Design of Digital Circuits (252-0028-00L), Spring 2020

Optional HW 5: Branch Prediction, VLIW, and Systolic Arrays SOLUTIONS

Instructor: Prof. Onur Mutlu

TAs: Mohammed Alser, Rahul Bera, Can Firtina, Juan Gomez-Luna, Jawad Haj-Yahya, Hasan Hassan, Konstantinos Kanellopoulos, Lois Orosa, Jisung Park, Geraldo De Oliveira Junior, Minesh Patel, Giray Yaglikci

Released: Saturday, May 2, 2020

1 Delayed Branching

A machine has a five-stage pipeline consisting of fetch, decode, execute, mem and write-back stages. The machine uses delay slots to handle control dependences. Jump targets, branch targets and destinations are resolved in the execute stage.
(a) What is the number of delay slots needed to ensure correct operation?

2
(b) Which instruction(s) in the assembly sequences below would you place in the delay slot(s), assuming the number of delay slots you answered for part(a)? Clearly rewrite the code with the appropriate instruction(s) in the delay slot(s).

```
(I) ADD R5 <- R4, R3
    OR R3 <- R1, R2
    SUB R7 <- R5, R6
    J X
    Delay Slots
    LW R10 <- (R7)
    ADD R6 <- R1, R2
    X:
    Solution:
    ADD R5 <- R4, R3
    J X
    OR R3<- R1, R2
    SUB R7<- R5, R6
    LW R10 <- (R7)
    ADD R6 <- R1, R2
    X:
```

(II) ADD R5 <- R4, R3

OR R3 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X
Delay Slots
LW R10 <- (R7)
ADD R6 <- R1, R2
X :
Solution:
ADD R5 <- R4, R3
SUB R7 <- R5, R6
BEQ R5 <- R7, X
OR R3<-R1, R2
NOP
LW R10 <- (R7)
ADD R6 <- R1, R2
X:
(III) ADD R2 <- R4, R3

OR R5 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X
Delay Slots
LW R10 <- (R7)
ADD R6 <- R1, R2
X:
Solution:

```
ADD R2 <- R4, R3
OR R5<- R1, R2
SUB R7<- R5, R6
BEQ R5 <- R7, X
NOP
NOP
LW R10 <- (R7)
ADD R6<- R1, R2
X:
```

(c) Can you modify the pipeline to reduce the number of delay slots (without introducing branch prediction)? Clearly state your solution and explain why.

Move the resolution of jump targets and branch targets and destinations to the decode stage.
Jumps and branches would get resolved one cycle earlier and hence one delay slot would be enough to ensure correct operation.

2 Delayed Branching II

You are designing an ISA that uses delayed branch instructions. You are trying to decide how many instructions to place into the branch delay slot. How many branch delay slots would you need for the following different implementations? Explain your reasoning briefly.
(a) An in-order processor where conditional branches resolve during the 4th stage

3
(b) An out-of-order processor with 64 unified reservation station entries where conditional branches resolve during the 2nd cycle of branch execution. The processor has 15 pipeline stages until the start of the execution stages
Based on the reservation station occupancy, a branch instruction might take variable number of cycles to get resolved since it is fetched. Hence we cannot determine the number of delay slots.

3 Branch Prediction I

Assume a machine with a two-bit global history register (GHR) shared by all branches, which starts with Not Taken, Not Taken (2'b00). Each pattern history table entry (PHTE) contains a 2-bit saturating counter. The saturating counter values are as follows:

- 00 - Strongly Not Taken
- 01 - Weakly Not Taken
- 10 - Weakly Taken
- 11 - Strongly Taken

Assume the following piece of code runs on this machine. The code has two branches (labeled B1 and B2). When we say that a branch is taken, we mean that the code inside the curly brackets is executed. For the following questions, assume that this is the only block of code that will ever be run, and the loop-condition branch (B1) is resolved first in the iteration before the if-condition branch (B2).

```
for (int i = 0; i < 1000000; i++) { /* B1 */
                                /* TAKEN PATH for B1 */
    if (i % 3 == 0) { /* B2 */
        j[i] = k[i] -1; /* TAKEN PATH for B2 */
    }
}
```

(a) Is it possible to observe that the branch predictor mispredicts 100% of the time in the first 5 iterations of the loop? If yes, fill in the table below with all possible initial values each entry can take. We represent Not Taken with N, and Taken with T.

Table 1: PHT

PHT Entry	Value
TT	01
TN	00
NT	01
NN	00 or 01

Show your work here.
Yes, it is possible.
The pattern after 5 iterations: TTTNTNTTTN.
In order to be more clear, we add indices to each branch outcome in the pattern above, to represent their positions in the pattern: $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~N}_{4} \mathrm{~T}_{5} \mathrm{~N}_{6} \mathrm{~T}_{7} \mathrm{~T}_{8} \mathrm{~T}_{9} \mathrm{~N}_{10}$

- For $G H R=N N$, the only observed branch is T_{1}. Therefore, the PHTE for NN has to be either 00 or 01 so that the branch predictor mispredicts the taken branch.
- For GHR $=T T$, the observed branches are $T_{3} N_{4} T_{9} N_{10}$. The PHTE for TT has to be initialized to 01 in order to cause the predictor to always mispredict. This way, each N and T moves the saturating counter to their respective direction. This will cause misprediction for the next branch which is always in the opposite direction.
- For $G H R=T N$, the observed branches are $T_{5} T_{7}$. Thus, the initial PHTE value for TN has to be 00 to mispredict both taken branches.
- For GHR $=$ NT, the observed branches are $\mathrm{T}_{2} \mathrm{~N}_{6} \mathrm{~T}_{8}$. Similar to the TT entry, NT's PHTE has to be initialized 01.
(b) At steady-state, we observe the following pattern which repeats over time: TTTNTN, with T representing Taken, and N representing Not Taken. When GHR pattern equals to NT or TT, the predictor will observe that the branch outcome will be either T or N . Therefore, no matter what the initial values for these two entries are in the pattern history table (PHT), only one of the branches can be predicted correctly. Thus prediction accuracy will never reach 100%. Explain how using local history registers instead of the global history register will help bring the prediction accuracy up to 100% during the steady state, by showing what will each PHTE saturate to.

For the outer loop, we will keep observing all Ts, and the counters will be set to 2 'b11 for TT and lead to 100% accuracy for this branch.
The second branch will keep observing this repeated pattern: TNN. So entry TN will be saturated to $2^{\prime} \mathrm{b} 00$, entry NN will saturate to $2^{\prime} \mathrm{b} 11$, and entry NT will saturate to $2^{\prime} \mathrm{b} 00$.

4 Branch Prediction II

A processor implements an in-order pipeline with multiple stages. Each stage completes in a single cycle. The pipeline stalls upon fetching a conditional branch instruction and resumes execution once the condition of the branch is evaluated. There is no other case in which the pipeline stalls.

4.1 Part I: Microbenchmarking

You create a microbenchmark as follows to explore the pipeline characteristics:

```
LOOP1:
    SUB R1, R1, #1 // R1 = R1 - 1
    BGT R1, LOOP1 // Branch to LOOP1 if R1 > 0
LOOP2:
    B LOOP2 // Branch to LOOP2
        // Repeats until program is killed
```

The microbenchmark takes one input value R1 and runs until it is killed (e.g., via an external interrupt).
You carefully run the microbenchmark using three different input values as summarized in Table 2, You terminate the microbenchmark using an external interrupt such that each run is guaranteed to execute the same number of dynamic instructions. Unfortunately, your testing infrastructure does not give you the actual number of instructions executed.

Initial R1 Value	Number of Cycles Taken
4	51
8	63
16	87

Table 2: Microbenchmark results.

Using this information, you need to determine the following three experiment characteristics. Clearly show all work to receive full points!

1. How many dynamic instructions are executed?
2. How many stages are in the pipeline?
3. For how many cycles does a conditional branch instruction cause a stall?
4. 3 cycles
5. It is only possible to know that $P+I=40$.

Explanation: We have a system of equations in the variables:

- C is the total number of cycles taken
- P is the total number of pipeline stages
- I is the total number of dynamic instructions executed
- B is the number of conditional branch instructions executed
- D is the number of cycles stalled for each conditional branch

The total number of cycles can be expressed as $C=P+I-1+B * D$.
Table 2 gives us B and C, which results in a system of three equations with three unknowns:

- $51=P+I-1+4 * D$
- $63=P+I-1+8 * D$
- $87=P+I-1+16 * D$

Solving this system, we obtain $D=3$ and $P+I=40$.

4.2 Part II: Performance Enhancement

To improve performance, the architects add a mystery branch prediction mechanism. They keep the rest of the design exactly the same as before. You re-run the microbenchmark for the same number of total dynamic instructions with the new design, and you find that with $R 1=4$, the microbenchmark executes in 48 cycles.

Based on this given information, determine which of the following branch prediction mechanisms could be the mystery branch predictor implemented in the new version of the processor. For each branch prediction mechanism below, you should circle the configuration parameters that makes it match the performance of the mystery branch predictor.

(a) Static Branch Predictor

Could this be the mystery branch predictor: YES NO
If YES, for which configuration below is the answer YES? Pick an option for each configuration parameter.
I) Static Prediction Direction

```
Always taken Always not taken
```


Explain:

YES, if the static prediction direction is always not taken.
Explanation: The execution time corresponds to 3 mispredictions and 1 correct prediction. The correct prediction occurs when the branch condition evaluates to TRUE and execution falls through to the following instruction (i.e., NOT TAKEN).

(b) Last Time Branch Predictor

Could this be the mystery branch predictor?
YES
NO

If YES, for which configuration is the answer $Y E S$? Pick an option for each configuration parameter.
I) Initial Prediction Direction

Taken Not taken
II) Local for each branch instruction (PC-based) or global (shared among all branches) history?

```
Local Global
```

Explain:
NO.
Explanation: The last-time predictor will make a correct prediction at least three times, which means that it cannot be the mystery predictor.
(c) Backward taken, Forward not taken (BTFN)

Could this be the mystery branch predictor?
YES
NO

Explain:
NO.
Explanation: The BTFN predictor makes exactly one misprediction, which is the opposite of what the mystery predictor achieves.
(d) Forward taken, Backwards not taken (FTBN)

Could this be the mystery branch predictor?
YES
NO

Explain:
YES.
Explanation: The FTBN predictor makes exactly one correct prediction, which is what we observe from the microbenchmark.
(e) Two-bit Counter Based Prediction (using saturating arithmetic)

Could this be the mystery branch predictor?

If YES, for which configuration is the answer $Y E S$? Pick an option for each configuration parameter.
I) Initial Prediction Direction

```
00 (Strongly not taken)
01 (Weakly not taken)
10 (Weakly taken)
11 (Strongly taken)
```

II) Local for each branch instruction (i.e., PC-based, without any interference between different branches) or global (i.e., a single counter shared among all branches) history?

Local
Global

Explain:
$Y E S$, using either local or global history registers with an initial value of 00 .
Explanation: There is only one branch, so we cannot differentiate local vs. global registers. Either way, only the 00 configuration results in 3 mispredictions and 1 correct prediction.

5 Branch Prediction III

Assume the following piece of code that iterates through a large array populated with completely (i.e., truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say that a branch is taken, we mean that the code inside the curly brackets is executed.

```
for (int i=0; i<N; i++) { /* B1 */
    val = array[i]; /* TAKEN PATH for B1 */
    if (val % 2 == 0) { /* B2 */
        sum += val; /* TAKEN PATH for B2 */
    }
    if (val % 3 == 0) { /* B3 */
        sum += val; /* TAKEN PATH for B3 */
    }
    if (val % 6 == 0) { /* B4 */
        sum += val; /* TAKEN PATH for B4 */
    }
}
```

(a) Of the four branches, list all those that exhibit local correlation, if any.

Only B1.
B2, B3, B4 are not locally correlated. Just like consecutive outcomes of a die, an element being a multiple of $N(N$ is 2,3 , and 6 , respectively for B2, B3, and B4) has no bearing on whether the next element is also a multiple of N.
(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

B4 is correlated with B2 and B3. This means that if B2 and B3 are taken then B4 should always be taken (as 6 is a common multiple of 2 and 3).

Now assume that the above piece of code is running on a processor that has a global branch predictor. The global branch predictor has the following characteristics.

- Global history register (GHR): 2 bits.
- Pattern history table (PHT): 4 entries.
- Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024-1023)
- Before the code is run, all PHTEs are initially set to 0 .
- As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that PHTE is not taken.

(c) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the shaded box below. (Please write it as a base-10 value, rounded to the nearest one's digit.)
Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then consider...

Show your work.
Without loss of generality, let's take a look at the numbers from 1 through 6 ..
For a single iteration of the loop, the PHTE has four chances of being incremented/decremented, once at each branch.

- B3's contribution to PHTE. The probability that both B1 and B2 are taken is denoted as P(B1_T \&\& $\mathrm{B} 2_{-} \mathrm{T}$), which is equal to $\mathrm{P}\left(\mathrm{B} 1_{-} \mathrm{T}\right)^{*} \mathrm{P}\left(\mathrm{B} 2_{-} \mathrm{T}\right)=1^{*} 1 / 2=1 / 2$ (out of the six numbers, only 2 , 4 , and 6 are divisible by 2). Given that B 1 and B 2 are taken, the probability that B 3 is also taken, is equal to Q $=1 / 3$ (out of $2,4,6$ only 6 is divisible by 3). Therefore, the PHTE will be incremented with probability $1 / 2^{*} 1 / 3=1 / 6$ and decremented with probability $1 / 2^{*}(1-1 / 3)=1 / 3$ (out of $2,4,62$ and 4 are not divisible by 3). The net contribution of B3 to PHTE is $1 / 6-1 / 3=-1 / 6$.
- B4's contribution to PHTE. $\mathrm{P}\left(\mathrm{B} 2 _\mathrm{T} \& \& \mathrm{~B} 3 _\mathrm{T}\right)=1 / 6 . \mathrm{P}\left(\mathrm{B} 4 _\mathrm{T} \mid \mathrm{B} 2 _\mathrm{T} \& \& \mathrm{~B} 3 _\mathrm{T}\right)=\mathrm{R}=1$. B4's net contribution is $1 / 6^{*} 1=1 / 6$.
- B1's contribution to PHTE. $\mathrm{P}\left(\mathrm{B} 3 _\mathrm{T} \& \& \mathrm{~B} 4 _\mathrm{T}\right)=1 / 6 . \mathrm{P}\left(\mathrm{B} 1 _\mathrm{T} \mid \mathrm{B} 3 _\mathrm{T} \& \& \mathrm{~B} 4 _\mathrm{T}\right)=1$. B1's net contribution is $1 / 6^{*} 1=1 / 6$.
- B2's contribution to PHTE. $\mathrm{P}\left(\mathrm{B} 4 _\mathrm{T} \& \& \mathrm{~B} 1_{-} \mathrm{T}\right)=1 / 6^{*} 1=1 / 6 . \mathrm{P}\left(\mathrm{B} 2 _\mathrm{T} \mid \mathrm{B} 4 _\mathrm{T} \& \& \mathrm{~B} 1 _\mathrm{T}\right)=$ $1 / 2$. This is because B 4 is the last branch in the for loop and thus it has no effect on B 2 from the next iteration. So B2 is taken whenever we have one of the values $2,4,6$ out of the six values.B2's net contribution is $1 / 6^{*} 1 / 2-1 / 6^{*} 1 / 2=0$.

For a single iteration, the net contribution to the PHTE, summed across all the four branches, is equal to $1 / 6$. Since there are 120 iterations, the expected PHTE value is equal to $1 / 6^{*} 120=\mathbf{2 0}$.

6 VLIW I

Explain the motivation for VLIW in one sentence.
Enable multiple instruction issue with simple hardware. Independent instructions can be statically scheduled into a single VLIW instruction that can fed into multiple functional units concurrently

You are the human compiler for a VLIW machine whose specifications are as follows:

- There are 3 fully pipelined functional units (ALU, MU and FPU).
- Integer Arithmetic Logic Unit (ALU) has a 1-cycle latency.
- Memory Unit (MU) has a 2-cycle latency.
- Floating Point Unit (FPU) has a 3-cycle latency, and can perform either FADD or FMUL (floating point add / floating point multiply) on floating point registers.
- This machine has only 4 integer registers (r1 .. r4) and 4 floating point registers (f1 .. f4)
- The machine does not implement hardware interlocking or data forwarding.
(a) For the given assembly code on the next page, fill Table 1 (on the next page) with the appropriate VLIW instructions for only one iteration of the loop (The C code is also provided for your reference). Provide the VLIW instructions that lead to the best performance. Use the minimum number of VLIW instructions. Table 1 should only contain instructions provided in the assembly example. For all the instruction tables, show the NOP instructions you may need to insert. Note that BNE is executed in the ALU.

The base addresses for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are stored in r1, r2, r3 respectively. The address of the last element in the array $\mathrm{C}[\mathrm{N}-1]$ is stored in r 4 , where N is an integer multiplier of 10 ! (read: 10 factorial).

C Code

float A[N];
float C[N];
int $\mathrm{B}[\mathrm{N}]$;
... // code to initialize A and B
for (int $i=0 ; i<N ; i++$)
$C[i]=A[i] * A[i]+B[i] ;$

Assembly Code

```
loop: LD f1, 0 (r1)
    LD f2, 0 (r2)
    FMUL f1, f1, f1
    FADD f1, f1, f2
    ADDI r3, r3, 4
    ST f1, -4, (r3)
    ADDI r1, r1, 4
    ADDI r2, r2, 4
    BNE r3, r4, loop
```

VLIW Instruction	ALU	MU	FPU
1	ADDI r1, r1, 4	LD f1, 0(r1)	NOP
2	ADDI r2,r2, 4	LD f2, 0(r2)	NOP
3	NOP	NOP	FMUL f1, f1, f1
4	NOP	NOP	NOP
5	NOP	NOP	NOP
6	NOP	NOP	FADD f1, f1, f2
7	NOP	NOP	NOP
8	ADDI r3, r3, 4	NOP	NOP
9	BNE r3, r4, loop	ST f1, -4(r3)	NOP
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

Table 1
What is the performance in Ops/VLIW instruction (Operations/VLIW instruction) for this design? An operation here refers to an instruction (in the Assembly Code), excluding NOPs.
\square
(b) Assume now we decide to unroll the loop once. Fill Table 2 with the new VLIW instructions. You should optimize for latency first, then instruction count. You can choose to use different offsets, immediates and registers, but you may not use any new instructions.

VLIW Instruction	ALU	MU	FPU
1	NOP	LD f1, 0(r1)	NOP
2	ADDI r1,r1, 8	LD f3, 4(r1)	NOP
3	NOP	LD f2, 0(r2)	FMUL f1, f1, f1
4	ADDI r2, r2, 8	LD f4, 4(r2)	FMUL f3, f3, f3
5	NOP	NOP	NOP
6	NOP	NOP	FADD f1, f1, f2
7	NOP	NOP	FADD f3, f3, f4
8	NOP	NOP	NOP
9	ADDI r3, r3, 8	ST f1, 0(r3)	NOP
10	BNE r3, r4, loop	ST f3, -4(r3)	NOP
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

Table 2

What is the performance in Ops/VLIW instruction for this design?
14/10
(c) Assume now we have unlimited registers and the loop is fully optimized (unrolled to the best performance possible). What is the performance in Ops/cycle for this design? Show your work and explain clearly how you arrived at your answer. You are not required to draw any tables, but you may choose to do so to aid your explanation. (Hint: trace the dependent instructions)

29/15. Notice that we can add 3 MU ops (2 LDs and 1 ST) and 2 FPU ops per unroll, while the ALU ops remain constant at 4. If you trace the table carefully, you will observe that the MU instruction stream will have $1 \mathrm{op} /$ cycle by the time we unroll the loop five times. At this point, we have $4+15+10$ $=29$ instructions over 15 cycles. Any further unrolling will result in a smaller ops/cycle since the MU instruction stream is already saturated.

7 VLIW II

You are using a tool that transforms machine code that is written for the MIPS ISA to code in a VLIW ISA. The VLIW ISA is identical to MIPS except that multiple instructions can be grouped together into one VLIW instruction. Up to N MIPS instructions can be grouped together (N is the machine width, which depends on the particular machine). The transformation tool can reorder MIPS instructions to fill VLIW instructions, as long as loads and stores are not reordered relative to each other (however, independent loads and stores can be placed in the same VLIW instruction).

You give the tool the following MIPS program (we have numbered the instructions for reference below):

(a) Draw the dataflow graph of the program. Represent instructions as numbered nodes (01 through 18) and flow dependencies as directed edges (arrows).

(b) When you run the tool with its settings targeted for a particular VLIW machine, you find that the resulting VLIW code has 9 VLIW instructions. What minimum value of N must the target VLIW machine have?
$\mathrm{N}=3$. If $\mathrm{N}=2$, then the VLIW program must have at least 11 MIPS instructions, and the number of VLIW instructions either stays the same or decreases as width is increased by one MIPS instruction.
(c) Write the MIPS instruction numbers (from the code above) corresponding to each VLIW instruction, for this value of N. When there is more than one MIPS instruction that could be placed into a VLIW instruction, choose the instruction that comes earliest in the original MIPS program.

	MIPS Instr No									
VLIW Instr.1:	01	02	03							
VLIW Instr.2:	04	05	06							
VLIW Instr.3:	07	08	09							
VLIW Instr.4:	10	11								
VLIW Instr.5:	12	13	14							
VLIW Instr.6:	15									
VLIW Instr.7:	16									
VLIW Instr.8:	17									
VLIW Instr.9:	18									

(d) You find that the code is still not fast enough when it runs on the VLIW machine, so you contact the VLIW machine vendor to buy a machine with a larger machine-width "N". What minimum value of N would yield the maximum possible performance (i.e., the fewest VLIW instructions), assuming that all MIPS instructions (and thus VLIW instructions) complete with the same fixed latency and assuming no cache misses?
$\mathrm{N}=6$. This is the maximum width of the dataflow graph and results in 7 VLIW instructions (see below). If $\mathrm{N}=5$, then the VLIW program will instead have 8 VLIW instructions. Increasing N further does not allow any more MIPS instructions to be parallelized in wider VLIW instructions.
(e) Write the MIPS instruction numbers corresponding to each VLIW instruction, for this optimal value of N. Again, as in part (c) above, pack instructions such that when more than one instruction can be placed in a given VLIW instruction, the instruction that comes first in the original MIPS code is chosen.

	MIPS Instr No									
VLIW Instr.1:	01	02	03	05	07	08				
VLIW Instr.2:	04	06	10	11						
VLIW Instr.3:	09	12	13	14						
VLIW Instr.4:	15									
VLIW Instr.5:	16									
VLIW Instr.6:	17									
VLIW Instr.7:	18									
VLIW Instr.8:										
VLIW Instr.9:										

(f) A competing processor design company builds an in-order superscalar processor with the same machinewidth N as the width you found above in part(b). The machine has the same clock frequency as the VLIW processor. When you run the original MIPS program on this machine, you find that it executes slower than the corresponding VLIW progra m on the VLIW machine in part (b). Why could this be the case?
Concurrently fetched instructions can be dependent in a superscalar processor, requiring bubbles in the pipeline to be processed. A VLIW code translator can reorder instructions to minimize such bubbles. Note that the superscalar processor is in-order in this question.
(g) When you run some other program on this superscalar machine, you find it runs faster than the corresponding VLIW program on the VLIW machine. Why could this be the case?
VLIW code must have explicit NOPs; the superscalar processor does not require these NOPs. Higher code density results in a higher I-cache hit rate and lower required fetch bandwidth.

8 Systolic Arrays I

Figure 1 shows a systolic array processing element.
Each processing element takes in two inputs, M and N , and outputs P and Q. Each processing element also contains an "accumulator" R that can be read from and written to. The initial value of the "accumulator" is 0 .

Figure 2 shows a systolic array composed of 9 processing elements. The smaller boxes are the inputs to the systolic array and the larger boxes are the processing elements. You will program this systolic array to perform the following calculation:

$$
\left[\begin{array}{lll}
c_{00} & c_{01} & c_{02} \\
c_{10} & c_{11} & c_{12} \\
c_{20} & c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right] \times\left[\begin{array}{lll}
b_{00} & b_{01} & b_{02} \\
b_{10} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22}
\end{array}\right]
$$

In each time cycle, each processing element will take in its two inputs, perform any necessary actions, and write on its outputs. The time cycle labels on the input boxes determine which time cycle the inputs will be fed into their corresponding processing elements. Any processing element input that is not driven will default to 0 , and any processing element that has no output arrow will have its output ignored.

After all the calculations finish, each processing element's "accumulator" will hold one element of the final result matrix, arranged in the correct order.
(a) Please describe the operations that each individual processing element performs, using mathe- matical equations and the variables $\mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{Q}$ and R .

Figure 1: A systolic array processing element

$$
\begin{aligned}
& \mathrm{P}=\begin{array}{|l|}
\hline \mathrm{M} \\
\mathrm{Q}=\mathrm{N}^{\mathrm{N}} \\
\mathrm{R}=\mathrm{R}+\mathrm{M} \times \mathrm{N} \\
\end{array} \\
&
\end{aligned}
$$

(b) Please fill in all 30 input boxes in Figure 2 so that the systolic array computes the correct matrix multiplication result described on the previous page. (Hint: Use $a_{i j}$ and $b_{i j}$.)

Figure 2: A systolic array

$9 \quad$ Systolic Arrays II

The following diagram is a systolic array that performs the multiplication of two 4 -bit binary numbers (a and \mathbf{b}). For example, if $\mathbf{a}=1110$ and $\mathbf{b}=1011$, the result of the multiplication is $\mathbf{c}=10011010$:

1011
$\times 1110$
0000
1011
1011
+1011
10011010

The input to the systolic arrays is through the AND gates. The figure shows which bits of the two numbers \mathbf{a} and \mathbf{b} are inserted into each AND gate. However, the figure does not indicate in which cycle each input is issued. Make the folowing assumptions:

- The latency of each adder is one cycle.
- Vertical arrows propagate the sum to the next adder.
- Diagonal arrows propagate the carry to the next adder.
- Horizontal arrows propagate the output of the AND gates in each row.
- An adder adds the value of its three inputs (vertical, diagonal and horizontal inputs)
- An adder can hold a value for only one cycle.

(a) How many cycles does it take to perform one multiplication of two 4-bit binary numbers in this systolic array? Indicate 1) in which cycle each bit is inputted in the systolic array and 2) in which cycle each bit of the result is produced.

```
10 cycles. The cycle each input is inserted into the array is indicated in the figure.
co can be produced any time during the }10\mathrm{ cycles that the multiplication takes. In the example solution
of the figure:
co is produced in cycle 1
c
c}\mp@subsup{c}{2}{}\mathrm{ is produced in cycle 5
c}\mp@subsup{c}{3}{}\mathrm{ is produced in cycle 6
c}\mp@subsup{c}{4}{}\mathrm{ is produced in cycle }
c}\mp@subsup{c}{5}{}\mathrm{ is produced in cycle 8
c}\mp@subsup{c}{6}{}\mathrm{ is produced in cycle }
c}\mp@subsup{c}{7}{}\mathrm{ is produced in cycle 10
```

(b) How many cycles does it take to perform N consecutive multiplications of two 4-bit binary numbers in this systolic array?

```
10+3*(N-1) cycles.
```

Performing one multiplication takes 10 cycles, but subsequent multiplications can be pipelined. We can issue one new multiplication operation every 3 cycles. We show in the solution the cycles in which the results of the first 3 multiplications of two 4 -bit binary numbers are produced (the inputs of the second and third multiplication are not shown in the figure). Performing N multiplications will take $10+3^{*}(\mathrm{~N}-1)$ cycles.

