
The Tera Computer System*

Robert Alverson David Callahan Daniel Cummings
Allan Porterfield Burton Smith

Tera Computer Company
Seattle, Washington USA

Brian Koblenz

1 Introduction
The Tera architecture was designed with several ma
jor goals in mind. First, it needed to be suitable for
very high speed implementations, i. e., admit a short
clock period and be scalable to many processors. This
goal will be achieved; a maximum configuration of the
first implementation of the architecture will have 256
processors, 512 memory units, 256 I/O cache units, 256
I/O processors, and 4096 interconnection network nodes
and a clock period less than 3 nanoseconds. The ab-
stract architecture is scalable essentially without limit
(although a particular implementation is not, of course).
The only requirement is that the number of instruction
streams increase more rapidly than the number of phys-
ical processors. Although this means that speedup is
sublinear in the number of instruction streams, it can
still increase linearly with the number of physical pro
cessors. The price/performance ratio of the system is
unmatched, and puts Tera’s high performance within
economic reach.

Second, it was important that the architecture be ap-
plicable to a wide spectrum of problems. Programs
that do not vectoriae well, perhaps because of a pre-
ponderance of scalar operations or too-frequent condi-
tional branches, will execute efficiently as long as there
is sufficient parallelism to keep the processors busy. Vir-
tually any parallelism available in the total computa-
tional workload can be turned into speed, from oper-
ation level parallelism within program basic blocks to
multiuser time- and space-sharing. The architecture

*This research was supported by the United States Defense Ad-
vanced Research Projects Agency under Contract MDA972-89-C-
0002. The views and conclusions contained in this document are
those of Tera Computer Company and should not be interpreted
as representing the official policies, either expressed or implied, of
DARPA or the W. S. Government.
Permission to copy without tee all or put of this materM Is granted provided
that the ooplea are not made or ditibutad for direct commercial advantage, the
ACM copyright notice and the title d the publication and its date appear, and
notlw Is ghmn that copying is by pefmlrslan ot the Association for Compting
Machinery. To copy otherwise, or tu republhh, requlrw a fw and/or specific
pWlMSl0n.
8 1880 ACM OW791-3S&Bi...$t.SO

even has strong support for implementing non-numeric
languages like Lisp and Prolog and highly applicative
languages like Sisal and Id.

A third goal was ease of compiler implementation. Al-
though the instruction set does have a few unusual fea
tures, these do not seem to pose unduly hard problems
for the code generator. There are no register or memory
addressing constraints and only three addressing modes.
Condition code setting is consistent and orthogonal. Al-
though the richness of the instruction set often allows
several ways to do something, the variation in their rela-
tive costs as the execution environment changes tends to
be small. Because the architecture permits the free ex-
change of spatial and temporal locality for parallelism,
a highly optimizing compiler may work hard improv-
ing locality and trade the parallelism thereby saved for
more speed. On the other hand, if there is sufficient
parallelism the compiler has a relatively easy job.

The Tera architecture is derived from that of Horizon
[6, 9, lo]; although they are highly similar multistream
MIMD systems, there are many significant differences
between the two designs.

2 Interconnection Network
The interconnection network is a three-dimensional
mesh of pipelined packet-switching nodes, each of which
is linked to some of its neighbors. Each link can trans-
port a packet containing source and destination ad-
dresses, an operation, and 64 data bits in both direc-
tions simultaneously on every clock tick. Some of the
nodes are also linked to resources, i. e., processors, data
memory units, I/O processors, and I/O cache units. In-
stead of locating the processors on one side of the net-
work and memories on the other (in what Robert Keller
has called a “dancehall” configuration[5]), the resources
are distributed more-or-less uniformly throughout the
network. This permits data to be placed in memory
units near the appropriate processor when that is possi-
ble and otherwise generally maximizes the distance be-
tween possibly interfering resources.

ACM International Conference on Supercomputing 25th Anniversary Volume

122

The interconnection network of a 256 processor Tera
system contains 4096 nodes arranged in a 16x16~16
toroidal mesh; that is, the mesh “wraps around” in all
three dimensions. Of the 4096 nodes, 1280 are attached
to the resources comprising 256 processors, 512 data
memory units, 256 I/O cache units and 256 I/O proces-
sors. The 2816 remaining nodes do not have resources
attached but still provide message bandwidth. To in-
crease node performance, some of the links are missing.
If the three directions are named X, Y, and Z, then
X-links and Y-links are missing on alternate Z layers.
This reduces the node degree from 6 to 4, or from 7 to
5 counting the resource link.

In spite of its missing links, the bandwidth of the
network is very high. Any plane bisecting the network
crosses at least 256 links, giving the network a data bi-
section bandwidth of one 64-bit data word per processor
per tick in each direction. This bandwidth is needed to
support shared memory addressing in the event all 256
processors are addressing memory on the other side of
some bisecting plane simultaneously.

As the Tera architecture scales to larger numbers of
processors p, the number of network nodes grows as p312
rather than the plog(p) associated with the more com-
monly used multistage networks. For example, a 1024-
processor system would have 32,768 nodes. The reason
for the overhead per processor of p’l2 instead of log(p)
stems from the fact that the system is speed-of-light
limited. One can argue that memory latency is fully
masked by parallelism only when the number of mes-
sages being routed by the network is at least px 1, where
1 is the (round-trip) latency. Since messages occupy
volume, the network must have volume proportional to
p x 1; since the speed of light is finite, the volume is also
proportional to P and therefore 1 is proportional to p1i2
rather than log(p).

3 Memory

A full-sized system contains 512 data memory units of
128 megabytes each. Memory is byte-addressable, and
is organized in 64-bit words. Four additional access
state bits, more fully described in section 5, are asso
ciated with each word. Data and access state are each
equipped with a separate set of single error correcting,
double error detecting code bits. Data addresses are
randomized in the processors using a scheme similar to
that developed for the RP3[8]. The randomization is
excellent for avoiding memory bank hotspots and net-
work congestion, but makes it difficult to exploit mem-
ory locality using nearby memory units. In the Tera
system, the randomization is combined with another
notion called distribution. The processor data segment

map has a distribution factor associated with each seg-
ment entry. Consecutive virtual addresses in a segment
can be distributed among all 51:! data memory units, a
single unit, or any power of two in between.

Disk speeds have not kept pace with advances in pro-
cessor and memory performance in recent years. The
only currently reasonable solution to this problem is to
lower the level of disks in the memory hierarchy by plac-
ing a large semiconductor memory between the disks
and data memory. In a fully configured Tera system,
the 70 gigabyte per second sustained bandwidth needed
between secondary storage and data memory is supplied
by 256 I/O cache units comprising a directly address-
able memory of 256 gigabytes.

The I/O cache units are functionally identical to
data memory. The only difference is that their latency
is higher because their memory chips are slower (but
denser). The fact that I/O cache has all of the attributes
of main memory makes it possible to map I/O buffers
directly into the address spaces of the application pro-
grams that access them. This is used to avoid copying
by remapping segments.

A processor fetches instructions through a special
path to a neighboring I/O cache unit. This avoids net-
work traffic and network latency, but requires one copy
of a program be made for every processor it is to run
on.

4 Processors

Each processor in a Tera computer can execute multiple
instruction streams simultaneously. In the current im-
plementation, as few as one or as many as 128 program
counters may be active at once. On every tick of the
clock, the processor logic selects a stream that is ready
to execute and allows it to issue its next instruction.
Since instruction interpretation is completely pipelined
by the processor and by the network and memories as
well, a new instruction from a different stream may be
issued in each tick without interfering with its predeces-
sors. When an instruction finishes, the stream to which
it belongs thereby becomes ready to execute the next
instruction. As long as there are enough instruction
streams in the processor so that the average instruction
latency is filled with instructions from other streams,
the processor is being fully utilized. Thus, it is only
necessary to have enough streams to hide the expected
latency (perhaps 70 ticks on average); once latency is
hidden the processor is running at peak performance
and additional streams do not speed the result.

If a stream were not allowed to issue its next instruc-
tion until the previous instruction completed then ap-
proximately 70 different streams would be required on

ACM International Conference on Supercomputing 25th Anniversary Volume

123

each processor to hide the expected latency. The looka-
head described in section 4.3 allows streams to issue
multiple instructions in parallel, thereby reducing the
number of streams needed to achieve peak performance.

4.1 Stream State
Each stream has the following state associated with it:

l 1 64-bit Stream Status Word (SSW)

l 32 64-bit General Registers (RO-R31)

l 8 64-bit Target Registers (TO-T7)

Context switching is so rapid that the processor has
no time to swap the processor-resident stream state. In-
stead, it has 128 of everything, i. e., 128 SSW’s, 4096
general registers, and 1024 target registers. It is appro-
priate to compare these registers in both quantity and
function to vector registers or words of cache in other
architectures. In all three cases, the objective is to im-
prove locality and avoid reloading data.

Program addresses are 32 bits long. Each stream’s
current program counter is located in the low half of
its SSW. The upper half describes various modes (e. g.
floating point rounding, lookahead disable), the trap
disable mask (e. g. data alignment, floating overflow),
and the four most recently generated condition codes.
Most operations have a -TEST variant which emits a
condition code, and branch operations can examine any
subset of the last four condition codes emitted and
branch appropriately.

Also associated with each stream are 32 64-bit general
registers. Register RO is special in that it reads as 0, and
output to it is discarded. Otherwise, all general registers
are identical.

The target registers are used as branch targets. The
format of the target registers is identical to that of the
SSW, though most control transfer operations only use
the low 32 bits to determine a new PC. Separating the
determination of the branch target address from the de-
cision to branch allows the hardware to prefetch instruc-
tions at the branch targets, thus avoiding delay when
the branch decision is made. Using target registers also
makes branch operations smaller, resulting in tighter
loops. There are also skip operations, which obviate
the need to set targets for short forward branches.

One target register (TO) points to the trap handler,
which is nominally an unprivileged program. When a
trap occurs, the effect is as if a coroutine call to TO
had been executed. This makes trap handling extremely
lightweight and independent of the operating system.
Trap handiers can be changed by the user to achieve
specific trap capabilities and priorities without loss of
efficiency.

4.2 Horizontal Instructions

Processor effectiveness, the utilization of the instruction
interpretation resources, has always been constrained by
the difficulty of issuing more than one instruction per
tick. This difficulty has become known as the Flynn
Bottleneck[2]. Vector instructions sidestep this diffi-
culty in part, but are not able to handle frequent condi-
tional branches or heterogeneous scalar operations well.
Processors with horizontal instructions, extreme exam-
ples of which are sometimes called Very Long Instruc-
tion Word (VLIW) architectures, offer a good alterna-
tive to vector instructions. In a horizontal instruction,
several operations are specified together. Memory op-
erations are usually simple loads and stores, and the
others are two- or three-address register-to-register op-
erations. If the overall architecture and organization
are capable of achieving one instruction per tick, then
every functional unit mentioned in the instruction is
well-used. If the instructions are only moderately long,
branches can be sufficiently frequent.

Tera instructions are mildly horizontal. They typi-
cally specify three operations: a memory reference op-
eration like UNS_LOADB(yte), an arithmetic operation
like FLOATADD_MUL(tiply), and a control operation like
JUMP. The control operation can also be a second arith-
metic operation, FLOATADD, or perhaps an INTEGERADD
used in an address computation. Vectorizable loops
can be processed at nominal vector rates (one flop per
tick) using only horizontal instructions with these three
kinds of operations. Matrix-vector multiplication at-
tains nearly two flops per tick via the same technique
used for its efficient vectorization.

4.3 Explicit-Dependence Lookahead

If there are enough streams executing on each processor
to hide the average latency (about 70 ticks) then the ma-
chine is running at peak performance. However, if each
stream can execute some of its instructions in parallel
(e. g. 2 successive loads) then fewer streams and parallel
activities are required to achieve peak performance.

The obvious solution to this problem is to introduce
instruction lookahead; the only difficulty is controlling
it. The traditional register reservation approach re-
quires far too much scoreboard bandwidth in this kind
of architecture. Either multi-streaming or horizontal
instructions alone would preclude scoreboarding. The
traditional alternative, exposing the pipeline, is also
impractical because multi-streaming and unpredictable
memory operation latency make it impossible to gener-
ate code that is both efficient and safe.

The Tera architecture uses a new technique called
explicit-dependence lookahead. The idea is quite sim-

ACM International Conference on Supercomputing 25th Anniversary Volume

124

ple: each instruction contains a three bit lookahead field
that explicitly specifies how many instructions from this
stream will issue before encountering an instruction that
depends on the current one. Since seven is the maximum
possible lookahead value, at, most eight instructions and
twenty-four operations can be concurrently executing
from each stream. A stream is ready to issue a new
instruction when all instructions with lookahead values
referring to the new instruction have completed. Thus,
if each stream maintains a lookahead of seven then nine
streams are needed to hide 72 ticks of latency.

Lookahead across one or more branch operations is
handled by specifying the minimum of all distances in-
volved. The variant branch operations JUMP-OFTEN and
JUMP-SELDOM, for high- and low-probability branches re-
spectively, facilitate optimization by providing a barrier
to lookahead along the less likely path. There are also
SKIP-OFTEN and SKIPSELDOM operations. The overall
approach is philosophically similar to exposed-pipeline
lookahead except that the quanta are instructions, not
ticks.

4.4 Protection Domains

Each processor supports as many as 16 active protection
domains that define the program memory, data mem-
ory, and number of streams allocated to the computa-
tions using that processor. Each executing stream is
assigned to a protection domain, but which domain (or
which processor, for that matter) is not known to the
user program. In this sense, a protection domain is a
virtual processor and may be moved from one physical
processor to another.

The protection domains share a single 64K data seg-
ment map and a 16K program page map. Each pro-
tection domain has two pairs of map base and limit
registers that describe the region of each map available
to it. The upper 2048 data segments and 1024 program
pages are not relocated by the map bases, and are used
by the operating system. Any active protection domain
can use all of either or both maps. The map entries con-
tain the physical address; the levels of privilege needed
to read, write, or execute the segment or page; whether
the segment or page was read, written, or executed, as
appropriate; and the distribution (for the data map).

The number of streams available to a program is reg-
ulated by three quantities slim, scur, and sres asso-
ciated with each protection domain. The current num-
ber of streams executing in the protection domain is
recorded by scur; it is incremented when a stream is
created and decremented when a stream quits. A create
can only succeed when the incremented scur does not
exceed sres, the number of streams reserved in the pro-
tection domain. The operations for reserving streams

are unprivileged, and allow several streams to be re-
served or released simultaneously. The stream limit
slim is the operating system limit on the number of
streams the protection domain can reserve.

When a stream executes a CREATE operation to create
a new stream it increments scur, generates the initial
SSW for the stream using one of its own target registers,
copies the trap target TO from its own TO register, and
loads three registers in the new stream from its own
general purpose registers. The newly created stream
can quickly begin executing useful work in cooperation
with its creator as long as significant storage alloca-
tion is unnecessary. The QUIT operation terminates the
stream that executes it, and decrements both sres and
scur. The QUITPRESERVE operation only decrements
scur, thereby giving up a stream without surrendering
its reservation.

Each protection domain has a retry limit that deter-
mines how many times a memory reference can fail in
testing a location’s full/empty bit (see section 5) before
it will trap. If a synchronization is not satisfied for a
long time, then possibly a heavier weight mechanism
that avoids busy waiting should be used to wait for the
synchronization. The retry limit should be based on
the amount of trap processing overhead, which varies
depending on the run-time environment. The trap han-
dler thus can invoke the heavier weight mechanism when
appropriate.

4.5 Privilege Levels

The privilege levels apply to each stream independently.
There are four levels of privilege: user, supervisor, ker-
nel, and IPL. IPL level operates in absolute addressing
mode and is the highest privilege level. User, supervi-
sor, and kernel levels use the program and data maps
for address translation, and represent increasing levels
of privilege. The data map entries define the minimum
levels needed to read and write each segment, and the
program map entries define the exact level needed to
execute from each page. The cu.rrent privilege level of
a stream is stored as part of the ,privileged stream state
and is not available to a user-level stream.

Two hardware operations are provided to allow an
executing stream to change its privilege level. The
(LEVEL-ENTER lev) operation sets tl;e current privilege
level to the instruction map level if the current level is
equal to lev. The LEVELINTER operation is located at
every entry point that can accept a call from a different
privilege level. A trap occurs if the current level is not
equal to lev. The (LEVEL-RETURN lev) operation is used
to return to the original privilege level. A trap occurs
if lev is greater than the current privilege level.

4

ACM International Conference on Supercomputing 25th Anniversary Volume

125

4.6 Exceptions
Exceptional conditions can occur in two ways. First,
an instruction may not be executed due to insufficient
privilege, as with a LEVEL-RETURN which attempts to
raise the privilege level. This type of exception is quite
easy to handle. More commonly, exceptions occur while
executing instructions. With lookahead, further instruc-
tions may already be executing and overwriting registers
which would be needed to restart instructions.

Rather than keep shadow copies of registers to sup-
port rollback, the Tera architecture defines certain ex-
ceptions as a side effect of instruction completion. In
this model, exceptions are guaranteed to be signaled
before they are needed, as indicated by the lookahead
field. Thus, if instruction j depends on instruction i, all
possible exceptions during the execution of instruction
i will be signaled before instruction j begins execution.

To support diagnosis and recovery, certain state must
be available to the trap handler. A trap can be caused
by any of the three operations in an instruction. For
each of the (at most eight) memory operations that
trapped, the processor provides the trap handler with
the trap reason and enough state to allow the operation
to be retried (e. g. for demand paged virtual memory).

For arithmetic traps caused by the arithmetic oper-
ations no state is automatically provided to the trap
handler. The decision to preserve operand values for
possible use by the trap handler is made by the compiler.
While the lookahead field normally only guards true de-
pendence for registers, operand values may be preserved
by limiting lookahead to guard antidependence as well.

5 Tagged Memory
Each memory location in the Tera computer system is
equipped with four access state bits in addition to a 64-
bit value. These access state bits allow the hardware
to implement several useful modifications to the usual
semantics of memory reference. The two data trap bits
generate application-specific lightweight traps, the for-
ward bit implements invisible indirect addressing, and
the full/empty bit is used for lightweight synchroniza-
tion. The influence of these access state bits can be
suppressed by a corresponding set of bits in the pointer
value used to access the memory.

The two trap bits in the access state are independent
of each other and are available for use by the language
implementer. If a trap bit is set in a location and the
corresponding trap disable bit in the pointer is clear,
a trap will occur. Uses for the trap bits include data
breakpoints, demand-driven evaluation, run-time type
exception signaling, implementation of “active” memory
objects, and even stack limit checking.

The forward bit implements a kind of “invisible indi-
rection”. Unlike normal indirection, forwarding is con-
trolled by both the pointer and the location pointed to.
If the forward bit is set in the memory location and for-
warding is not disabled in the pointer, the value found in
the location is to be interpreted as a pointer to the tar-
get of the memory reference rather than the target itself.
Dereferencing will continue until the pointer either dis-
ables forwarding or discovers that the addressed location
has its forward bit reset. The primary use of forwarding
is for on-the-fly modification of address-location bind-
ings, for example in concurrent storage reclamation in-
volving the copying of live structures from one space to
another.

The full/empty bit controls the synchronizing behav-
ior of memory references. Load and store operations
can optionally use the full/empty bit in the addressed
memory word by setting bits in the access control field.
The four values for access control are shown below.

value LOAD STORE
0 read regardless write regardless

and set full
1 reserved reserved

2 wait for full wait for full
and leave full and leave full

3 wait for full wait for empty
and set empty and set full

When access control is 2, loads and stores wait for
the memory cell to be full before proceeding. In this
context, it is sometimes useful to think of the full state
as meaning “available” and the empty state as meaning
“unavailable”. The reading or writing of any part of an
object is conveniently prevented by marking that part
of it “unavailable”. The access control value of 3 causes
loads to be treated as “consume” operations and stores
as “produce” operations. A load waits for full and then
sets empty as it reads, and a store waits for empty and
then sets full as it writes. A forwarded location that
is not disabled and that has its full/empty bit set to
empty is treated as “unavailable” until it fills again,
irrespective of access control.

Additional operations exist to fetch the access state
of a given memory location or to set the access state for
a given location.

Although the full/empty bit provides a fast way of
implementing arbitrary indivisible memory operations,
the need for extremely brief mutual exclusion during
“integer add to memory” is so important for scheduling
applications that this function is done entirely within
each memory unit by a single operation, FETCH-ADD.
This is the Ultracomputer fetch-and-add operation[3],
and differs from it only in that the network hardware

ACM International Conference on Supercomputing 25th Anniversary Volume

126

does not combine fetch-and-add operations to the same
memory location.

6 Arithmetic

The numeric data types directly supported by the Tera
architecture include:

l 64 bit twos complement integers

l 64 bit unsigned integers

l 64 bit floating point numbers

l 64 bit complex numbers

Operations on these types include addition, subtraction,
multiplication, conversion, and comparison. Reciproca-
tion of unsigned and floating point quantities is provided
for using Newton’s method.

Other types are supported indirectly, including:

8, 16, and 32 bit twos complement integers

8, 16, and 32 bit unsigned integers

arbitrary length unsigned integers

32 bit floating point numbers

128 bit “doubled precision” numbers

The shorter integers are sign- or zero-extended to 64 bit
quantities as they are loaded from memory, and trun-
cated to the appropriate length as they are stored. The
fundamental support for arbitrary length integer arith-
metic is provided by the operations INTEGERJDDMJL,
UPPERJDDMJL, and CARRYADD-TEST that together im-
plement 64 x n bit unsigned multiply-add in approxi-
mately 2 x n2 instructions.

The 32 bit floating point numbers are simply the real
parts of the 64 bit complex type with imaginary parts
set to zero. The 128 bit “doubled precision” type was
pointed out to us by Kahan [l, 7,4]; it represents a real
number R as the unevaluated sum of two 64 bit floating
point numbers r and p, where p is insignificant with
respect to r and as near as possible to R-r. Support for
this type is provided by FLOAT-ADD_LOWER which (with
FLOAT-ADD) implements “doubled precision” addition in
six instructions, and by FLOATXJLJDD which rounds
only once and is used to implement “doubled precision”
multiplication in five instructions.

References

PI

PI

[31

PI

PI

k51

PI

PJ

PO1

T. J. Dekker. A floating-point technique for ex-
tending the available precision. Numerische Math.,
18:224-242, 1971.

M. Flynn. Some computer organizations and their
effectiveness. IEEE Transactions on Computers,
C-21(9):948-960, September 1972.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.
McAuliffe, L. Rudolph, and M. Snir. The NYU Ul-
tracomputer - designing an MIMD shared memory
parallel computer. IEEE Transactions on Comput-
ers, C-32(2):175-189, 1984.

W. Kahan. Doubled-precision IEEE standard 754
floating-point arithmetic. Unpublished manuscript,
February 1987.

R. M. Keller. Rediflow: A proposed architecture for
combining reduction & dataflow. In PAW83: Vi-
suals Used at the 1983 Parallel Architecture Work-
shop, University of Colorado, Boulder, 1983.

J. T. Kuehn and B. J. Smith. The Horizon su-
percomputer system: Architecture and software.
In Proceedings of Supercomputing ‘88, Orlando,
Florida, November 1988.

S. Linnainmaa. Software for doubled-precision
floating-point computations, A CM Transactions on
Mathematical Software, 7:272-283, 1981.

A. Norton and E. Melton. A class of boolean lin-
ear transformations for conflict-free power-of-two
stride access. In Proceedings of the 1987 Inter-
national Conference on Parallel Processing, pages
247-254, August 1987.

Frank Pittelli and David Smitley. Analysis of a
3d toriodal network for a sihared memory archi-
tecture. In Proceedings of Supercomputing ‘88, Or-
lando, Florida, November 1988.

M. R. Thistle and B. J. Sm,ith. A processor archi-
tecture for Horizon. In Proceedings of Supercomput-
ing ‘88, pages 35-41, Orlando, Florida, November
1988.

ACM International Conference on Supercomputing 25th Anniversary Volume

127

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 295.15, -2.56 Width 28.84 Height 34.77 points
 Origin: bottom left

 1
 0
 BL

 5
 AllDoc
 5

 CurrentAVDoc

 295.1537 -2.558 28.8369 34.7738

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

