
Design of Digital Circuits (252-0028-00L), Spring 2020

Optional HW 4: Pipelining, Tomasulo’s Algorithm,
and Out-of-Order Execution

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Rahul Bera, Can Firtina, Juan Gomez-Luna, Jawad Haj-Yahya, Hasan Hassan,

Konstantinos Kanellopoulos, Lois Orosa, Jisung Park, Geraldo De Oliveira Junior, Minesh Patel, Giray Yaglikci

Released: Wednesday, April 15, 2020

1 Pipelining (I)

Given the following code:

1 MUL R3, R1, R2
2 ADD R5, R4, R3
3 ADD R6, R4, R1
4 MUL R7, R8, R9
5 ADD R4, R3, R7
6 MUL R10 , R5, R6

Calculate the number of cycles it takes to execute the given code on the following models:
Note 1: Each instruction is specified with the destination register first.
Note 2: Do not forget to list any assumptions you make about the pipeline structure (e.g., how is data

forwarding done between pipeline stages)
Note 3: For all machine models, use the basic instruction cycle as follows:

• Fetch (one clock cycle)
• Decode (one clock cycle)
• Execute (MUL takes 6, ADD takes 4 clock cycles). The multiplier and the adder are not pipelined.
• Write-back (one clock cycle)

(a) A non-pipelined machine

1/20

(b) A pipelined machine with scoreboarding and five adders and five multipliers without data forwarding

(c) A pipelined machine with scoreboarding and five adders and five multipliers with data forwarding.

2/20

(d) A pipelined machine with scoreboarding and one adder and one multiplier without data forwarding

(e) A pipelined machine with scoreboarding and one adder and one multiplier with data forwarding

3/20

2 Pipelining (II)

Consider two pipelined machines implementing MIPS ISA, Machine I and Machine II:
Both machines have the following five pipeline stages, very similarly to the basic 5-stage pipelined MIPS

processor we discussed in lectures, and one ALU :

1. Fetch (one clock cycle)

2. Decode (one clock cycle)

3. Execute (one clock cycle)

4. Memory (one clock cycle)

5. Write-back (one clock cycle).

Machine I does not implement interlocking in hardware. It assumes all instructions are independent and
relies on the compiler to order instructions such that there is sufficient distance between dependent
instructions. The compiler either moves other independent instructions between two dependent instruc-
tions, if it can find such instructions, or otherwise, inserts nops. Assume internal register file forwarding
(an instruction writes into a register in the first half of a cycle and another instruction can correctly
access the same register in the next half of the cycle). Assume that the processor predicts all branches
as always-taken.

Machine II implements data forwarding in hardware. On detection of a flow dependence, it forwards an
operand from the memory stage or from the write-back stage to the execute stage. The load instruction
(lw) can only be forwarded from the write-back stage because data becomes available in the memory
stage but not in the execute stage like for the other instructions. Assume internal register file forwarding
(an instruction writes into a register in the first half of a cycle and another instruction can access the
same register in the next half of the cycle). The compiler does not reorder instructions. Assume that the
processor predicts all branches as always-taken.
Consider the following code segment:

Copy: lw $2, 100($5)
sw $2, 200($6)
addi $1, $1, 1
bne $1, $25, Copy

Initially, $5 = 0, $6 = 0, $1 = 0, and $25 = 25.

(a) When the given code segment is executed on Machine I, the compiler has to reorder instructions and
insert nops if needed. Write the resulting code that has minimal modifications from the original.

4/20

(b) When the given code segment is executed on Machine II, dependencies between instructions are resolved
in hardware. Explain when data is forwarded and which instructions are stalled and when they are
stalled.

(c) Calculate the machine code size of the code segments executed on Machine I (part (a)) and Machine II
(part (b)).

(d) Calculate the number of cycles it takes to execute the code segment on Machine I and Machine II.

5/20

(e) Which machine is faster for this code segment? Explain.

6/20

3 Pipeline (Reverse Engineering)

The following piece of code runs on a pipelined microprocessor as shown in the table (F: Fetch, D: Decode, E:
Execute, M: Memory, W:Write back). Instructions are in the form “Instruction Destination,Source1,Source2.”
For example, “ADD A, B, C” means A ← B + C.

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 MUL R5, R6, R7 F D E1 E2 E3 E4 M W
1 ADD R4, R6, R7 F D E1 E2 E3 - M W
2 ADD R5, R5, R6 F D - - E1 E2 E3 M W
3 MUL R4, R7, R7 F - - D E1 E2 E3 E4 M W
4 ADD R6, R7, R5 F D - E1 E2 E3 M W
5 ADD R3, R0, R6 F - D - - E1 E2 E3 M W
6 ADD R7, R1, R4 F - - D E1 E2 E3 M W

Use this information to reverse engineer the architecture of this microprocessor to answer the following
questions. Answer the questions as precise as possible with the provided information. If the provided
information is not sufficient to answer a question, answer “Unknown” and explain your reasoning clearly.

(a) How many cycles does it take for an adder and for a multiplier to calculate a result?

(b) What is the minimum number of register file read/write ports that this architecture implements? Ex-
plain.

(c) Can we reduce the execution time of this code by enabling more read/write ports in the register file?
Explain.

(d) Does this architecture implement any data forwarding? If so, how is data forwarding done between
pipeline stages? Explain.

7/20

(e) Is it possible to run this code faster by adding more data forwarding paths? If it is, how? Explain.

(f) Is there internal forwarding in the register file? If there is not, how would the execution time of the same
program change by enabling internal forwarding in the register file? Explain.

8/20

(g) Optimize the assembly code in order to reduce the number of stall cycles. You are allowed to reorder, add,
or remove ADD and MUL instructions. You are expected to achieve the minimum possible execution
time. Make sure that the register values that the optimized code generates at the end of its execution
are identical to the register values that the original code generates at the end of its execution. Justify
each individual change you make. Show the execution timeline of each instruction and what stage it is
in the table below. (Notice that the table below consists of two parts: the first ten cycles at the top, and
the next ten cycles at the bottom.)

Instr. Instructions Cycles

No 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

9/20

4 Tomasulo’s Algorithm (I)

Remember that Tomasulo’s algorithm requires tag broadcast and comparison to enable wake-up of dependent
instructions. In this question, we will calculate the number of tag comparators and size of tag storage required
to implement Tomasulo’s algorithm in a machine that has the following properties:
• 8 functional units where each functional unit has a dedicated separate tag and data broadcast bus
• 32 64-bit architectural registers
• 16 reservation station entries per functional unit
• Each reservation station entry can have two source registers

Answer the following questions. Show your work for credit.

(a) What is the number of tag comparators per reservation station entry?

(b) What is the total number of tag comparators in the entire machine?

(c) What is the (minimum possible) size of the tag?

(d) What is the (minimum possible) size of the register alias table (or, frontend register file) in bits?

(e) What is the total (minimum possible) size of the tag storage in the entire machine in bits?

10/20

5 Tomasulo’s Algorithm (II)

In this problem, we consider an in-order fetch, out-of-order dispatch, and out-of-order retirement execution
engine that employs Tomasulo’s algorithm. This engine behaves as follows:

• The engine has four main pipeline stages: Fetch (F), Decode (D), Execute (E), and Write-back (W).

• The engine can fetch FW instructions per cycle, decode DW instructions per cycle, and write back
the result of RW instructions per cycle.

• The engine has two execution units: 1) an integer ALU for executing integer instructions (i.e., addition
and multiplication) and 2) a memory unit for executing load/store instructions.

• Each execution unit has an R-entry reservation station.

• An instruction always allocates the first available entry of the reservation station (in top-to-bottom
order) of the corresponding execution unit.

The reservation stations are all initally empty. The processor fetches and executes six instructions.
Table 1 shows the six instructions and their execution diagram.

Using the information provided above and in Table 1 (see the next page), fill in the blanks below with
the configuration of the out-of-order microarchitecture. Write “Unknown” if the corresponding configuration
cannot be determined using the information provided in the question.

The latency of the ALU and memory unit instructions:

In which pipeline stage is an intruction dispatched?

Number of entries of each reservation station (R):
Fetch width (FW):

Decode width (DW):
Retire width (RW):

Is the integer ALU pipelined?
Is the memory unit pipelined?

If applicable, between which stages is data forwarding implemented?

11/20

In
st
ru
ct
io
n/

C
yc
le
:

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33

1:
A
D
D

R
1
←

R
0,

R
1

F
D

E
1

E
2

W

2:
LD

R
2
←

[R
1]

F
D

-
-

-
E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

W

3:
A
D
D
I
R
1
←

R
1,

#
4

F
D

-
-

E
1

E
2

W

4:
LD

R
3
←

[R
1]

F
D

-
-

-
-

-
E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

W

5:
M
U
L
R
4
←

R
2,

R
3

F
-

-
D

-
-

-
-

-
-

-
-

-
-

-
-

-
E
1

E
2

W

6:
ST

[R
0]
←

R
4

F
-

-
-

-
-

-
-

-
-

-
-

-
-

D
-

-
-

-
-

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

W

T
ab

le
1:

E
xe
cu
ti
on

di
ag
ra
m

of
th
e
si
x
in
st
ru
ct
io
ns
.

12/20

6 Tomasulo’s Algorithm (Reverse Engineering)

In this problem, we will give you the state of the Register Alias Table (RAT) and Reservation Stations (RS)
for an out-of-order execution engine that employs Tomasulo’s algorithm, as we discussed in lectures. Your
job is to determine the original sequence of four instructions in program order.

The out-of-order machine in this problem behaves as follows:
• The frontend of the machine has a one-cycle fetch stage and a one-cycle decode stage. The machine can
fetch one instruction per cycle, and can decode one instruction per cycle.
• The machine executes only register-type instructions, e.g., OP Rdest ← Rsrc1, Rsrc2.
• The machine dispatches one instruction per cycle into the reservation stations, in program order. Dispatch
occurs during the decode stage.
• An instruction always allocates the first reservation station that is available (in top-to-bottom order) at
the required functional unit.
• When an instruction in a reservation station finishes executing, the reservation station is cleared.
• The adder and multiplier are not pipelined. An add operation takes 2 cycles. A multiply operation
takes 3 cycles.
• The result of an addition and multiplication is broadcast to the reservation station entries and the RAT
in the writeback stage. A dependent instruction can begin execution in the next cycle after the writeback
if it has all of its operands available in the reservation station entry.
• When multiple instructions are ready to execute at a functional unit at the same cycle, the oldest ready
instruction is chosen to be executed first.
Initially, the machine is empty. Four instructions then are fetched, decoded, and dispatched into reser-

vation stations. Pictured below is the state of the machine when the final instruction has been dispatched
into a reservation station:

Reg V Tag Value

RAT

R0

R1

R2

R3

R4

R5

0

0

0

1

A

E

B

5

8–
–
–

–

–––

––

ID

+

V Tag Value V Tag Value

A 0 D – 1 8
B 0 A – 0 A –

–

C – – – –– –

ID

×

V Tag Value V Tag Value

D 1 – 5 1 – 5

E 0 A 0 B– –
F – – – –– –

13/20

(a) Give the four instructions that have been dispatched into the machine, in program order. The source
registers for the first instruction can be specified in either order. Give instructions in the following
format: “opcode destination ⇐ source1, source2.”

⇐ ,

⇐ ,

⇐ ,

⇐ ,

(b) Now assume that the machine flushes all instructions out of the pipeline and restarts fetch from the first
instruction in the sequence above. Show the full pipeline timing diagram below for the sequence of four
instructions that you determined above, from the fetch of the first instruction to the writeback of the
last instruction. Assume that the machine stops fetching instructions after the fourth instruction.

As we saw in lectures, use “F” for fetch, “D” for decode, “En” to signify the nth cycle of execution for an
instruction, and “W” to signify writeback. You may or may not need all columns shown.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Inst.:
Inst.:
Inst.:
Inst.:
Inst.:

(c) Finally, show the state of the RAT and reservation stations at the end of the 12th cycle of execution
in the figure below. Complete all blank parts.

Reg V Tag Value

RAT

R0

R1

R2

R3

R4

R5

ID

+

V Tag Value V Tag Value

A

B

C

ID

×

V Tag Value V Tag Value

D

E

F

14/20

7 Out-of-Order Execution

In this problem, we consider an in-order fetch, out-of-order dispatch, and in-order retirement execution
engine that employs Tomasulo’s algorithm. This engine behaves as follows:

• The engine has four main pipeline stages: Fetch (F), Decode (D), Execute (E), and Write-back (W).

• The engine can fetch one instruction per cycle, decode one instruction per cycle, and write back the
result of one instruction per cycle.

• The engine has two execution units: 1) an adder for executing ADD instructions and 2) a multiplier
for executing MUL instructions.

• The execution units are fully pipelined. The adder has two stages (E1-E2) and the multiplier has four
stages (E1-E2-E3-E4). Execution of each stage takes one cycle.

• The adder has a two-entry reservation station and the multiplier has a four-entry reservation station.

• An instruction always allocates the first available entry of the reservation station (in top-to-bottom
order) of the corresponding execution unit.

• Full data forwarding is available, i.e., during the last cycle of the E stage, the tags and data are broadcast
to the reservation station and the Register Alias Table (RAT). For example, an ADD instruction
updates the reservation station entries of the dependent instructions in E2 stage. So, the updated value
can be read from the reservation station entry in the next cycle. Therefore, a dependent instruction
can potentially begin its execution in the next cycle (after E2).

• The multiplier and adder have separate output data buses, which allow both the adder and the multi-
plier to update the reservation station and the RAT in the same cycle.

• An instruction continues to occupy a reservation station slot until it finishes the Write-back (W) stage.
The reservation station entry is deallocated after the Write-back (W) stage.

7.1 Problem Definition
The processor is about to fetch and execute six instructions. Assume the reservation stations (RS) are all
initially empty and the initial state of the register alias table (RAT) is given below in Figure (a). Instructions
are fetched, decoded and executed as discussed in class. At some point during the execution of the six
instructions, a snapshot of the state of the RS and the RAT is taken. Figures (b) and (c) show the state of
the RS and the RAT at the snapshot time. A dash (–) indicates that a value has been cleared. A question
mark (?) indicates that a value is unknown.

Reg Valid Tag Value
R0 1 – 1900
R1 1 – 82
R2 1 – 1
R3 1 – 3
R4 1 – 10
R5 1 – 5
R6 1 – 23
R7 1 – 35
R8 1 – 61
R9 1 – 4

Initial state of the RAT

Reg Valid Tag Value
R0 1 ? 1900
R1 0 Z ?
R2 1 ? 12
R3 1 ? 3
R4 1 ? 10
R5 0 B ?
R6 1 ? 23
R7 0 H ?
R8 1 ? 350
R9 0 A ?

Snapshot state of the RAT

ID V Tag Value V Tag Value
A 1 ? 350 1 ? 12
B 0 A ? 0 Z ?

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

ID V Tag Value V Tag Value
– – – – – – –
T 1 ? 10 1 ? 35
H 1 ? 35 0 A ?
Z 1 ? 82 0 H ?

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

15/20

7.2 (a) Data Flow Graph
Based on the information provided above, identify the instructions and complete the dataflow graph below for
the six instructions that have been fetched. Please appropriately connect the nodes using edges and specify
the direction of each edge. Label each edge with the destination architectural register and the corresponding
Tag. Note that you may not need to use all registers and/or nodes provided below.

×

+

× × ×

+

Register IDs:

Output

+ ++

×

7.3 (b) Program Instructions
Fill in the blanks below with the six-instruction sequence in program order. When referring to registers,
please use their architectural names (R0 through R9). Place the register with the smaller architectural name
on the left source register box. For example, ADD R8 ⇐ R1, R5.

← ,

← ,

← ,

← ,

← ,

← ,

16/20

8 Out-of-Order Execution - Reverse Engineering (I)

In this problem, we will give you the state of the Register Alias Table (RAT) and Reservation Stations
(RS) for an out-of-order execution engine that employs Tomasulo’s algorithm. Your job is to determine the
original sequence of five instructions in program order.

The out-of-order machine in this problem behaves as follows:
• The frontend of the machine has a one-cycle fetch stage and a one-cycle decode stage. The machine can
fetch one instruction per cycle, and can decode one instruction per cycle.
• The machine dispatches one instruction per cycle into the reservation stations, in program order. Dispatch
occurs during the decode stage.
• An instruction always allocates the first reservation station that is available (in top-to-bottom order) at
the required functional unit.
• When a value is captured (at a reservation station) or written back (to a register) in this machine, the
old tag that was previously at that location is not cleared ; only the valid bit is set.
• When an instruction in a reservation station finishes executing, the reservation station is cleared.
• Both the adder and multiplier are fully pipelined. An add instruction takes 2 cycles. A multiply instruc-
tion takes 4 cycles.
• When an instruction completes execution, it broadcasts its result. A dependent instructions can begin
execution in the next cycle if it has all its operands available.
• When multiple instructions are ready to execute at a functional unit, the oldest ready instruction is
chosen.
Initially, the machine is empty. Five instructions then are fetched, decoded, and dispatched into reser-

vation stations. When the final instruction has been fetched and decoded, one instruction has already been
written back. Pictured below is the state of the machine at this point, after the fifth instruction has been
fetched and decoded:

RAT

MUL

Reg V Tag Value
R0 1 13
R1 0 A 8
R2 1 3
R3 1 5
R4 0 X 255
R5 0 Y 12
R6 0 Z 74
R7 1 7

Src 1 Src2 Src 1 Src2
ADD

Tag V Value Tag V Value
A - 1 5 Z 0 -
B
C

Tag V Value Tag V Value
A A 1 8 - 1 7
B X 0 - - 1 13
C - 1 3 - 1 8

X
Y

Z

17/20

(a) Give the five instructions that have been dispatched into the machine, in program order. The source
registers for the first instruction can be specified in either order. Give instructions in the following
format: “opcode destination ⇐ source1, source2.”

⇐ ,

⇐ ,

⇐ ,

⇐ ,

⇐ ,

(b) Now assume that the machine flushes all instructions out of the pipeline and restarts fetch from the first
instruction in the sequence above. Show the full pipeline timing diagram below for the sequence of five
instructions that you determined above, from the fetch of the first instruction to the writeback of the
last instruction. Assume that the machine stops fetching instructions after the fifth instruction.

As we saw in class, use “F” for fetch, “D” for decode, “En” to signify the nth cycle of execution for an
instruction, and “W” to signify writeback. You may or may not need all columns shown.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:

Finally, show the state of the RAT and reservation stations after 10 cycles in the blank figures below.

RAT

MUL

Reg V Tag Value
R0
R1
R2
R3
R4
R5
R6
R7

Src 1 Src2 Src 1 Src2
ADD

Tag V Value Tag V Value
A
B
C

Tag V Value Tag V Value
A
B
C

X
Y

Z

18/20

9 Out-of-Order Execution - Reverse Engineering (II)

A five instruction sequence executes according to Tomasulo’s algorithm. Each instruction is of the form ADD
DR,SR1,SR2 or MUL DR,SR1,SR2. ADDs are pipelined and take 9 cycles (F-D-E1-E2-E3-E4-E5-E6-WB).
MULs are also pipelined and take 11 cycles (two extra execute stages). An instruction must wait until a
result is in a register before it sources it (reads it as a source operand). For instance, if instruction 2 has
a read-after-write dependence on instruction 1, instruction 2 can start executing in the next cycle after
instruction 1 writes back (shown below).

instruction 1 |F|D|E1|E2|E3|..... |WB|
instruction 2 |F|D |- |- |..... |- |E1|

The machine can fetch one instruction per cycle, and can decode one instruction per cycle.

The register file before and after the sequence are shown below.

Valid Tag Value
R0 1 4
R1 1 5
R2 1 6
R3 1 7
R4 1 8
R5 1 9
R6 1 10
R7 1 11

Valid Tag Value
R0 1 310
R1 1 5
R2 1 410
R3 1 31
R4 1 8
R5 1 9
R6 1 10
R7 1 21

(a) Complete the five instruction sequence in program order in the space below. Note that we have helped
you by giving you the opcode and two source operand addresses for the fourth instruction. (The program
sequence is unique.)

Give instructions in the following format: “opcode destination ⇐ source1, source2.”

⇐ ,

⇐ ,

⇐ ,

MUL ⇐ R6 , R6

⇐ ,

19/20

(b) In each cycle, a single instruction is fetched and a single instruction is decoded.

Assume the reservation stations are all initially empty. Put each instruction into the next available
reservation station. For example, the first ADD goes into “a”. The first MUL goes into “x”. Instructions
remain in the reservation stations until they are completed. Show the state of the reservation stations
at the end of cycle 8.

Note: to make it easier for the grader, when allocating source registers to reservation stations, please
always have the higher numbered register be assigned to source2.

a

b

c

+

x

y

z

x

(c) Show the state of the Register Alias Table (Valid, Tag, Value) at the end of cycle 8.

Valid Tag Value
R0
R1
R2
R3
R4
R5
R6
R7

20/20

	Pipelining (I)
	Pipelining (II)
	Pipeline (Reverse Engineering)
	Tomasulo's Algorithm (I)
	Tomasulo's Algorithm (II)
	Tomasulo's Algorithm (Reverse Engineering)
	Out-of-Order Execution
	Problem Definition
	(a) Data Flow Graph
	(b) Program Instructions

	Out-of-Order Execution - Reverse Engineering (I)
	Out-of-Order Execution - Reverse Engineering (II)

