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1 Introduction 
The Tera architecture was designed with several ma 
jor goals in mind. First, it needed to be suitable for 
very high speed implementations, i. e., admit a short 
clock period and be scalable to many processors. This 
goal will be achieved; a maximum configuration of the 
first implementation of the architecture will have 256 
processors, 512 memory units, 256 I/O cache units, 256 
I/O processors, and 4096 interconnection network nodes 
and a clock period less than 3 nanoseconds. The ab- 
stract architecture is scalable essentially without limit 
(although a particular implementation is not, of course). 
The only requirement is that the number of instruction 
streams increase more rapidly than the number of phys- 
ical processors. Although this means that speedup is 
sublinear in the number of instruction streams, it can 
still increase linearly with the number of physical pro 
cessors. The price/performance ratio of the system is 
unmatched, and puts Tera’s high performance within 
economic reach. 

Second, it was important that the architecture be ap- 
plicable to a wide spectrum of problems. Programs 
that do not vectoriae well, perhaps because of a pre- 
ponderance of scalar operations or too-frequent condi- 
tional branches, will execute efficiently as long as there 
is sufficient parallelism to keep the processors busy. Vir- 
tually any parallelism available in the total computa- 
tional workload can be turned into speed, from oper- 
ation level parallelism within program basic blocks to 
multiuser time- and space-sharing. The architecture 
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even has strong support for implementing non-numeric 
languages like Lisp and Prolog and highly applicative 
languages like Sisal and Id. 

A third goal was ease of compiler implementation. Al- 
though the instruction set does have a few unusual fea 
tures, these do not seem to pose unduly hard problems 
for the code generator. There are no register or memory 
addressing constraints and only three addressing modes. 
Condition code setting is consistent and orthogonal. Al- 
though the richness of the instruction set often allows 
several ways to do something, the variation in their rela- 
tive costs as the execution environment changes tends to 
be small. Because the architecture permits the free ex- 
change of spatial and temporal locality for parallelism, 
a highly optimizing compiler may work hard improv- 
ing locality and trade the parallelism thereby saved for 
more speed. On the other hand, if there is sufficient 
parallelism the compiler has a relatively easy job. 

The Tera architecture is derived from that of Horizon 
[6, 9, lo]; although they are highly similar multistream 
MIMD systems, there are many significant differences 
between the two designs. 

2 Interconnection Network 
The interconnection network is a three-dimensional 
mesh of pipelined packet-switching nodes, each of which 
is linked to some of its neighbors. Each link can trans- 
port a packet containing source and destination ad- 
dresses, an operation, and 64 data bits in both direc- 
tions simultaneously on every clock tick. Some of the 
nodes are also linked to resources, i. e., processors, data 
memory units, I/O processors, and I/O cache units. In- 
stead of locating the processors on one side of the net- 
work and memories on the other (in what Robert Keller 
has called a “dancehall” configuration[5]), the resources 
are distributed more-or-less uniformly throughout the 
network. This permits data to be placed in memory 
units near the appropriate processor when that is possi- 
ble and otherwise generally maximizes the distance be- 
tween possibly interfering resources. 
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The interconnection network of a 256 processor Tera 
system contains 4096 nodes arranged in a 16x16~16 
toroidal mesh; that is, the mesh “wraps around” in all 
three dimensions. Of the 4096 nodes, 1280 are attached 
to the resources comprising 256 processors, 512 data 
memory units, 256 I/O cache units and 256 I/O proces- 
sors. The 2816 remaining nodes do not have resources 
attached but still provide message bandwidth. To in- 
crease node performance, some of the links are missing. 
If the three directions are named X, Y, and Z, then 
X-links and Y-links are missing on alternate Z layers. 
This reduces the node degree from 6 to 4, or from 7 to 
5 counting the resource link. 

In spite of its missing links, the bandwidth of the 
network is very high. Any plane bisecting the network 
crosses at least 256 links, giving the network a data bi- 
section bandwidth of one 64-bit data word per processor 
per tick in each direction. This bandwidth is needed to 
support shared memory addressing in the event all 256 
processors are addressing memory on the other side of 
some bisecting plane simultaneously. 

As the Tera architecture scales to larger numbers of 
processors p, the number of network nodes grows as p312 
rather than the plog(p) associated with the more com- 
monly used multistage networks. For example, a 1024- 
processor system would have 32,768 nodes. The reason 
for the overhead per processor of p’l2 instead of log(p) 
stems from the fact that the system is speed-of-light 
limited. One can argue that memory latency is fully 
masked by parallelism only when the number of mes- 
sages being routed by the network is at least px 1, where 
1 is the (round-trip) latency. Since messages occupy 
volume, the network must have volume proportional to 
p x 1; since the speed of light is finite, the volume is also 
proportional to P and therefore 1 is proportional to p1i2 
rather than log(p). 

3 Memory 

A full-sized system contains 512 data memory units of 
128 megabytes each. Memory is byte-addressable, and 
is organized in 64-bit words. Four additional access 
state bits, more fully described in section 5, are asso 
ciated with each word. Data and access state are each 
equipped with a separate set of single error correcting, 
double error detecting code bits. Data addresses are 
randomized in the processors using a scheme similar to 
that developed for the RP3[8]. The randomization is 
excellent for avoiding memory bank hotspots and net- 
work congestion, but makes it difficult to exploit mem- 
ory locality using nearby memory units. In the Tera 
system, the randomization is combined with another 
notion called distribution. The processor data segment 

map has a distribution factor associated with each seg- 
ment entry. Consecutive virtual addresses in a segment 
can be distributed among all 51:! data memory units, a 
single unit, or any power of two in between. 

Disk speeds have not kept pace with advances in pro- 
cessor and memory performance in recent years. The 
only currently reasonable solution to this problem is to 
lower the level of disks in the memory hierarchy by plac- 
ing a large semiconductor memory between the disks 
and data memory. In a fully configured Tera system, 
the 70 gigabyte per second sustained bandwidth needed 
between secondary storage and data memory is supplied 
by 256 I/O cache units comprising a directly address- 
able memory of 256 gigabytes. 

The I/O cache units are functionally identical to 
data memory. The only difference is that their latency 
is higher because their memory chips are slower (but 
denser). The fact that I/O cache has all of the attributes 
of main memory makes it possible to map I/O buffers 
directly into the address spaces of the application pro- 
grams that access them. This is used to avoid copying 
by remapping segments. 

A processor fetches instructions through a special 
path to a neighboring I/O cache unit. This avoids net- 
work traffic and network latency, but requires one copy 
of a program be made for every processor it is to run 
on. 

4 Processors 

Each processor in a Tera computer can execute multiple 
instruction streams simultaneously. In the current im- 
plementation, as few as one or as many as 128 program 
counters may be active at once. On every tick of the 
clock, the processor logic selects a stream that is ready 
to execute and allows it to issue its next instruction. 
Since instruction interpretation is completely pipelined 
by the processor and by the network and memories as 
well, a new instruction from a different stream may be 
issued in each tick without interfering with its predeces- 
sors. When an instruction finishes, the stream to which 
it belongs thereby becomes ready to execute the next 
instruction. As long as there are enough instruction 
streams in the processor so that the average instruction 
latency is filled with instructions from other streams, 
the processor is being fully utilized. Thus, it is only 
necessary to have enough streams to hide the expected 
latency (perhaps 70 ticks on average); once latency is 
hidden the processor is running at peak performance 
and additional streams do not speed the result. 

If a stream were not allowed to issue its next instruc- 
tion until the previous instruction completed then ap- 
proximately 70 different streams would be required on 
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each processor to hide the expected latency. The looka- 
head described in section 4.3 allows streams to issue 
multiple instructions in parallel, thereby reducing the 
number of streams needed to achieve peak performance. 

4.1 Stream State 
Each stream has the following state associated with it: 

l 1 64-bit Stream Status Word (SSW) 

l 32 64-bit General Registers (RO-R31) 

l 8 64-bit Target Registers (TO-T7) 

Context switching is so rapid that the processor has 
no time to swap the processor-resident stream state. In- 
stead, it has 128 of everything, i. e., 128 SSW’s, 4096 
general registers, and 1024 target registers. It is appro- 
priate to compare these registers in both quantity and 
function to vector registers or words of cache in other 
architectures. In all three cases, the objective is to im- 
prove locality and avoid reloading data. 

Program addresses are 32 bits long. Each stream’s 
current program counter is located in the low half of 
its SSW. The upper half describes various modes (e. g. 
floating point rounding, lookahead disable), the trap 
disable mask (e. g. data alignment, floating overflow), 
and the four most recently generated condition codes. 
Most operations have a -TEST variant which emits a 
condition code, and branch operations can examine any 
subset of the last four condition codes emitted and 
branch appropriately. 

Also associated with each stream are 32 64-bit general 
registers. Register RO is special in that it reads as 0, and 
output to it is discarded. Otherwise, all general registers 
are identical. 

The target registers are used as branch targets. The 
format of the target registers is identical to that of the 
SSW, though most control transfer operations only use 
the low 32 bits to determine a new PC. Separating the 
determination of the branch target address from the de- 
cision to branch allows the hardware to prefetch instruc- 
tions at the branch targets, thus avoiding delay when 
the branch decision is made. Using target registers also 
makes branch operations smaller, resulting in tighter 
loops. There are also skip operations, which obviate 
the need to set targets for short forward branches. 

One target register (TO) points to the trap handler, 
which is nominally an unprivileged program. When a 
trap occurs, the effect is as if a coroutine call to TO 
had been executed. This makes trap handling extremely 
lightweight and independent of the operating system. 
Trap handiers can be changed by the user to achieve 
specific trap capabilities and priorities without loss of 
efficiency. 

4.2 Horizontal Instructions 

Processor effectiveness, the utilization of the instruction 
interpretation resources, has always been constrained by 
the difficulty of issuing more than one instruction per 
tick. This difficulty has become known as the Flynn 
Bottleneck[2]. Vector instructions sidestep this diffi- 
culty in part, but are not able to handle frequent condi- 
tional branches or heterogeneous scalar operations well. 
Processors with horizontal instructions, extreme exam- 
ples of which are sometimes called Very Long Instruc- 
tion Word (VLIW) architectures, offer a good alterna- 
tive to vector instructions. In a horizontal instruction, 
several operations are specified together. Memory op- 
erations are usually simple loads and stores, and the 
others are two- or three-address register-to-register op- 
erations. If the overall architecture and organization 
are capable of achieving one instruction per tick, then 
every functional unit mentioned in the instruction is 
well-used. If the instructions are only moderately long, 
branches can be sufficiently frequent. 

Tera instructions are mildly horizontal. They typi- 
cally specify three operations: a memory reference op- 
eration like UNS_LOADB(yte), an arithmetic operation 
like FLOATADD_MUL(tiply), and a control operation like 
JUMP. The control operation can also be a second arith- 
metic operation, FLOATADD, or perhaps an INTEGERADD 
used in an address computation. Vectorizable loops 
can be processed at nominal vector rates (one flop per 
tick) using only horizontal instructions with these three 
kinds of operations. Matrix-vector multiplication at- 
tains nearly two flops per tick via the same technique 
used for its efficient vectorization. 

4.3 Explicit-Dependence Lookahead 

If there are enough streams executing on each processor 
to hide the average latency (about 70 ticks) then the ma- 
chine is running at peak performance. However, if each 
stream can execute some of its instructions in parallel 
(e. g. 2 successive loads) then fewer streams and parallel 
activities are required to achieve peak performance. 

The obvious solution to this problem is to introduce 
instruction lookahead; the only difficulty is controlling 
it. The traditional register reservation approach re- 
quires far too much scoreboard bandwidth in this kind 
of architecture. Either multi-streaming or horizontal 
instructions alone would preclude scoreboarding. The 
traditional alternative, exposing the pipeline, is also 
impractical because multi-streaming and unpredictable 
memory operation latency make it impossible to gener- 
ate code that is both efficient and safe. 

The Tera architecture uses a new technique called 
explicit-dependence lookahead. The idea is quite sim- 
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ple: each instruction contains a three bit lookahead field 
that explicitly specifies how many instructions from this 
stream will issue before encountering an instruction that 
depends on the current one. Since seven is the maximum 
possible lookahead value, at, most eight instructions and 
twenty-four operations can be concurrently executing 
from each stream. A stream is ready to issue a new 
instruction when all instructions with lookahead values 
referring to the new instruction have completed. Thus, 
if each stream maintains a lookahead of seven then nine 
streams are needed to hide 72 ticks of latency. 

Lookahead across one or more branch operations is 
handled by specifying the minimum of all distances in- 
volved. The variant branch operations JUMP-OFTEN and 
JUMP-SELDOM, for high- and low-probability branches re- 
spectively, facilitate optimization by providing a barrier 
to lookahead along the less likely path. There are also 
SKIP-OFTEN and SKIPSELDOM operations. The overall 
approach is philosophically similar to exposed-pipeline 
lookahead except that the quanta are instructions, not 
ticks. 

4.4 Protection Domains 

Each processor supports as many as 16 active protection 
domains that define the program memory, data mem- 
ory, and number of streams allocated to the computa- 
tions using that processor. Each executing stream is 
assigned to a protection domain, but which domain (or 
which processor, for that matter) is not known to the 
user program. In this sense, a protection domain is a 
virtual processor and may be moved from one physical 
processor to another. 

The protection domains share a single 64K data seg- 
ment map and a 16K program page map. Each pro- 
tection domain has two pairs of map base and limit 
registers that describe the region of each map available 
to it. The upper 2048 data segments and 1024 program 
pages are not relocated by the map bases, and are used 
by the operating system. Any active protection domain 
can use all of either or both maps. The map entries con- 
tain the physical address; the levels of privilege needed 
to read, write, or execute the segment or page; whether 
the segment or page was read, written, or executed, as 
appropriate; and the distribution (for the data map). 

The number of streams available to a program is reg- 
ulated by three quantities slim, scur, and sres asso- 
ciated with each protection domain. The current num- 
ber of streams executing in the protection domain is 
recorded by scur; it is incremented when a stream is 
created and decremented when a stream quits. A create 
can only succeed when the incremented scur does not 
exceed sres, the number of streams reserved in the pro- 
tection domain. The operations for reserving streams 

are unprivileged, and allow several streams to be re- 
served or released simultaneously. The stream limit 
slim is the operating system limit on the number of 
streams the protection domain can reserve. 

When a stream executes a CREATE operation to create 
a new stream it increments scur, generates the initial 
SSW for the stream using one of its own target registers, 
copies the trap target TO from its own TO register, and 
loads three registers in the new stream from its own 
general purpose registers. The newly created stream 
can quickly begin executing useful work in cooperation 
with its creator as long as significant storage alloca- 
tion is unnecessary. The QUIT operation terminates the 
stream that executes it, and decrements both sres and 
scur. The QUITPRESERVE operation only decrements 
scur, thereby giving up a stream without surrendering 
its reservation. 

Each protection domain has a retry limit that deter- 
mines how many times a memory reference can fail in 
testing a location’s full/empty bit (see section 5) before 
it will trap. If a synchronization is not satisfied for a 
long time, then possibly a heavier weight mechanism 
that avoids busy waiting should be used to wait for the 
synchronization. The retry limit should be based on 
the amount of trap processing overhead, which varies 
depending on the run-time environment. The trap han- 
dler thus can invoke the heavier weight mechanism when 
appropriate. 

4.5 Privilege Levels 

The privilege levels apply to each stream independently. 
There are four levels of privilege: user, supervisor, ker- 
nel, and IPL. IPL level operates in absolute addressing 
mode and is the highest privilege level. User, supervi- 
sor, and kernel levels use the program and data maps 
for address translation, and represent increasing levels 
of privilege. The data map entries define the minimum 
levels needed to read and write each segment, and the 
program map entries define the exact level needed to 
execute from each page. The cu.rrent privilege level of 
a stream is stored as part of the ,privileged stream state 
and is not available to a user-level stream. 

Two hardware operations are provided to allow an 
executing stream to change its privilege level. The 
(LEVEL-ENTER lev) operation sets tl;e current privilege 
level to the instruction map level if the current level is 
equal to lev. The LEVELINTER operation is located at 
every entry point that can accept a call from a different 
privilege level. A trap occurs if the current level is not 
equal to lev. The (LEVEL-RETURN lev) operation is used 
to return to the original privilege level. A trap occurs 
if lev is greater than the current privilege level. 

4 

ACM International Conference on Supercomputing 25th Anniversary Volume

125



4.6 Exceptions 
Exceptional conditions can occur in two ways. First, 
an instruction may not be executed due to insufficient 
privilege, as with a LEVEL-RETURN which attempts to 
raise the privilege level. This type of exception is quite 
easy to handle. More commonly, exceptions occur while 
executing instructions. With lookahead, further instruc- 
tions may already be executing and overwriting registers 
which would be needed to restart instructions. 

Rather than keep shadow copies of registers to sup- 
port rollback, the Tera architecture defines certain ex- 
ceptions as a side effect of instruction completion. In 
this model, exceptions are guaranteed to be signaled 
before they are needed, as indicated by the lookahead 
field. Thus, if instruction j depends on instruction i, all 
possible exceptions during the execution of instruction 
i will be signaled before instruction j begins execution. 

To support diagnosis and recovery, certain state must 
be available to the trap handler. A trap can be caused 
by any of the three operations in an instruction. For 
each of the (at most eight) memory operations that 
trapped, the processor provides the trap handler with 
the trap reason and enough state to allow the operation 
to be retried (e. g. for demand paged virtual memory). 

For arithmetic traps caused by the arithmetic oper- 
ations no state is automatically provided to the trap 
handler. The decision to preserve operand values for 
possible use by the trap handler is made by the compiler. 
While the lookahead field normally only guards true de- 
pendence for registers, operand values may be preserved 
by limiting lookahead to guard antidependence as well. 

5 Tagged Memory 
Each memory location in the Tera computer system is 
equipped with four access state bits in addition to a 64- 
bit value. These access state bits allow the hardware 
to implement several useful modifications to the usual 
semantics of memory reference. The two data trap bits 
generate application-specific lightweight traps, the for- 
ward bit implements invisible indirect addressing, and 
the full/empty bit is used for lightweight synchroniza- 
tion. The influence of these access state bits can be 
suppressed by a corresponding set of bits in the pointer 
value used to access the memory. 

The two trap bits in the access state are independent 
of each other and are available for use by the language 
implementer. If a trap bit is set in a location and the 
corresponding trap disable bit in the pointer is clear, 
a trap will occur. Uses for the trap bits include data 
breakpoints, demand-driven evaluation, run-time type 
exception signaling, implementation of “active” memory 
objects, and even stack limit checking. 

The forward bit implements a kind of “invisible indi- 
rection”. Unlike normal indirection, forwarding is con- 
trolled by both the pointer and the location pointed to. 
If the forward bit is set in the memory location and for- 
warding is not disabled in the pointer, the value found in 
the location is to be interpreted as a pointer to the tar- 
get of the memory reference rather than the target itself. 
Dereferencing will continue until the pointer either dis- 
ables forwarding or discovers that the addressed location 
has its forward bit reset. The primary use of forwarding 
is for on-the-fly modification of address-location bind- 
ings, for example in concurrent storage reclamation in- 
volving the copying of live structures from one space to 
another. 

The full/empty bit controls the synchronizing behav- 
ior of memory references. Load and store operations 
can optionally use the full/empty bit in the addressed 
memory word by setting bits in the access control field. 
The four values for access control are shown below. 

value LOAD STORE 
0 read regardless write regardless 

and set full 
1 reserved reserved 

2 wait for full wait for full 
and leave full and leave full 

3 wait for full wait for empty 
and set empty and set full 

When access control is 2, loads and stores wait for 
the memory cell to be full before proceeding. In this 
context, it is sometimes useful to think of the full state 
as meaning “available” and the empty state as meaning 
“unavailable”. The reading or writing of any part of an 
object is conveniently prevented by marking that part 
of it “unavailable”. The access control value of 3 causes 
loads to be treated as “consume” operations and stores 
as “produce” operations. A load waits for full and then 
sets empty as it reads, and a store waits for empty and 
then sets full as it writes. A forwarded location that 
is not disabled and that has its full/empty bit set to 
empty is treated as “unavailable” until it fills again, 
irrespective of access control. 

Additional operations exist to fetch the access state 
of a given memory location or to set the access state for 
a given location. 

Although the full/empty bit provides a fast way of 
implementing arbitrary indivisible memory operations, 
the need for extremely brief mutual exclusion during 
“integer add to memory” is so important for scheduling 
applications that this function is done entirely within 
each memory unit by a single operation, FETCH-ADD. 
This is the Ultracomputer fetch-and-add operation[3], 
and differs from it only in that the network hardware 
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does not combine fetch-and-add operations to the same 
memory location. 

6 Arithmetic 

The numeric data types directly supported by the Tera 
architecture include: 

l 64 bit twos complement integers 

l 64 bit unsigned integers 

l 64 bit floating point numbers 

l 64 bit complex numbers 

Operations on these types include addition, subtraction, 
multiplication, conversion, and comparison. Reciproca- 
tion of unsigned and floating point quantities is provided 
for using Newton’s method. 

Other types are supported indirectly, including: 

8, 16, and 32 bit twos complement integers 

8, 16, and 32 bit unsigned integers 

arbitrary length unsigned integers 

32 bit floating point numbers 

128 bit “doubled precision” numbers 

The shorter integers are sign- or zero-extended to 64 bit 
quantities as they are loaded from memory, and trun- 
cated to the appropriate length as they are stored. The 
fundamental support for arbitrary length integer arith- 
metic is provided by the operations INTEGERJDDMJL, 
UPPERJDDMJL, and CARRYADD-TEST that together im- 
plement 64 x n bit unsigned multiply-add in approxi- 
mately 2 x n2 instructions. 

The 32 bit floating point numbers are simply the real 
parts of the 64 bit complex type with imaginary parts 
set to zero. The 128 bit “doubled precision” type was 
pointed out to us by Kahan [l, 7,4]; it represents a real 
number R as the unevaluated sum of two 64 bit floating 
point numbers r and p, where p is insignificant with 
respect to r and as near as possible to R-r. Support for 
this type is provided by FLOAT-ADD_LOWER which (with 
FLOAT-ADD) implements “doubled precision” addition in 
six instructions, and by FLOATXJLJDD which rounds 
only once and is used to implement “doubled precision” 
multiplication in five instructions. 

References 

PI 

PI 

[31 

PI 

PI 

k51 

PI 

PJ 

PO1 

T. J. Dekker. A floating-point technique for ex- 
tending the available precision. Numerische Math., 
18:224-242, 1971. 

M. Flynn. Some computer organizations and their 
effectiveness. IEEE Transactions on Computers, 
C-21(9):948-960, September 1972. 

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. 
McAuliffe, L. Rudolph, and M. Snir. The NYU Ul- 
tracomputer - designing an MIMD shared memory 
parallel computer. IEEE Transactions on Comput- 
ers, C-32(2):175-189, 1984. 

W. Kahan. Doubled-precision IEEE standard 754 
floating-point arithmetic. Unpublished manuscript, 
February 1987. 

R. M. Keller. Rediflow: A proposed architecture for 
combining reduction & dataflow. In PAW83: Vi- 
suals Used at the 1983 Parallel Architecture Work- 
shop, University of Colorado, Boulder, 1983. 

J. T. Kuehn and B. J. Smith. The Horizon su- 
percomputer system: Architecture and software. 
In Proceedings of Supercomputing ‘88, Orlando, 
Florida, November 1988. 

S. Linnainmaa. Software for doubled-precision 
floating-point computations, A CM Transactions on 
Mathematical Software, 7:272-283, 1981. 

A. Norton and E. Melton. A class of boolean lin- 
ear transformations for conflict-free power-of-two 
stride access. In Proceedings of the 1987 Inter- 
national Conference on Parallel Processing, pages 
247-254, August 1987. 

Frank Pittelli and David Smitley. Analysis of a 
3d toriodal network for a sihared memory archi- 
tecture. In Proceedings of Supercomputing ‘88, Or- 
lando, Florida, November 1988. 

M. R. Thistle and B. J. Sm,ith. A processor archi- 
tecture for Horizon. In Proceedings of Supercomput- 
ing ‘88, pages 35-41, Orlando, Florida, November 
1988. 

ACM International Conference on Supercomputing 25th Anniversary Volume

127



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 295.15, -2.56 Width 28.84 Height 34.77 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         5
         AllDoc
         5
              

       CurrentAVDoc
          

     295.1537 -2.558 28.8369 34.7738 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base





