard disk, tape)
q Much slower, access takes a long time, non-volatile
q Very cheap

Basic Storage Element:
The R-S Latch

33

The R-S (Reset-Set) Latch
n Cross-coupled NAND gates

q Data is stored at Q (inverse at Q’)
q S and R are control inputs

n In quiescent (idle) state, both S and R are held at 1
n S (set): drive S to 0 (keeping R at 1) to change Q to 1
n R (reset): drive R to 0 (keeping S at 1) to change Q to 0

n S and R should never both be 0 at the same time

34

S

R Q’

Q Input Output
R S Q
1 1 Qprev
1 0 1
0 1 0
0 0 Forbidden

10

Why not R=S=0?

1. If R=S=0, Q and Q’ will both settle to 1, which breaks
our invariant that Q = !Q’

2. If S and R transition back to 1 at the same time, Q and Q’
begin to oscillate between 1 and 0 because their final
values depend on each other (metastability)

q This eventually settles depending on variation in the
circuits (more metastability to come in Lecture 8)

35

S

R Q’

Q Input Output
R S Q
1 1 Qprev
1 0 1
0 1 0
0 0 Forbidden

10

0

01

1

The Gated D Latch

36

The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

37

S

R
Q’

Q

The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

q Add two more NAND gates!

q Q takes the value of D, when write enable (WE) is set to 1
q S and R can never be 0 at the same time!

38

S

R
Q’

Q

Write
Enable

D

The Gated D Latch

39

S

R Q’

Q

Write
Enable

D

Input Output
WE D Q
0 0 Qprev
0 1 Qprev
1 0 0
1 1 1

The Register

40

The Register

41

D

Q

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Write
Enable

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as
Q[3:0]

The Register

42

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as
Q[3:0]

Memory

43

Memory
n Memory is comprised of locations that can be written to or

read from. An example memory array with 4 locations:

n Every unique location in memory is indexed with a unique
address. 4 locations require 2 address bits
(log[#locations]).

n Addressability: the number of bits of information stored
in each location. This example: addressability is 8 bits.

n The entire set of unique locations in memory is referred to
as the address space.

n Typical memory is MUCH larger (billions of locations)
44

Addr(00):

Addr(10):

Addr(01):

Addr(11):

0100 1001

0010 0010

0100 1011

1100 1001

Addressing Memory

45

Let’s implement a simple memory array with:
• 3-bit addressability & address space size of 2 (total of 6 bits)

D Q
WE

1 Bit

Bit2 Bit1 Bit0

Bit2 Bit1 Bit0

Addr(0)

Addr(1)

6-Bit Memory Array

Reading from Memory

46

How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

Reading from Memory

47

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline

Address Decoder

Reading from Memory

48

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline

Address Decoder

Reading from Memory

49

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Multiplexer

Wordline

Writing to Memory

50

How can we select an address and write to it?

Writing to Memory

51

How can we select an address and write to it?
• Input is indicated with Di

Di[2] Di[1] Di[0]
Addr[0]

WE

Putting it all Together

52

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[0]

WE

Let’s enable reading and writing to a memory array

A Bigger Memory Array

53

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

A Bigger Memory Array

54

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer

Sequential Logic Circuits

55

Sequential Logic Circuits
n We have looked at designs of circuit elements that can

store information
n Now, we will use these elements to build circuits that

remember past inputs

56https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo

Sequential
Opens depending on past inputs

Combinational
Only depends on current inputs

State
n In order for this lock to work, it has to keep track

(remember) of the past events!
n If passcode is R13-L22-R3, sequence of states to unlock:

A. The lock is not open (locked), and no relevant operations have
been performed

B. Locked but user has completed R13
C. Locked but user has completed R13-L22
D. Unlocked: user has completed R13-L22-R3

n The state of a system is a snapshot of all relevant
elements of the system at the moment of the snapshot

q To open the lock, states A-D must be completed in order
q If anything else happens (e.g., L5), lock returns to state A

57

State Diagram of Our Sequential Lock
n Completely describes the operation of the sequential lock

n We will understand “state diagrams” fully later today
58Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 76.

Another Simple Example of State
n A standard Swiss traffic light has 4 states

A. Green
B. Yellow
C. Red
D. Red and Yellow

n The sequence of these states are always as follows

59

A B C D

Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

n At the start of a clock cycle (), system state changes
q During a clock cycle, the state stays constant
q In this traffic light example, we are assuming the traffic light stays in

each state an equal amount of time
60

A B C D

CLK: 0
1

Changing State: The Notion of Clock (II)
n Clock is a general mechanism that triggers transition from

one state to another in a sequential circuit

n Clock synchronizes state changes across many sequential
circuit elements

n Combinational logic evaluates for the length of the clock
cycle

n Clock cycle should be chosen to accommodate maximum
combinational circuit delay
q More on this later, when we discuss timing

61

Finite State Machines

62

Finite State Machines
n What is a Finite State Machine (FSM)?

q A discrete-time model of a stateful system
q Each state represents a snapshot of the system at a given time

n An FSM pictorially shows
1. the set of all possible states that a system can be in
2. how the system transitions from one state to another

n An FSM can model
q A traffic light, an elevator, fan speed, a microprocessor, etc.

n An FSM enables us to pictorially think of a stateful
system using simple diagrams

63

Finite State Machines (FSMs) Consist of:
n Five elements:
1. A finite number of states

n State: snapshot of all relevant elements of the
system at the time of the snapshot

2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions

n How to get from one state to another
5. An explicit specification of what determines

each external output value

64

Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic

65

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

66

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs

Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

67

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs

State Register Implementation
n How can we implement a state register? Two properties:

1. We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle

68

CLK: 0
1

Register
Input:

Register
Output:

Desired behavior

The Problem with Latches

n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent

69

D Q
CLK = WE

CLK: 0
1

Register
Input:

Register
Output:

Recall the
Gated D Latch

n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent

The Problem with Latches

70

D Q
CLK = WE

CLK: 0
1

Register
Input:

Register
Output:

Recall the
Gated D Latch

Undesirable!

n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

The Problem with Latches

71

D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the
Gated D Latch

How can we change the latch, so that

1) D (input) is observable at Q (output)
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle

The Need for a New Storage Element
n To design viable FSMs

n We need storage elements that allow us

q to read the current state throughout the current clock
cycle

AND

q not write the next state values into the storage elements
until the beginning of the next clock cycle.

72

n 1) state change on clock edge, 2) data available for full cycle

D Latch (Slave)
D Latch (Master)

The D Flip-Flop

73

D
Q

CLK

n When the clock is low, master propagates D to the input of slave (Q unchanged)
n Only when the clock is high, slave latches D (Q stores D)

q At the rising edge of clock (clock going from 0->1), Q gets assigned D

CLK:
0
1

The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle

74

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop

The D Flip-Flop
n How do we implement this?

75

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop
We can use these Flip-Flops

to implement the state register!

Rising-Clock-Edge Triggered Flip-Flop
n Two inputs: CLK, D

n Function
q The flip-flop “samples” D on the rising edge
of CLK (positive edge)

q When CLK rises from 0 to 1, D passes
through to Q
q Otherwise, Q holds its previous value
q Q changes only on the rising edge of CLK

n A flip-flop is called an edge-triggered state element
because it captures data on the clock edge
q A latch is a level-triggered state element

76

D Flip-Flop
Symbols

D Q
Q

CLK

Register
n Multiple parallel flip-flops, each of which storing 1 bit

77

CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed

A 4-Bit D-Flip-Flop-Based Register (Internally)

78Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., tentative page 95.

Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state

79

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the

inputs

80

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs:
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs:
n Lights: LA , LB (Red, Yellow, Green)

q State can change every 5 seconds
n Except if green and traffic, stay green

81

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

From H&H Section 3.4.1

Finite State Machine Black Box
n Inputs: CLK, Reset, TA , TB
n Outputs: LA , LB

82

TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

83

S0
LA: green
LB: red

Reset

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

84

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

85

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

86

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

87

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine:
State Transition Table

88

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X
S0 1 X
S1 X X
S2 X 0
S2 X 1
S3 X X

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

59

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

60

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

61

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

62

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	?

63

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

64

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	?
65

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
66

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	S1 xor S0									(Simplified)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
67

Finite State Machine:
Output Table

98

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

69

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00

yellow 01

red 10

70

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1

71

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0

72

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1

73

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0

74

Digital Design & Computer Arch.
Lecture 6: Sequential Logic Design

Prof. Onur Mutlu

ETH Zürich
Spring 2020

6 March 2020

We did not cover the remaining slides.
They are for your preparation for the

next lecture.

106

Finite State Machine:
Schematic

107

FSM Schematic: State Register

108

109

FSM Schematic: State Register

S1

S0

S'1

S'0

CLK

state register

Reset
r

110

FSM Schematic: Next State Logic

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1 =	S1 xor S0

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)

111

FSM Schematic: Output Logic

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0

112

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

113

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

114

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

115

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

116

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

117

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

118

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

119

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TBThis is from H&H Section 3.4.1

120

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

121

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

See H&H Chapter 3.4

Finite State Machine:
State Encoding

122

FSM State Encoding
n How do we encode the state bits?

q Three common state binary encodings with different tradeoffs
1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red

123

FSM State Encoding (II)
1. Binary Encoding (Full Encoding):

q Use the minimum number of bits used to encode all states
n Use log2(num_states) bits to represent the states

q Example states: 00, 01, 10, 11
q Minimizes # flip-flops, but not necessarily output logic or

next state logic

2. One-Hot Encoding:
q Each bit encodes a different state

n Uses num_states bits to represent the states
n Exactly 1 bit is “hot” for a given state

q Example states: 0001, 0010, 0100, 1000
q Simplest design process – very automatable
q Maximizes # flip-flops, minimizes next state logic

124

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

125

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

126

The designer must carefully choose
an encoding scheme to optimize the design

under given constraints

Moore vs. Mealy Machines

127

Recall: Moore vs. Mealy FSMs
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the

inputs

128

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

129

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

130

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

State Transition Diagrams

131

reset

Moore FSM

S0
0

S1
0

S2
0

S3
0

S4
1

0

1 1 0 1

1

01 0
0

reset

S0 S1 S2 S3
0/0

1/0 1/0 0/0
1/1

0/01/0

0/0

Mealy FSM
What are the tradeoffs?

FSM Design Procedure
n Determine all possible states of your machine
n Develop a state transition diagram

q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and

2) figure out how to get from one state to another
n Approach

q Start by defining the reset state and what happens from it – this is
typically an easy point to start from

q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs

132

What is to Come: LC-3 Processor

133

Scanned by CamScanner

What is to Come: LC-3 Datapath

134

Backup Slides:
Different Types of Flip Flops

135

Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1: D passes through to Q on the clock edge
q EN = 0: the flip-flop retains its previous state

136

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q
EN

Symbol

Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop

137

Symbols

D Q
Reset

r

Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?

138

Internal
Circuit

D Q

CLK

D QReset

Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1
q Set = 0: the flip-flop behaves like an ordinary D flip-flop

139

Symbols

D Q
Set

s

Logic Simplification:
Karnaugh Maps (K-Maps)

140

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

141

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨$𝑩 + 𝑨𝑩

𝑨$𝑩 + 𝑨𝑩 = 𝑨 $𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = $𝑨$𝑩 + 𝑨$𝑩 = $𝑨 + 𝑨 $𝑩 = $𝑩

Essence of Simplification:
Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Complex Cases
n One example

n Problem
q Easy to see how to apply Uniting Theorem…
q Hard to know if you applied it in all the right places…
q …especially in a function of many more variables

n Question
q Is there an easier way to find potential simplifications?
q i.e., potential applications of Uniting Theorem…?

n Answer
q Need an intrinsically geometric representation for Boolean f()
q Something we can draw, see…

142

𝑪𝒐𝒖𝒕 = &𝑨𝑩𝑪 + 𝑨&𝑩𝑪 + 𝑨𝑩&𝑪 + 𝑨𝑩𝑪

Karnaugh Map
n Karnaugh Map (K-map) method

q K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

q Physical adjacency ↔ Logical adjacency

143

2-variable K-map
0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10
00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨 𝑩 𝑪𝑫
𝑨
𝑩𝑪

Karnaugh Map Methods

144

Adjacent

000

001

010

011

110

111

100

101

000

001
010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”
Wrap around from first to last column
Wrap around from top row to bottom row

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

145

00 01 11 10
00 1 0 0 1
01 0 1 0 0
11 1 1 1 1
10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =.𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + 9𝑩9𝑫 + 𝐁9𝑪𝑫𝐀 + 9𝑩9𝑫𝐀

Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants

147

K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 ➙ use 𝐗, constant 0 ➙ use 9𝑿

n What is a good solution?
q Biggest groupings ➙ eliminate more variables (literals) in each term
q Fewest groupings ➙ fewer terms (gates) all together
q OR together all AND terms you create from individual groups

148

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

149

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D

K-map Example: Two-bit Comparator (2)

150

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

151

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨
𝑩

𝑫

𝑪

K-maps with “Don’t Care”
n Don’t Care really means I don’t care what my circuit outputs if this

appears as input
q You have an engineering choice to use DON’T CARE patterns

intelligently as 1 or 0 to better simplify the circuit

152

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment Function
n BCD (Binary Coded Decimal) digits

q Encode decimal digits 0 - 9 with bit patterns 00002 — 10012
q When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

153

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment Function

A B C D
+ 1
W X Y Z

154

00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
𝑨𝑩

𝑪𝑫
X
𝑨𝑩

𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫 ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

n Karnaugh maps as a formal systematic approach
for logic simplification

n 2-, 3-, 4-variable K-maps

n K-maps with “Don’t Care” outputs

n H&H Section 2.7
155

