
Design of Digital Circuits (252-0028-00L), Spring 2020

Optional HW 5: Branch Prediction, VLIW, and Systolic Arrays

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Rahul Bera, Can Firtina, Juan Gomez-Luna, Jawad Haj-Yahya, Hasan Hassan,

Konstantinos Kanellopoulos, Lois Orosa, Jisung Park, Geraldo De Oliveira Junior, Minesh Patel, Giray Yaglikci

Released: Saturday, May 2, 2020

1 Delayed Branching

A machine has a five-stage pipeline consisting of fetch, decode, execute, mem and write-back stages. The
machine uses delay slots to handle control dependences. Jump targets, branch targets and destinations are
resolved in the execute stage.

(a) What is the number of delay slots needed to ensure correct operation?

(b) Which instruction(s) in the assembly sequences below would you place in the delay slot(s), assuming
the number of delay slots you answered for part(a)? Clearly rewrite the code with the appropriate
instruction(s) in the delay slot(s).

(I) ADD R5 <- R4, R3
OR R3 <- R1, R2
SUB R7 <- R5, R6
J X
Delay Slots

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

Solution:

1/22

(II) ADD R5 <- R4, R3
OR R3 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X
Delay Slots

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

Solution:

(III) ADD R2 <- R4, R3
OR R5 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X
Delay Slots

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

Solution:

(c) Can you modify the pipeline to reduce the number of delay slots (without introducing branch predic-
tion)? Clearly state your solution and explain why.

2/22

3/22

2 Delayed Branching II

You are designing an ISA that uses delayed branch instructions. You are trying to decide how many
instructions to place into the branch delay slot. How many branch delay slots would you need for the
following different implementations? Explain your reasoning briefly.

(a) An in-order processor where conditional branches resolve during the 4th stage

(b) An out-of-order processor with 64 unified reservation station entries where conditional branches resolve
during the 2nd cycle of branch execution. The processor has 15 pipeline stages until the start of the
execution stages

4/22

3 Branch Prediction I

Assume a machine with a two-bit global history register (GHR) shared by all branches, which starts with
Not Taken, Not Taken (2’b00). Each pattern history table entry (PHTE) contains a 2-bit saturating counter.
The saturating counter values are as follows:

• 00 - Strongly Not Taken
• 01 - Weakly Not Taken
• 10 - Weakly Taken
• 11 - Strongly Taken

Assume the following piece of code runs on this machine. The code has two branches (labeled B1 and B2).
When we say that a branch is taken, we mean that the code inside the curly brackets is executed. For the
following questions, assume that this is the only block of code that will ever be run, and the loop-condition
branch (B1) is resolved first in the iteration before the if-condition branch (B2).

for (int i = 0; i < 1000000; i++) { /* B1 */
/* TAKEN PATH for B1 */

if (i % 3 == 0) { /* B2 */
j[i] = k[i] -1; /* TAKEN PATH for B2 */

}
}

(a) Is it possible to observe that the branch predictor mispredicts 100% of the time in the first 5 iterations
of the loop? If yes, fill in the table below with all possible initial values each entry can take. We
represent Not Taken with N, and Taken with T.

Table 1: PHT

PHT Entry Value

TT
TN
NT
NN

Show your work here.

5/22

(b) At steady-state, we observe the following pattern which repeats over time: TTTNTN, with T repre-
senting Taken, and N representing Not Taken. When GHR pattern equals to NT or TT, the predictor
will observe that the branch outcome will be either T or N. Therefore, no matter what the initial values
for these two entries are in the pattern history table (PHT), only one of the branches can be predicted
correctly. Thus prediction accuracy will never reach 100%. Explain how using local history registers
instead of the global history register will help bring the prediction accuracy up to 100% during the
steady state, by showing what will each PHTE saturate to.

6/22

4 Branch Prediction II

A processor implements an in-order pipeline with multiple stages. Each stage completes in a single cycle.
The pipeline stalls upon fetching a conditional branch instruction and resumes execution once the condition
of the branch is evaluated. There is no other case in which the pipeline stalls.

4.1 Part I: Microbenchmarking
You create a microbenchmark as follows to explore the pipeline characteristics:

LOOP1:
SUB R1, R1, #1 // R1 = R1 - 1
BGT R1, LOOP1 // Branch to LOOP1 if R1 > 0

LOOP2:
B LOOP2 // Branch to LOOP2

// Repeats until program is killed

The microbenchmark takes one input value R1 and runs until it is killed (e.g., via an external interrupt).
You carefully run the microbenchmark using three different input values as summarized in Table 2. You

terminate the microbenchmark using an external interrupt such that each run is guaranteed to execute the
same number of dynamic instructions. Unfortunately, your testing infrastructure does not give you the
actual number of instructions executed.

Initial R1 Value Number of Cycles Taken
4 51
8 63
16 87

Table 2: Microbenchmark results.

Using this information, you need to determine the following three experiment characteristics. Clearly
show all work to receive full points!

1. How many dynamic instructions are executed?

2. How many stages are in the pipeline?

3. For how many cycles does a conditional branch instruction cause a stall?

7/22

4.2 Part II: Performance Enhancement
To improve performance, the architects add a mystery branch prediction mechanism. They keep the rest of
the design exactly the same as before. You re-run the microbenchmark for the same number of total dynamic
instructions with the new design, and you find that with R1 = 4, the microbenchmark executes in 48 cycles.

Based on this given information, determine which of the following branch prediction mechanisms could be
the mystery branch predictor implemented in the new version of the processor. For each branch prediction
mechanism below, you should circle the configuration parameters that makes it match the performance of
the mystery branch predictor.

(a) Static Branch Predictor

Could this be the mystery branch predictor: YES NO

If YES, for which configuration below is the answer YES? Pick an option for each configuration parameter.

I) Static Prediction Direction

Always taken Always not taken

Explain:

(b) Last Time Branch Predictor

Could this be the mystery branch predictor?

YES NO

If YES, for which configuration is the answer YES? Pick an option for each configuration parameter.

I) Initial Prediction Direction

Taken Not taken

II) Local for each branch instruction (PC-based) or global (shared among all branches) history?

Local Global

Explain:

8/22

(c) Backward taken, Forward not taken (BTFN)
Could this be the mystery branch predictor?

YES NO

Explain:

(d) Forward taken, Backwards not taken (FTBN)
Could this be the mystery branch predictor?

YES NO

Explain:

(e) Two-bit Counter Based Prediction (using saturating arithmetic)
Could this be the mystery branch predictor?

YES NO

If YES, for which configuration is the answer YES? Pick an option for each configuration parameter.

I) Initial Prediction Direction

00 (Strongly not taken) 01 (Weakly not taken)
10 (Weakly taken) 11 (Strongly taken)

II) Local for each branch instruction (i.e., PC-based, without any interference between different
branches) or global (i.e., a single counter shared among all branches) history?

Local Global

Explain:

9/22

5 Branch Prediction III

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */
val = array[i]; /* TAKEN PATH for B1 */
if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */
}
if (val % 3 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */
}
if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */
}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

Now assume that the above piece of code is running on a processor that has a global branch predictor.
The global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

10/22

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

1 0

GHR
O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

(c) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE?
Then consider...

Show your work.

11/22

6 VLIW I

Explain the motivation for VLIW in one sentence.

You are the human compiler for a VLIW machine whose specifications are as follows:

• There are 3 fully pipelined functional units (ALU, MU and FPU).

• Integer Arithmetic Logic Unit (ALU) has a 1-cycle latency.

• Memory Unit (MU) has a 2-cycle latency.

• Floating Point Unit (FPU) has a 3-cycle latency, and can perform either FADD or FMUL (floating
point add / floating point multiply) on floating point registers.

• This machine has only 4 integer registers (r1 .. r4) and 4 floating point registers (f1 .. f4)

• The machine does not implement hardware interlocking or data forwarding.

(a) For the given assembly code on the next page, fill Table 1 (on the next page) with the appropriate
VLIW instructions for only one iteration of the loop (The C code is also provided for your reference).
Provide the VLIW instructions that lead to the best performance. Use the minimum number of VLIW
instructions. Table 1 should only contain instructions provided in the assembly example. For all the
instruction tables, show the NOP instructions you may need to insert. Note that BNE is executed in
the ALU.

The base addresses for A, B, C are stored in r1, r2, r3 respectively. The address of the last element in
the array C[N-1] is stored in r4, where N is an integer multiplier of 10! (read: 10 factorial).

12/22

C Code

float A[N];
float C[N];
int B[N];
... // code to initialize A and B
for (int i=0; i<N; i++)

C[i] = A[i] * A[i] + B[i];

Assembly Code

loop: LD f1, 0 (r1)
LD f2, 0 (r2)
FMUL f1, f1, f1
FADD f1, f1, f2
ADDI r3, r3, 4
ST f1, -4, (r3)
ADDI r1, r1, 4
ADDI r2, r2, 4
BNE r3, r4, loop

VLIW Instruction ALU MU FPU
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table 1

What is the performance in Ops/VLIW instruction (Operations/VLIW instruction) for this design?
An operation here refers to an instruction (in the Assembly Code), excluding NOPs.

13/22

(b) Assume now we decide to unroll the loop once. Fill Table 2 with the new VLIW instructions. You
should optimize for latency first, then instruction count. You can choose to use different offsets,
immediates and registers, but you may not use any new instructions.

VLIW Instruction ALU MU FPU
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table 2

What is the performance in Ops/VLIW instruction for this design?

(c) Assume now we have unlimited registers and the loop is fully optimized (unrolled to the best
performance possible). What is the performance in Ops/cycle for this design? Show your work and
explain clearly how you arrived at your answer. You are not required to draw any tables, but you
may choose to do so to aid your explanation. (Hint: trace the dependent instructions)

14/22

15/22

7 VLIW II

You are using a tool that transforms machine code that is written for the MIPS ISA to code in a VLIW
ISA. The VLIW ISA is identical to MIPS except that multiple instructions can be grouped together into
one VLIW instruction. Up to N MIPS instructions can be grouped together (N is the machine width, which
depends on the particular machine). The transformation tool can reorder MIPS instructions to fill VLIW
instructions, as long as loads and stores are not reordered relative to each other (however, independent loads
and stores can be placed in the same VLIW instruction).

You give the tool the following MIPS program (we have numbered the instructions for reference below):

(01) lw $t0 ← 0($a0)
(02) lw $t2 ← 8($a0)
(03) lw $t1 ← 4($a0)
(04) add $t6 ← $t0, $t1
(05) lw $t3 ← 12($a0)
(06) sub $t7 ← $t1, $t2
(07) lw $t4 ← 16($a0)
(08) lw $t5 ← 20($a0)
(09) srlv $s2 ← $t6, $t7
(10) sub $s1 ← $t4, $t5
(11) add $s0 ← $t3, $t4
(12) sllv $s4 ← $t7, $s1
(13) srlv $s3 ← $t6, $s0
(14) sllv $s5 ← $s0, $s1
(15) add $s6 ← $s3, $s4
(16) add $s7 ← $s4, $s6
(17) srlv $t0 ← $s6, $s7
(18) srlv $t1 ← $t0, $s7

(a) Draw the dataflow graph of the program. Represent instructions as numbered nodes (01 through 18)
and flow dependencies as directed edges (arrows).

16/22

(b) When you run the tool with its settings targeted for a particular VLIW machine, you find that the
resulting VLIW code has 9 VLIW instructions. What minimum value of N must the target VLIW
machine have?

(c) Write the MIPS instruction numbers (from the code above) corresponding to each VLIW instruction,
for this value of N. When there is more than one MIPS instruction that could be placed into a VLIW
instruction, choose the instruction that comes earliest in the original MIPS program.

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

VLIW Instr.1:
VLIW Instr.2:
VLIW Instr.3:
VLIW Instr.4:
VLIW Instr.5:
VLIW Instr.6:
VLIW Instr.7:
VLIW Instr.8:
VLIW Instr.9:

(d) You find that the code is still not fast enough when it runs on the VLIW machine, so you contact the
VLIW machine vendor to buy a machine with a larger machine-width "N". What minimum value of N
would yield the maximum possible performance (i.e., the fewest VLIW instructions), assuming that all
MIPS instructions (and thus VLIW instructions) complete with the same fixed latency and assuming
no cache misses?

(e) Write the MIPS instruction numbers corresponding to each VLIW instruction, for this optimal value
of N. Again, as in part (c) above, pack instructions such that when more than one instruction can
be placed in a given VLIW instruction, the instruction that comes first in the original MIPS code is
chosen.

17/22

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

MIPS
Instr
No

VLIW Instr.1:
VLIW Instr.2:
VLIW Instr.3:
VLIW Instr.4:
VLIW Instr.5:
VLIW Instr.6:
VLIW Instr.7:
VLIW Instr.8:
VLIW Instr.9:

(f) A competing processor design company builds an in-order superscalar processor with the same machine-
width N as the width you found above in part(b). The machine has the same clock frequency as the
VLIW processor. When you run the original MIPS program on this machine, you find that it executes
slower than the corresponding VLIW progra m on the VLIW machine in part (b). Why could this be
the case?

(g) When you run some other program on this superscalar machine, you find it runs faster than the
corresponding VLIW program on the VLIW machine. Why could this be the case?

18/22

8 Systolic Arrays I

Figure 1 shows a systolic array processing element.
Each processing element takes in two inputs, M and N, and outputs P and Q. Each processing element

also contains an “accumulator” R that can be read from and written to. The initial value of the “accumulator”
is 0.

Figure 2 shows a systolic array composed of 9 processing elements. The smaller boxes are the inputs to
the systolic array and the larger boxes are the processing elements. You will program this systolic array to
perform the following calculation:

In each time cycle, each processing element will take in its two inputs, perform any necessary actions,
and write on its outputs. The time cycle labels on the input boxes determine which time cycle the inputs
will be fed into their corresponding processing elements. Any processing element input that is not driven
will default to 0, and any processing element that has no output arrow will have its output ignored.

After all the calculations finish, each processing element’s “accumulator” will hold one element of the final
result matrix, arranged in the correct order.

(a) Please describe the operations that each individual processing element performs, using mathe- matical
equations and the variables M, N, P, Q and R.

Figure 1: A systolic array processing element

P =

Q =

R =

19/22

(b) Please fill in all 30 input boxes in Figure 2 so that the systolic array computes the correct matrix
multiplication result described on the previous page. (Hint: Use aij and bij .)

Figure 2: A systolic array

20/22

9 Systolic Arrays II

The following diagram is a systolic array that performs the multiplication of two 4-bit binary numbers (a
and b). For example, if a=1110 and b=1011, the result of the multiplication is c=10011010:

1011
× 1110
0000

1011
1011

+ 1011
10011010

(1)

The input to the systolic arrays is through the AND gates. The figure shows which bits of the two
numbers a and b are inserted into each AND gate. However, the figure does not indicate in which cycle each
input is issued. Make the folowing assumptions:

• The latency of each adder is one cycle.

• Vertical arrows propagate the sum to the next adder.

• Diagonal arrows propagate the carry to the next adder.

• Horizontal arrows propagate the output of the AND gates in each row.

• An adder adds the value of its three inputs (vertical, diagonal and horizontal inputs)

• An adder can hold a value for only one cycle.

+ + +
+ + +

+ + +
+ + +

+ +
+

a0 b0 a1 b0a2b0 b0 a3 b1a3 b2a3 b3a3

c0 c1 c2 c3 c4 c5 c6 c7

a0
b1

a0
b2

a0
b3

0

0

0

a1 a2

a1 a2

a1 a2

b1b1

b2b2

b3b3

+
+
+

0

0

21/22

(a) How many cycles does it take to perform one multiplication of two 4-bit binary numbers in this systolic
array? Indicate 1) in which cycle each bit is inputted in the systolic array and 2) in which cycle each
bit of the result is produced.

(b) How many cycles does it take to perform N consecutive multiplications of two 4-bit binary numbers
in this systolic array?

22/22

	Delayed Branching
	Delayed Branching II
	Branch Prediction I
	Branch Prediction II
	Part I: Microbenchmarking
	Part II: Performance Enhancement

	Branch Prediction III
	VLIW I
	VLIW II
	Systolic Arrays I
	Systolic Arrays II

