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1 Verilog (I)

Please answer the following three questions about Verilog.

(a) Does the following code result in a D Flip-Flop with a synchronous active-low reset? Please explain your
answer.

1 module mem (input clk , input reset , input [1:0] d, output reg [1:0] q);

2 always @ (posedge clk or negedge reset)

3 begin

4 if (! reset) q <= 0;

5 else q <= d;

6 end

7 endmodule

No.
The code implements two D Flip-Flops, not one. Each D Flip-Flop works with an asynchronous active-low
reset signal.

Explanation:

• D and Q signals are two-bit-wide. Therefore, this code implements two D flip-flops.

• The reset input is included in the sensitivity list, therefore it is not synchronous.

• The code resets the output if the reset signal is low. Thus, the reset signal is active-low.
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(b) Does the following code result in a sequential circuit or a combinational circuit? Please explain your
answer.

1 module Mask (input [1:0] data_in , input mask , output reg [1:0] data_out );

2 always @ (*)

3 begin

4 data_out [1] = data_in [1];

5 if (mask)

6 data_out [0] = 0;

7 end

8 endmodule

Sequential circuit.
Explanation:
This code results in a sequential circuit, as all the left-hand side signals are not assigned in every possible
condition. For example, data out[0] is not assigned when mask signal equals to zero.

(c) Is the following code syntactically correct? If not, please explain the mistake(s) and how to fix it/them.

1 module fulladd(input a, b, c, output reg s, c_out );

2 assign s = a^b;

3 assign c_out = (a & b) | (b & c) & (c & a);

4 endmodule

5

6 module top ( input wire [5:0] instr , input wire op, output z);

7

8 reg [1:0] r1 , r2;

9 wire [3:0] w1 , w2;

10

11 fulladd FA1 (.a(instr [0]), .b(instr [1]), .c(instr [2]),

12 .c_out(r1[1]), .z(r1 [0]));

13 fulladd FA2 (.a(instr [3]), .b(instr [4]), .c(instr [5]),

14 .z(r2[0]), .c_out(r2 [1]));

15

16 assign z = r1 | op;

17 assign w1 = r1 + 1;

18 assign w2 = r2 << 1;

19 assign op = r1 ^ r2;

20

21 endmodule

The code is not syntactically correct.

Explanation:

• ‘r1’ and ‘r2’ have to be declared as wires.

• ‘op’ signal is connected to multiple drivers. It gets assigned from the input port and in line 19.

• The module ‘fulladd’ does not have ports named ‘z’. Those need to be changed to ‘s’.

• The output signals ‘s’ and ‘c out’ have to be declared as wires but not as regs, since they are driven
by assign statements.
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2 Verilog (II)

Please answer the following four questions about Verilog.

(a) Does the following code result in a D Flip-Flop with asynchronous reset? Please explain why.

1 module dff (input clk , input reset , input [3:0] d, output reg [3:0] q);

2 always @ (posedge clk)

3 begin

4 if (reset == 0) q <= 0;

5 else q <= d;

6 end

7 endmodule

No.

Explanation:
Since the reset input is not included in the sensitivity list, this code will implement a synchronous D
Flip-Flop.

(b) Does the following code result in a sequential circuit or a combinational circuit? Explain why.

1 module concat (input clk , input data_in1 , input data_in2 ,

2 output reg [1:0] data_out );

3 always @ (posedge clk , data_in1 , data_in2)

4 if (data_in1 > data_in2)

5 data_out = {data_in1 , data_in2 };

6 else

7 data_out = {data_in2 , data_in1 };

8 endmodule

Combinational circuit.

Explanation:
This code results in a combinational circuit because sensitivity list does include all inputs of the circuit:
data in1 and data in2.
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(c) Is the following code syntactically correct? If not, please explain the mistake(s) and how to fix it/them.

1 module Inn3r ( input [3:0] d, input op, output s);

2 assign s = op ? (d[1:0] - d[3:2]) :

3 (d[3:2] + d[1:0]);

4 endmodule

5

6 module top ( input wire [6:0] instr , input wire op, output reg z);

7

8 reg [1:0] r1 , r2 , r3;

9 wire [3:0] w1, w2;

10

11 Inn3r i0 (. instr(instr [1:0]) , .op(instr [7]), .z(r1) );

12 Inn3r i1 (. instr(instr [3:2]) , .op(instr [0]), .z(r2) );

13

14 assign z = r1 | r2;

15 assign w1 = r1 + 1;

16 assign w2 = r2 << 1;

17

18 top t (. instr({w1 , w2 , w1==w2}), .op(z), .z(r3));

19

20 assign op = r1 ^ r2 ^ r3;

21

22

23 endmodule

The code is not syntactically correct.

Explanation:

• Modules cannot be instantiated recursively.

• ’r1’ and ’r2’ have to be declared as ’wire’s.

• The module ’Inn3r’ does not have ports named ’instr’ and ’z’. Those need to be changed to ’d’ and ’s’,
respectively.

• Output ’z’ is driven by two circuits: lines 14 and 18.

• The output signal ’z’ has to be declared as a ’wire’ but not ’reg’.
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(d) Does the following code correctly implement a counter that counts down from 10 to 1 (e.g., 10, 9, 8, ...,
2, 1, 10, 9, ...)? If so, say ”Correct”. If not, correct the code with minimal modification.

1 module the_final_count_down (clk , count );

2 wire clk;

3 reg [3:0] count = 10;

4 reg [3:0] count_next;

5

6 always @ * begin

7 count_next <= count;

8 if(count != 1)

9 count_next <= count_next - 1;

10 else

11 count_next <= 1;

12 end

13

14

15 always@(posedge clk)

16 count = count_next;

17 endmodule

Answer and concise explanation:

No, the implementation is not correct.

Explanation:
The correct implementation:

module the final count down (clk, count);
wire clk;
reg[4:0] count = 10;
reg[4:0] count next;

always @ * begin
//count next <= count;
if(count != 1)
count next <= count - 1;

else
count next <= 10;

end

always@(posedge clk)
count = count next;

endmodule
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(e) Which of the combinational logic blocks does the following verilog code implement?

1 module mystery(input select , input enable , output result );

2 wire [3:0] result;

3 wire [1:0] select;

4 wire enable;

5

6 assign result = enable << (select );

7 endmodule

A 2:4 decoder.

Explanation:
The code basically shifts enable by select positions. For example, if enable is 1 and select is 10, result will
be 0100.
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3 Finite State Machines (FSM) (I)

This question has three parts.

(a) An engineer has designed a deterministic finite state machine with a one-bit input (A) and a two-bit
output (Z). He started the design by drawing the following state transition diagram:

Z=01 Z=01

Z=00

Z=00

A=1,Z=11 
A=0,Z=10

A=0

A=0 A=1

S0 S1

S2S3

S4

A=1

A=1

Z=00

Although the exact functionality of the FSM is not known to you, there are at least three mistakes
in this diagram. Please list all the mistakes.

There are four problems with this diagram

(a) Most states have a Moore labelling (output state in the bubble), one has a Mealy type labelling
(output given with input transitions) red(5 points)

(b) There are two different transitions both with A = 1 from state S1. What will happen with A = 0 is
missing red(5 points)

(c) There are two different transitions from state S2, without labeling which input triggers them red(5
points)

(d) There is no reset state red(5 points)
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(b) After learning from his mistakes, your colleague has proceeded to write the following Verilog code for a
much better (and different) FSM. The code has been verified for syntax errors and found to be OK.

1 module fsm (input CLK , RST , A, output [1:0] Z);

2

3 reg [2:0] nextState , presentState;

4

5 parameter start = 3’b000;

6 parameter flash1 = 3’b010;

7 parameter flash2 = 3’b011;

8 parameter prepare = 3’b100;

9 parameter recovery = 3’b110;

10 parameter error = 3’b111;

11

12 always @ (posedge CLK , posedge RST)

13 if (RST) presentState <= start;

14 else presentState <= nextState;

15

16 assign Z = (presentState == recovery) ? 2’b11 :

17 (presentState == error) ? 2’b11 :

18 (presentState == flash1) ? 2’b01 :

19 (presentState == flash2) ? 2’b10 : 2’b00;

20

21 always @ (presentState , A)

22 case (presentState)

23 start : nextState <= prepare;

24 prepare : if (A) nextState <= flash1;

25 flash1 : if (A) nextState <= flash2;

26 else nextState <= recovery;

27 flash2 : if (A) nextState <= flash1;

28 else nextState <= recovery;

29 recovery : if (A) nextState <= prepare;

30 else nextState <= error;

31 error : if (~A) nextState <=start;

32 default : nextState <= presentState;

33 endcase

34

35 endmodule
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Draw a proper state transition diagram that corresponds to the FSM described in this Verilog code.

init
Z=00

prepare
Z=00

flash1
Z=01

error
Z=11

recovery
Z=11

flash2
Z=10

A=0

A=1

A=1

A=1

A=1

A=0

A=0

A=0

RST

A=1

A=0

(c) Is the FSM described by the previous Verilog code a Moore or a Mealy FSM? Why?

Moore, the output Z only depends on the state (presentState) and not on the input (A).
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4 Finite State Machines (FSM) (II)

You are given the following FSM with two one-bit input signals (TA and TB) and one two-bit output signal
(O). You need to implement this FSM, but you are unsure about how you should encode the states. Answer
the following questions to get a better sense of the FSM and how the three different types of state encoding
we dicussed in the lecture (i.e., one-hot, binary, output) will affect the implementation.

A
O: 10

C
O: 01

B
O: 11

D
O: 00

TA __
TA

TB

__
TB

__
TB

TB

(a) What kind of an FSM is this?

Moore

(b) List one major advantage of each type of state encoding below.

• One-hot encoding: reduces next-state logic

• Binary encoding: reduces FFs to hold state

• Output encoding: reduces the output logic
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(c) Fully describe the FSM with equations given that the states are encoded with one-hot encoding. Assign
state encodings such that numerical values of states increase monotonically for states A through D while
using the minimum possible number of bits to represent the states with one-hot encoding. Indicate the
values you assign to each state. Simplification is not required.

State assignments: A: 0001, B: 0010, C: 0100, D: 1000
Current states are stored in CS
Next states are stored in NS

NS[3] = CS[2] ∗ TB

NS[2] = CS[0] ∗ TB + CS[1] ∗ TB

NS[1] = CS[0] ∗ TB + CS[1] ∗ TA + CS[3]
NS[0] = CS[1] ∗ TA

O[1] = CS[0] + CS[1]
O[0] = CS[1] + CS[2]

(d) Fully describe the FSM with equations given that the states are encoded with output encoding. Use
the minimum possible number of bits to represent the states with output encoding. Indicate the values
you assign to each state. Simplification is not required.

State assignments: A: 10, B: 11, C: 01, D: 00
Current states are stored in CS
Next states are stored in NS

NS[1] = CS[1] ∗ CS[0] ∗ TA + CS[1] ∗ CS[0] ∗ TB + CS[1] ∗ CS[0] ∗ TA + CS[1] ∗ CS[0]
NS[0] = CS[1] ∗CS[0] ∗TB +CS[1] ∗CS[0] ∗TB +CS[1] ∗CS[0] ∗TB +CS[1] ∗CS[0] ∗TA +CS[1] ∗CS[0]

O[1] = CS[1]
O[0] = CS[0]
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(e) Assume the following conditions:

• We can only implement our FSM with 2-input AND gates, 2-input OR gates, 1-input NOT gates,
and D flip-flops.

• 2-input AND gates and 2-input OR gates occupy the same area.

• D flip-flops occupy 3× the area of 2-input AND gates.

• The area that 1-input NOT gates occupy is negligible so we do not calculate the area they occupy.

Which state-encoding (i.e., one-hot encoding and output encoding) do you choose to implement in order
to minimize the total area of this FSM?

one-hot: 11 logic gates, 4 FFs
output: 23 logic gates, 2 FFs

One-hot encoding has the least amount of circuitry elements.

12/16



5 Finite State Machines (FSM) (III)

You are given two one-bit input signals (TA and TB) and one one-bit output signal (O) for the following
modular equation: 2N(TA) +N(TB) ≡ 2 (mod 4). In this modular equation, N(TA) and N(TB) represent
the total number of times the inputs TA and TB are high (i.e., logic 1) at each positive clock edge,
respectively. The one-bit output signal, O, is set to 1 when the modular equation is satisfied (i.e., 2N(TA) +
N(TB) ≡ 2 (mod 4)), and 0 otherwise. An example that sets O = 1 at the end of the fourth cycle would
be:

• (1st cycle) TA = 0 (N(TA) = 0), TB = 0 (N(TB) = 0), 2N(TA) + N(TB) ≡ 0 (mod 4)⇒ O = 0

• (2nd cycle) TA = 1 (N(TA) = 1), TB = 1 (N(TB) = 1), 2N(TA) + N(TB) ≡ 3 (mod 4)⇒ O = 0

• (3rd cycle) TA = 1 (N(TA) = 2), TB = 0 (N(TB) = 1), 2N(TA) + N(TB) ≡ 1 (mod 4)⇒ O = 0

• (4th cycle) TA = 0 (N(TA) = 2), TB = 1 (N(TB) = 2), 2N(TA) + N(TB) ≡ 2 (mod 4)⇒ O = 1

(a) You are given a partial Moore machine state transition diagram that corresponds to the modular
equation described above. However, the input labels of most of the transitions are still missing in this
diagram. Please label the transitions with the correct inputs so that the FSM correctly implements the
above specification.

0(mod4)

O:0 O:0

O:1O:0

1(mod4)

2(mod4)3(mod4)

reset
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the FSM with Boolean equations assuming that the states are encoded with one-hot encoding. Assign
state encodings while using the minimum possible number of bits to represent the states. Please indicate
the values you assign to each state.

State assignments: 0 (mod 4): 0001, 1 (mod 4): 0010, 2 (mod 4): 0100, 3 (mod 4): 1000
CS denotes current states, and NS denotes next states.
NS[0] = CS[0] TA TB + CS[1] TA TB + CS[2] TA TB + CS[3] TA TB

NS[1] = CS[1] TA TB + CS[2] TA TB + CS[3] TA TB + CS[0] TA TB

NS[2] = CS[2] TA TB + CS[3] TA TB + CS[0] TA TB + CS[1] TA TB

NS[3] = CS[3] TA TB + CS[0] TA TB + CS[1] TA TB + CS[2] TA TB

O[0] = CS[2]
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(b) Describe the FSM with Boolean equations assuming that the states are encoded with binary encoding
(i.e., fully encoding). Assign state encodings while using the minimum possible number of bits to
represent the states. Please indicate the values you assign to each state.

State assignments: 0 (mod 4): 00, 1 (mod 4): 01, 2 (mod 4): 10, 3 (mod 4): 11
CS denotes current states, and NS denotes next states.
NS[0] = CS[0] TB + CS[0] TB

NS[1] = CS[0] (CS[1] XOR TA XOR TB) + CS[0] (TA XOR CS[1])
O[0] = CS[1] CS[0]
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(c) Consider an implementation of the FSM assuming that the states are encoded with output encoding.
What is the minimum number of bits required to encode the states with output encoding?

A minimum of three bits are required to represent the state 2 (mod 4) uniquely so that the output logic
layer is minimized. If we consider that the state assignments are as follows:
0 (mod 4): 000, 1 (mod 4): 001, 2 (mod 4): 100, 3 (mod 4): 011
Then the output logic would be:
O[0] = CS[2]
There is no way of achieving this minimization using two bits, as we did with fully encoding, because
CS[1] = 1 for both states 2 (mod 4) and 3 (mod 4). Since only 2 (mod 4) should set O = 1, we would
need to make sure that CS[0] = 0 while CS[1] = 1. Thus, it is impossible to have the same minimization
as we did for output encoding with three-bit representation of the states.
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