
This study is based on a virtual-storage concept that provides for
automatic memory allocation.

Several algorithms for the replacement of current information in
memory are evaluated.

Discussed is the simulation of a number of typical program runs
using differing replacement algorithms with varying memory size and
block size. The results are compared with each other and with a
theoretical optimum.

A study of replacement algorithms
for a virtual-storage computer

by L. A. Belady

One of the basic limitations of a digital computer is the size
of its available memory.' In most cases, it is neither feasible
nor economical for a user to insist that every problem program
fit into memory. The number of words of information in a pro-
gram often exceeds the number of cells (i.e., word locations)
in memory. The only way to solve this problem is to assign more
than one program word to a cell. Since a cell can hold only one
word at a time, extra words assigned to the cell must be held
in external storage. Conventionally, overlay techniques are em-
ployed to exchange memory words and external-storage words
whenever needed; this, of course, places an additional planning
and coding burden on the programmer. For several reasons, it
would be advantageous to rid the programmer of this function
by providing him with a "virtual" memory larger than his pro-
gram. An approach that permits him to use a sufficiently large
address range can accomplish this objective, assuming that means
are provided for automatic execution of the memory-overlay
functions.

Among the first and most promising of the large-address
approaches is the one described by Kilburn, et al. 2 A similar
virtual-addressing scheme was assumed as a starting point for
the studies reported in this paper. Within this framework, the
relative merits of various specific algorithms are compared. Before

78 IBM SYSTEMS JOURNAL' VOL. 5 • NO.2' 1966

discussing these algorithms in detail, we review the basic features
of virtual addressing and operation.

Virtual-storage com.puter
A virtual-storage computer (vsc) can decode addresses that are
longer than those of its memory. The longer address is treated
by the vsc as a virtual address that must be transformed to the
actual, shorter memory address. As in the conventional approach,
overflow words are stored externally; in vsc operation, however,
the virtual addressing of a word in external storage triggers a
procedure that automatically brings the addressed word into
memory. For the sake of brevity, the activity involved in moving
a word from external storage to memory is termed a pull. Similarly,
the activity required to move a word from memory to external
storage is called a push. Generally, a pull must be preceded by
a push. This replacement operation includes the updating of a
mapping table which keeps track of the virtual addresses and
corresponding actual memory addresses of all words currently
in memory.

Conceptually, the simplest vsc operation would limit pulls and
pushes to single words. However, since external storage devices
are relatively slow and the time delay involved for a single word
is frequently very close to that of a block of words, it is advan-
tageous to move entire blocks rather than individual words.
Experience also shows that, once a word is used, the probability
is high that adjacent words in the same block will soon be needed;
this is particularly true for the problem programs in machines
sequenced by instruction counters. Moreover, the size of the
mapping table can be considerably reduced by dealing with large
blocks. On the other hand, the larger a block, the higher the
proportion of its words that will not be needed soon. In summary,
block size is clearly an important vsc design parameter.

Another parameter is memory size. A small memory is inex-
pensive but entails a high frequency of vsc activity. The maximum
memory size that need be considered is, of course, the one which
can be directly addressed by the problem program's virtual
addresses, without address mapping.

An important design factor is the replacement algorithm, which
determines which block to push whenever memory space is
needed. Of course, it is preferable to first replace the block that
has the least chance of soon being referenced. However, as shown
later, there is an inherent uncertainty about the occurrence of
block usage. Three classes of many conceivable replacement
algorithms are discussed in this paper.

The virtual addressing process referred to in this paper is
illustrated in Figure 1. The CPU references a word by issuing a
virtual address, which is divided into two parts. The low-order
part, which provides the within-block address of the desired
word, is temporarily ignored. The remainder of the virtual address,
the virtual block address, is used as an argument for search in

STUDY OF REPLACEMENT ALGORITHMS

VSC
variables

virtual
addressing
process

79

Figure 1 Virtual addressing
REPLACEMENT CONTROLr--------------------------, VIRTUAL

BLOCK
ADDRESS

WITHIN-
BLOCK
ADDRESS

MAPPING TABLE

PUSH

[=====E~~~ VIRTUAL
ADDRESS

4

EXTERNAL STORAGE

PULL

MEMORY WITHIN-
BLOCK
ADDRESS

MEMORY
ADDRESS

the mapping table (Step 1). This table lists the virtual addresses
of all blocks presently in memory and links them, row by row,
with the associated memory addresses. If the virtual address
which serves as an argument is not in the table, a memory block
designated by the replacement algorithm is pushed (Step 2), the
requested block is pulled (Step 3), and the table is properly
updated. If the argument is found in the list at the end of Step 1,
Steps 2 and 3 are skipped. The actual memory address of the
requested block is extracted from the appropriate row in the
table (Step 4). Then, the temporarily held low-order part of the
original virtual address and the extracted block address are
concatenated (Step 5), forming the complete actual memory
address with which the desired information becomes accessible
(Step 6).

Heuristic replacement algorithms
For a particular problem program, the performance behavior of
a virtual storage computer is determined by memory and block
sizes and by the nature of the replacement algorithm. Block
size and memory size, being obvious parameters, require no further
discussion. Replacement algorithms, however, deserve analysis
because they are based on a variety of assumptions and design
considerations.

As previously mentioned, the replacement algorithm deter-
mines WhICh block to push whenever space is needed in memory.
To minimize the number of replacements, we attempt to first
replace those blocks that have the lowest probability of being
used again. Conversely, we try to retain those blocks that have
a good likelihood of being used again in the near future. To study
the replacement behavior, it is sufficient to examine the problem
program's sequence of address references.

When the need for replacement arises, usually no information
is available about subsequent references. Since it is not possible

to delay the replacement decision until sufficient information for
all optimal solution is attainable, we must rely on the previous
distribution of references or assume randomness.

Theoretically, the best replacement pushes a "dead" block,
i.e., a block no longer needed by the program run. The worst
replacement occurs when a block is referenced immediately after
being pushed.

Although a wide variety of possible replacement algorithms
exists, they can be grouped into three main classes:

• Class l-~It is assumed that all blocks are equally likely to
be referenced at any time. The replacement algorithm is not
based on information about memory usage.

• Class 2-BlockR are classified by the history of their most recent
use in memory. The replacement algorithm uses corresponding
information.

• Class 3-Blocks are classified by the history of their absence
and presence in memory. Information is recorded about all
blocks of the entire program.

As a useful benchmark for comparison purposes, we first
develop a probabilistic replacement model. For this purpose, we
make the primitive assumption that references occur at random,
i.e., evenly distributed over the range of all program blocks.
Under this assumption, historical information is irrelevant, and
the use of any specific replacement rule does not ensure any
relative advantage. Therefore, WI" might as well choose a simple,
random replacement scheme in building the probabilistic model.
This scheme (let us call it HAND) chooses the block to be pushed
at replacement time at random over the range of all blocks in
memory.

To find the efficiency of HAND, it suffices to determine the
probability of a wrong decision when using RAND. Let 8 be the
number of blocks in the problem program. Then the probability
of hitting a particular block at any address reference time is lis.
Let e be the number of blocks in memory. Then the probability
of referencing a block in memory is cis, and the probability of
a replacement is (8 A reference to a block already in
memory can be considered a repetition because at least one previous
reference must have occurred (when the block was pulled). From
the above expressions, we can deduce that the ratio of repetitions
to replacements is c).

For the set of all problem program blocks, there is-at any
given time-a set R of blocks that were pushed to make room
for a Hew set of blocks in memory. After the initial loading period
in a run, each block in memory is associated with a block in R.
However, not all blocks in R are necessarily in external storage;
a block does not lose its membership in R when referenced and
pulled again. Furthermore, a block may be pushed more than
once into R by distinct blocks in memory. Of course, according
to the above definition, a given block loses membership in R

STUDY OF REPLACEMENT ALGORITHMS

probabilistic
model

81

Figure 2 Block pairs of a prob-
abilistic model

BLOCKS
IN
MEMORY

I I

tj
OLDEST
R BLOCK

1

SET R OF 2
BLOCKS
IN
EXTERNAL 3
STORAGE

I I

b

OTHER
BLOCKS
IN;::':::'8

REPLACEMENT
LINKS OF
BLOCK PAIRS

AREA OF
INTEREST

as soon as its associate (the block in memory that pushed the
given block) is itself pushed out of memory.

Equipped with these definitions, we now examine the possibility
of poor replacement decisions. Obviously, a reference to a block
in memory does not reveal a previous bad choice of replacement,
since the required block was left in memory where it is now needed.
Also, reference to a non-R block in external storage does not
indicate a previous poor decision, since the block has not recently
been pushed. However, a previous poor replacement decision may
be revealed by a reference to a recently replaced block (a block
in R). Thus, in studying misguided replacement decisions, we
can limit the investigation to references to blocks in R.

As a first approximation for our calculations, we assume that
there are c distinct blocks in R, i.e., the complete set R is in
external storage. Then we can pair the blocks in R with their
associates in memory. We order these pairs in the same order
in which they are being formed-the first replacement producing
the oldest pair, the next replacement the next younger pair, etc.
This is illustrated in Figure 2.

A reference to the oldest block in R does not reveal a previous
poor replacement choice, because the block's associate is-by
definition-the oldest block in memory; hence, none of the other
blocks now in memory could have been considered as an alternate
choice.

A reference to any younger block in R indicates a previous
poor choice if at least one of the blocks now in memory has not
been referenced since the replacement under consideration. (Act-
ually, it is sufficient to check merely those blocks in memory
that are older than the appropriate associate, because all younger
blocks were pulled into memory later than the associate and
referenced at that time.) If there is such a non-referenced block
in memory, it would have been better to replace that block rather
than the block in R under consideration, thus avoiding one pull
operation.

We can conclude that there are c - 1 blocks in R to which
a reference can reveal a possible previous bad choice. This area
of interest to us is shown in Figure 2. For the ith such element,
the probability that there has been at least one better candidate is

where

k; = (c - i) _c_
8 - C

and 1 - 1/c is the probability that a particular block in memory
has not been referenced by a repetition; k, is the number of
repetitions since the replacement of the ith block (the oldest
being the Oth block). For the ith block, there were i possible
better block candidates; hence the exponent i. Since there are

82 L. A. BELADY

8 - c blocks to which a reference causes a replacement, the
probability that-at replacement time-a previous bad choice
shows up is

(c - 1) - E[1 - (1
.~1

8 - C

still assuming that R consists of e distinct blocks.
Actually, the number of distinct blocks in R is reduced if one

of its blocks is pulled again, even though that block does not
lose its membership in R. Such a block may become a duplicate
block of R if it is pushed again. Assuming i 2: 1, the probability
that a block in R also appears in memory or has at least one higher-
order duplicate in R is 1/(8 c) for one single replacement.
Hence 1 - 1/(8 - c) is the probability that the block in R is
not pulled again. For the ith block in R (1 ::::; i < c - 1), the
probability of again being pulled during its most recent presence
in R is

(
1)(O-U-;

1---
8 - C

The (c - l)th block of R certainly exists and has at most only
lower-order duplicates. With this, we can refine our formula for
the probability of choosing a wrong block for replacement to

c-2 { [(l)!C/IS-Cl](C-O]i}(1I: 1- 1- 1-- 1-
w = i-1 C 8 -

8 - C

Conversely, the probability of being right is (1 - w), which is
the efficiency of any replacement algorithm processing a random
sequence of vsc references. For a length l of the random string,
the optimal replacement scheme MIN discussed later in this paper
would-over a long period-generate

-c (1 - w)
8

replacements, where (8 - c)!s is the probability of referencing
a block not in memory. For given sand c (8 > c), MIN could
optimize the random reference string to have a replacement for
only every jth reference, where

j = 8 - c (1 _ w)
8

Figure 3 is a family of curves of w values, each curve computed
for fixed c and steps of sic. In spite of our primitive assumption
that the references are at random over s, it is still interesting
to see the tendencies. By increasing sic (larger programs relative
to memory capacity), w decreases and the efficiency increases.
In other words, RAND does a reasonably good job if the problem

Figure 3 Efficiency values of a
probabilistic model

3 -

05 1.0
EFFICIENCY (1-- w)_

STUDY Ot' RJ';PLACI';JI"ll<iNT ALGORITHMS 8:)

class 1
algorithms

program must be "squeezed" into a relatively much smaller
memory. By increasing c and keeping sic constant, the efficiency
goes down.

The above probabilistic model assures us that RAND gives
reasonably consistent results: with large s/c, the high relative
frequency of replacements is somewhat compensated by a better
efficiency; with small sic, this frequency is low anyway. This is
the justification for RAND, which is the most representative
member in Class 1 of the replacement algorithms because it
does not use any special information-it has a static rule. Such
static rules can be justified by the random-reference assump-
tion (in which case they are as good or bad as any other rule);
however, it is hard to imagine their usefulness while consider-
ing true program behavior as described later. Another Class-l
algorithm, called FIFO (first in, first out), has been investigated.
FIleO always replaces the block having spent thc longest time
in memory. The strongest argument for FIFO is the fact that it is
easier to step a cyclic counter than to generate a random number.
As to its logical justification, the notion of locality should first
be introduced.

In our primitive model, references are uniformly distributed
over the range of all problem program blocks. This assumption
is certainly not true for a large collection of possible programs;
the number of references to memory between two successive
replacements is actually high. Suppose now that, for a given
program section, we let f denote the number of repetitions between
two successive replacements. Now increase c to c + .1; then f
also increases, say by o. Calling e and c + .1 localities of the
program, both starting at the same point, f and f + (j express
the respective lifetimes of these localities. Now if

o c + .1
~--

f c

we can assume that the primitive random assumption holds.
However, if

L:+~» c + .1
f c

two possibilities exist: either the proportion of references to the
additional .1 blocks was relatively high, or the additional 0 repeti-
tions were distributed roughly over all c + .1 blocks. Thus, in
the case of inequality, we cannot assume with confidence that
the references are uniformly distributed.

The idea behind FIFO is this switching from one locality to
another, at which time a certain block is abandoned and another
block is picked up for a new interlude of c block replacements.
It is hoped that the probability of the oldest block in memory
being the abandoned block exceeds l/e.

In Class-2 replacement algorithms. one hopes to improve re-

~4 L. A. m;LAllY

placement decisions by anticipating future references on the basis
of previous references. We try to improve the techniques of FIFO,

which selects the blocks according to their age in memory, but
does not provide information about the distribution of references.

The idea is to dynamically order the blocks in memory accord-
ing to the sequence of references to them. When a replacement
becomes necessary, we replace the block to which reference has
not been made for the longest time. We hope that the fact that
this block has not been needed during the recent past indicates
that it will not be referenced in the near future. This is a significant
refinement relative to FIFO, since now frequency of use rather
than stay in memory is the decisive factor.

The dynamic reordering of all blocks in memory may be a
costly procedure; moreover, we are not particularly interested
in the entire order. Of interest, rather, is a split of blocks into
two subsets; the one to which recent references have occurred
and the other to which no recent reference has been made. There
is a relatively easy way to facilitate the split: any time a reference
is made to a block, a status bit (which we call the lip bit") is
set to 1 for the particular block. For pushes, unmarked blocks
(for which P is 0) are preferred. However, it may happen that the
set of unmarked blocks vanishes; at this instant, all P bits are
reset to 0, except the just-marked block, and the procedure starts
afresh. Variation in the relative size of each subset resembles a
sawtooth function of time. Because on the average there is more
than one element in the unmarked set, an additional subrule is
needed to pick a specific block from the set. Subrule variations
can easily lead to a wide variety of replacement algorithms, all
based on the idea of marking references.

Class-2 algorithms can be justified by the following reasoning.
All blocks encountered in a program can be divided, very roughly,
into two main groups. The first group is characterized by high-
frequency usage; most of its blocks contain program loops. The
second group contains blocks used with relatively low frequency
(initializing programs, low-frequency data blocks, sometimes I/O

or other service routines). Using a Class-2 replacement algorithm,
one may hope that mostly blocks of the second group will be
pushed; RAND or FIFO usually do not justify such hope.

It is convenient to introduce another status bit, the A bit,
which is used to mark whether the content of a block has changed
during the block's most recent stay in memory. In contrast to
P bits, A bits are not resettable by the replacement algorithm.
We refer to the P and A status bits in this (P,A) order; e.g.,
(1,0) indicates that a block has been referenced one or more
times, but that the block content has not been changed.

For simulation purposes, the following Class-2 algorithms were
chosen as reasonably distinct and sufficiently representative of
parameter influences (block and memory sizes).

8-3: Blocks in memory are classified in subsets according to
(P,A) values (0,0), (0,1), (1,0), and (1,1); this order is significant.

F:TUDY OF HEPLACEMENT ALGOHI'J'HMS

class 2
algorithms

85

class 3
algorithms

general
remarks

principles

86

At replacement time, P bits are reset only if all of them are
found to be 1. A block is chosen at random from the lowest order
(leftmost) non-empty (P,A) subset.

AR-I: Same as S-3, but the reset occurs immediately and auto-
matically whenever the last P bit is set to 1. This implies that
the (0,0) and (0,1) subsets are never empty at the same time.

T: Same as AR-I, but instead of choosing a block at random
from the relevant subset, a sequential search is started from the
last-replaced block.

ML: Same as AR-I, but ignoring the A bit.
LT: Chooses the block to which no reference has been made

for the longest time. No status bits are used; instead, all blocks
are dynamically reordered.

Class-3 replacement algorithms represent an extension of the
Class-2 algorithms. Dynamic information is kept about blocks
in external storage as well as in memory. Here, for a typical
algorithm, we may refer to the one used on the Ferranti Atlas."
The ATLAS algorithm features a buffer block-an empty memory
block that permits a pull without waiting for the corresponding
push. Because the buffer leaves only c - 1 usable blocks in
memory, the buffer may-for very low c-have a significant
deteriorating influence on replacement efficiency. Only the pub-
lished version of the ATLAS algorithm was simulated, and no
other Class-3 algorithms were postulated.

The algorithms described herein are meant to typify rather
than exhaust the set of all algorithms that try to anticipate
future references by observing summary information on past
references. Some proposals, suggesting elaborate age-measuring
schemes using digital counters or electrical analogs, are not
treated here.

Optfmal replacement algorithm
All the replacement algorithms discussed thus far attempt to
minimize the number of block replacements. However, none of
these algorithms can reach the actual optimum because at push
time nothing is known about the subsequent block references.
For an optimal replacement algorithm, which must be based on
such information, the necessary complete sequence of block refer-
ences can be supplied by a pre-run of the program to be used.
Although this is impractical for most applications, an optimal
replacement algorithm is of value for system study purposes.
Such an algorithm, let us call it MIN, is described after an introduc-
tion to the underlying principles.

The optimal solution can be found by storing the program's
entire sequence of references and then working backward to re-
construct a minimum-replacement sequence. This is a two-pass
job; moreover, an excessive number of tapes is necessary to store
the sequence for a long program. Fortunately, the amount of
information to be stored can be reduced. First of all, it suffices

to store reference information by block rather than by word.
Furthermore, as long as the memory is not entirely filled, a
pulled block can be assigned to any free location, no replacement
decision is necessary, and information need not be recorded. How-
ever, once the memory becomes full, information must be collected.
When another block in external storage is then referenced and
must be pulled, a decision delay starts because no block is an
obvious push candidate. However, if a block in memory is now
referenced (previously defined as a repetition), this block should
be kept in memory and is therefore temporarily disqualified as
a push candidate, thus reducing the number of candidates. When
c - 1 blocks in memory have been disqualified, uncertainty
decreases to zero because only one block remains as a push candi-
date. Thus, we can now make the delayed push decision; we know
which block should have been pushed to make room for the new
pull. Together with the new pull, the c - 1 disqualified blocks
form a complete set of c blocks that define a new memory state.

The above case assumes that the delayed push decision can
be made before a second pull is necessary. In general, however,
not enough repetitions occur between two pulls to make the
decision that early. Then, the decision must be further delayed
while we continue to investigate the sequence of program refer-
ences as explained below. Usually, many push decisions are being
delayed at the same time because each new pull requires another
push. The maximum decision delay ends with the program run;
usually, however, the delay terminates much earlier. If not enough
repetitions have occurred by that time, the program picks blocks
for replacement in a simple manner-either repeatedly from a
relatively small number of blocks, or by straight-line sequencing.

The MIN algorithm, applicable to the general case of many
delayed push decisions, is based on the elimination of complete
sets as push candidates. Whenever a complete set exists between
consecutive pulls, a new memory state has been defined and all
remaining blocks are pushed. This is now explained in detail.

In processing the string of block references for a given pro-
gram, pulls are numbered consecutively by MIN. Let p denote
the integer that identifies the most recent pull and hold p in
the current register. Whenever a block is referenced, its associated
index-stored in a table and updated by MIN-is set to p. For
example, if Blocks A through E are referenced and pulled, their
respective index values are 1 through 5 (assuming an empty
memory to start with); if Blocks Band C are now referenced
again, their index values are both changed to 5, not to 6 and 7.
Thus, at this point of reference, blocks 2, 3, and 5 have the same
index value. This is shown in Column 5 of Table 1.

Assuming c = 3 for our example, we now have a complete
set for a new memory state. For explanatory purposes only, the
indices of pulls and repetitions (including blocks saved for later
repetition) are encircled in Table 1. Going from left to right
in the table, a complete set is defined whenever c encircled index

STUDY OF REPLACEMENT ALGORITHMS

MIN
algorithm

87

MIN
process

88

Table 1 Index settings for MIN example

Current-register settings

l ~ 1
0 1 2 3 4 5 6 7 8 9

Block A 0 CD 1 1 1* 1* 1* 0 7 7
B 0 0 ® ® ® ® ® 0 7 7
C 0 u 0 ® ® ® 5* 5* 5* 5*
D 0 0 0 0 @ 4* 4* 4* 4* ®
E 0 0 0 0 0 ® 5 5* 5* 5*
F 0 0 0 0 0 0 ® ® ® ®
G 0 0 0 0 0 0 0 0 ® 8

Assumption: c = 3
~ complete sets
• decision points

* pushed blocks

values appear in a column.
We say that we have reached a decision point when sufficient

information has become available for one or more previously
delayed push decisions (so that a group of blocks can be pushed).
At that point, a complete register is increased to the highest index
value of the latest complete set. In our example, we have now
reached such a decision point and therefore step the complete
register from 1 to 5. Any block having a lower index than that
of the defined complete set is pushed and can reappear in memory
only by pull. The pushes occur in ascending order with respect
to the index values of the blocks. In our example, Blocks 1 and 4
should have been pushed at current-register settings 4 and 5,
respectively. Pushed blocks are indicated in Table 1 by asterisks.
Since pushed blocks are not in memory, it is now apparent that
the table agrees with the actual memory state in that actually
no more than c blocks are in memory at anyone time.

In the general case, a complete set frequently exists before
the decision point has been reached. However, this is not apparent
at that time, and the set cannot be defined until we have arrived
at the decision point. This is illustrated in Columns 6 through 9
of Table 1. Here, we do not reach the decision point before the
reference to Block F in column 9, although a complete set is
then found in Column 7. In this case, the complete register is
stepped from fi to 7. If several complete sets are defined at any
one decision point, only the latest set is of interest. This happened
at the first decision point of our example.

The actual MIN process (for c > 1) is now described. Ini-
tially, all block index values and the current register are reset,
and the complete counter is set to 1. Note that the actual process
keeps only the current index value for each block; thus, for our

L. A. BELADY

example, the table would actually show only the latest of the
columns in Table 1.

Step 1. Pick the next block reference and check the index of
the corresponding block in the table. If the block index is lower
than the complete register, increase the current register by one,
set the block's index equal to the current register and go back
to the beginning of Step 1. If the index is equal to the current
register, go back to the beginning of Step 1. If the index is lower
than the current register but not lower than the complete register,
set the index equal to the current register, set the temporary
register equal to the current register, reset the counter to zero
and go to Step 2.

Step 2. Add to the counter the number of blocks having an index
equal to the temporary register. If the content of the counter
is equal to c, or if the temporary register is equal to the complete
register, set the complete register equal to the temporary register
and go back to Step 1. If the content of the counter is less than c,
decrease the content of the counter by 1, decrease the temporary
register by 1 and go back to the beginning of Step 2.

After the last reference, the current register shows the minimum
number of pulls required, If. For s > c, the number of pushes
is k - c, discounting c inputs for the initial load of the memory.
For s ~ c, no pushes occur.

It is possible for MIN to mark a block in memory as "active"
whenever its information content has been changed In this
application a memory block selected for replacement is pushed
only if active; otherwise it is simply overwritten.

In contrast to the previously described regular MIN, which
minimizes only the number of pulls, a special version of MIN min-
imizes the sum of all pulls and pushes." Since in some rare cases,
the elimination of one or more pushes by overwriting may later
necessitate an extra pull, the number of actual pulls may slightly
exceed that of the regular MIN.

Both versions of the MIN algorithms are also capable of de-
fining the sequence of blocks to be pushed. This would be done
during the processing of the program's reference sequence. When-
ever the complete register is increased, all blocks having lower
index values than this register are collected in ascending order
and form the sequence of pushes. In other words, MIN is now
a compression box with the reference sequence as input and a
replacement sequence as output.

MIN can be used for general system studies and specifically
for an investigation of the heuristic replacement algorithms pre-
sented earlier. We define replacement efficiency as the ratio of
MIN pulls to the pulls generated by a particular algorithm. There-
fore, the efficiency of any algorithm is non-zero and never exceeds
I-the efficiency of MIN.

STUDY OF REPLACEMENT ALGORITHMS

special
version

89

System sJmulatlon
It is obvious that the behavior (running time, ete.) of a VBe
machine depends upon the problem programs using it. Con-
versely, a program run is influenced by the VBe. Although VBe
machines and programs specifically written for them are presently
scarce, system behavior can be studied by simulation.

Given an IBl\'! 7094 and a specifio problem program written
for it, we assume for simulation purposes that the memory is too
small for the program's requirements. This means that whenever
the program needs information that is by assumption not in
memory but in "external" storage, V8e activity is necessary.
Each simulated block replacement is counted as part of the
sequence pattern we are looking for. The counting is continued
until all memory references have been considered. The final count
gives the number of block replacements necessary to run the
specific program in the hypothetical machine. Since usage of
different replacement algorithms stimulates different sequence
counts, the number of replacements is influenced by the algorithm
used. By varying both design parameters (block size and memory
size) as well as the replacement algorithm, a three-dimensional
response surface can be constructed.

The tool for this simulation work is a family of programs
called 81M (Statistical Interpretive Monitor)." 81M is capable of
executing 7090/91 object programs by handling the latter as data
and reproducing a program's sequence of references. This sequence,
in turn, is an input to a replacement algorithm that determines
the block replacement sequence.

The simulation procedure starts with decoding of the first
executable instruction of the object program to be tested. A
CONVERT instruction is used to transfer control to the proper
section of 81M which-depending upon the word being tested-
changes the contents of the simulated registers, computes the
virtual address, or executes a load/store. A program counter plays
the role of an instruction counter for the problem program being
tested. A simulated branch, for example, changes the program
counter. By defining some artificial constraints on the sequence
of instruction and operand references, it is easy to keep track
of different events, because 81M has control and can enter statistics-
gathering routines at predefined points. One SIM program examines
at each reference the location of the word referenced-whether
already in memory or still in external storage. For non-trivial
results, the simulated memory should of course be smaller than
that of the machine being used. Figure 4 shows a block diagram
of SIM.

SJmulation results
The following is a summary and evaluation of 8Il\'! run outputs.
Sample programs for simulation were picked at random; some of
them were hand-coded, others written in FORTRAN. Almost all

90 L. A. BELADY

Figure 4 Non-detailed block diagram af SIM

REFERENCE

ACTIVITY

REFERENCE

nON REFERENCl

liON TYPE

RLAP

I I INITIALIZATION SET I ~ EDIT STATISTICS1
I

PC TO lST INSTR. OF PP

I
-t

I 1
I FETCH PC

SUBPROG. I INDIRECTLY INSTRUC,
I

,,
SUBPROG. ,

I >-- CPU·OVE
I

I
I

I
I I

I I F9 DECODE r /
I I INSTRUCTION INSTRUC

I I
II I

I I

II I
OPERAND

SUBPROG. I n r-I
I

ICOMPUTE I INDIRECTEFFECTIVE ADDRESS INDIRECT
ADDRESS

I L
I

I
OPERAND

....-''-

I EXECUTE INSTR.
DATA UPDATE

I SIMULATED
REGISTERS

'- ---'
I

I
I ~-H STEP CLOCK TIMING

I
I/O -i-- EXEC.

CHANNELS I/O

I I UPDATE PC

I
CHANNEL

---.....~ DATA FLOW

----.. CONTROL FLOW

PP-PROBLEM PROGRAM

PC-PROGRAM COUNTER

ANY REFERENCE

RETURN

STUDY OF REPLACEMENT ALGORITHMS 91

Figure 5 Typical VSC memory
space saving

0.4 3~2:----:6L4-:-:12C:-8 -2,.LS6'---=S.L12-10---l24

8LOCK size (IN WOROS)_

of them are sufficiently long to justify confidence iu tlle significance
and applicability of their respective results. A brief description
of the sample programs is listed in the Appendix. As in any
simulation, the number of samples represents a compromise
between statistical confidence and study costs; the results are
reasonably uniform and can therefore be considered satisfactory.

The simulation results contain a large amount of useful
information. More evaluation and plotting is possible, and future
behavior studies could be based on the results presented here.
The following figures and tables represent a high degree of data
compression; they show only the most important results and are
used as a basis for the following evaluations.

Depending upon the associated data set, some program paths
and buffer areas are bypassed and never used in a particular run;
the program could produce the same results by loading only the
information actually used. Provided that the change in instruction
sequencing and data referencing is taken care of, the program
could run in a smaller memory than the one originally claimed.
This is true for vsc which pulls blocks only if and when needed.
In addition to the words actually used, these blocks include,
of course, unused words that happen to be in the blocks. Since
these words-whether actually used or not-are affected by pulls
and use up memory space, we call them affected words. In contrast,
unaffected words are in blocks not pulled during a particular
program run. In similar manner, we speak about unaffected in-
formation, program areas, and data areas.

Since vsc brings only affected words into memory, this means
a saving of memory space in comparison to conventional com-
puters, which must fit the entire program into memory. The
tendency observed in the vsc results of sample program A, shown
in Figure 5, has been found typical for any problem program.
It shows that the number of words affected during a particular
program run decreases with decreasing block size. The use of
medium block sizes (e.g., 25(; words) generally results in a 20
to 30 percent storage saving.

Although the main objective of vsc is convenient address-
ing for oversized programs, the saving of memory space is an
important by-product. This by-product is best illustrated by a
program that exceeds memory space and therefore can be run
on a conventional computer only with the help of programmer-
initiated techniques. On a vso, automatic block exchange is ex-
pected during the run between memory and external storage.
However, once initially loaded, the program may not need any
replacement if the number of words affected does not exceed
memory space. Neglecting vsc mapping time, the program behaves
in this case as if on a conventional machine. Block linkages are
supplied by the mapping device and the blocks in memory may
be in any order. This can ease multiprogramming since the space
allocated to a given program need not be contiguous.

Figure 6 shows the memory space requirements of several

PROBLEM PROGRAM A

memory
space
saving

rO

,
0.8

92 L. A. BELADY

Figure 6 VSC memory space saving for five unrelated programs

8
f-

~ 1.25
-c
on

"cc
~

0.75

0.5

'NORMALIZED TO 256 WORDS/BLOCK

512 1024
BLOCK SIZE (IN WOROS)-

1286432
0.25!l:-6-----:l;:--------::L----=-----;;;';:c--------;c::::-----;-;:;~

unrelated programs normalized at 256-word block size. The
tendencies are reasonably consistent. On the average, halving the
block size leads to about ten to fifteen percent space saving.
Some programs behave even more abruptly, at least for certain
block sizes, because program or buffer areas are unaffected (as
defined earlier) in the order of the particular block size considered;
in comparison, when doubling the block size, large unaffected
areas become affected without being used. In general, in the
arbitrary locality of Figure 7, let Ll represent the derivative
dsn/d(log2 b) of the function s, = f(lOg2 b), where b is the block
size, s, is the total number of affected words in the program, and
Ll is the difference between consecutive s, values. If, at a given
value of b, Ll is negligible, the unaffected areas scattered along
the program are-in general-smaller than b; thus, for an increase
in block size to 2b, only small unaffected areas are absorbed by
already affected blocks (and also become affected without being
used). For a large Ll, the unaffected areas scattered along the
program are generally at least as large as b. Thus, for an increase
in block size to 2b, large unaffected areas become affected without
being used.

To avoid ambiguity, programs were reloaded in such a manner
that the lowest address word of the program is the first word
of a block. Other conventions are also conceivable; for example,
each subprogram, routine, or independent data area could start
in a new block.

Figure 8 shows the effect of block structure on a typical problem
program. Each curve representing a given memory size as param-
eter, the ordinate gives the frequency of completely changing
the contents of the memory, and the abscissa reflects the fineness
of block structure (a value 64 means, for example, that the memory

Figure 7 Interpretation of space
saving

1s,

L+-_~
A

r
%b 2b 4b

BLOCK SIZE_

replacement
frequency

STUDY OF REPLACEMENT ALGORITHMS 93

Figure 8 Frequency of full memory IOCld

~,.-.-- 3K

i lO',.-----,--------,,--'----r-

!:;sa.
~ 10'"

10:'

1 -

MEMORY SIZES
(IN WORDS)

2K

4 16

4K

64 256 1024
NUMBER OF BLOCKS IN ME-MORY----'

other
replacement
statistics

94

contains 64 blocks of equal size). The frequency is always propor-
tional to the number of replacements in the problem program.
Considering the logarithmic scale, it is striking how abruptly the
number of replacements is reduced by decreasing the block size.
The curves of different memory sizes differ little; moreover, their
slopes hardly differ at all. A linear approximation based on half
a dozen unrelated programs suggests that the number of block
replacements is proportional to a/ck where a varies considerably
with the individual program and is also a function of the memory
size, and k (although a function of the program) is mostly in
the interval 1.5 < k < 2.5.

The considerable improvement accomplished by finer block
structuring (relatively fewer replacements when more, but smaller,
blocks are used) can only partially be due to the smaller affected
program area itself; this is evident from comparing Figure 8
with Figures 5 and 6. The predominant factor is that more useful
information can be stored in memory, thus is directly accessible,
resulting in a new, extended locality of the program. Neverthe-
less, vsc system efficiency is not necessarily optimized with
minimum block size because the number of entries in the mapping
table may eventually exceed technological feasibilities, and the
effective data rate of external storage depends upon block size.
The latency effect of a drum is evident from the numerical example
of Figure 9, which gives data transmission rates for different block
sizes on a drum. If disks are used, seek time must also be con-
sidered, and very small block sizes become prohibitive.

The work with the MIN algorithm suggests some statistical
measures that may possess significance for future program-be-
havior studies. Recalling the previous description of MIN, let us
define three of the derived statistics: delay in replacement decision

L. A. BELADY

Figure 9 Latency effect of Cl drum

IBM 2301 DRUM

ASSUMPTlONS,
RECORD ACCESS AT RANDOM
5 BYTES PER 7090 ~VORD

1024512256128

100

~
~

":g
f=
0200coo

'"

NUMBER OF BLOCKS 64 32 16 4

(al) , average number of replacements between successive com-
plete sets as defined earlier (.12) , and cumulative frequency of
decision points.

The size of a2 is affected by the distribution of repetitive
references to memory blocks. If the repetitions between replace-
ments extend over the entire memory, d~ consists of only one
block. Another interpretation of .12 views it as a measure of
uncertainty; on the average, .12 is the number of replacement
candidate blocks to which no references have been made between
successive replacements. Hence c - .12 is the local need of the
program before it switches to another locality by causing a new
pull.

Figure 10 shows typical a2 values for a single problem program.
The tendency is for a2 to decrease as block size increases, because
larger areas are affected by repetition references and the degree
of uncertainty is reduced. To a degree, increases in memory size
have a reverse effect. Starting from a small memory, .12 first
increases; but a further increase in memory size changes this
tendency. A possible explanation for this is that the program
has blocks with high repetition frequency, and it changes to
another locality by using some transitional blocks. With an in-
crease in memory size, the increased number of transitional blocks
generally leads to a higher degree of uncertainty. However, beyond
a certain limit, the memory becomes large enough to reduce the
vsc traffic to such a rate that time between replacements becomes
very long and repetitive references cover a large area, hence
reducing the degree of uncertainty.

Figure 11 shows values of f = (.11 + .12)/ (8 - c) for the
same problem program. Clearly, f ::; 1 since the limiting case
exists when all 8 c blocks in external storage have been collected

STUDY OF REPLACEMENT ALGORITHMS 95

Figure 10 Typical.1.2 values for MIN

512 1024
BLOCK SIZE (IN WORDS)-

PROBLEM PROGRAM A

256

4K

MEMORY SIZES
(IN WORDS)

12864

~L2 ----l. -'----- -'- ---L :!!L--.J

30

20

Figure 11 Normalized.1. values for MINro

'U
PROBLEM PROGRAM A

I

::2 0.8

0.6

0.4

0.2

MEMORY SIZES
(IN WORDS)

~-__,8K

"":::::><::5C:::::::====~
6K

__>--__ 4K

4K

512 1024
BLOCK SIZE (IN WORDS)-

25612864

O'- -'- -L ---IL- .L. ---l

32

efficiency

as needed but still no decision is possible. After this point, only
repetitive references can be used to narrow the degree of uncer-
tainty, and t is the percentage of non-memory blocks about which
information should be kept. Again, due to the short replacement
interval, the amount of information to be kept about blocks is
somewhat less for small memories, but does not change very much
with block size.

Figure 12 displays efficiencies of all simulated algorithms for
a typical problem program for three different memory sizes, the
efficiency of an algorithm being related to MIN results.

96 L. A. BELADY

Figure 12 Efficiency of olgorithms for three memory sizes
10

PROBLEM PROGRAM A
fOR 4K MEMORY

y"
.- v\.

~<
~,..--:. .~ ;,,~;

........ AR·1~ S·3 •••••."•••. ---.
~ • ••••••••. tfII' " ~ .

•• ~~_-__,_-- / >c. f/~IYD

-, ~.a.r...-- ~_ __.... h" __' ~~~

""-.. ...<,~ ..~ -»==------~/ »>"
.-.~._ ..--..-"'::._------""" --- -,______~ ~-~..:..-------..",.- "'1;;'"

'._'- .'1;.•..
......

>-o
~
Q 08

"'

0.6

04

02

102451225612864o.,.32=------+.------~=-------::-!-=------..,..J.=-------:~

10,-------r-------~------~------~------~

PROBLEM PROGRAM A
fOR 6K MEMORY

1024O!:,32;:------+.------.,.±::-------,,!,=------..,..J.=-------;-~

1.0,r-------,---------,--------,-------~------~

PROBLEM PROGRAM A
fOR 8K MEMORY

0.8

0.6

0.4

0.2

512 1024
BLOCKSIZE (IN WOROS)__

25612864

O'- -'- ...L. '- -'- -'

32

STUDY OF REPLACEMENT ALGORITHMS 97

First exammmg the two Class-1 algorithms FIFO and RAND,

the results show that RAND is the most uniform and does not
vary much with the two independent parameters (block size and
memory size). RAND efficiencies are about 30 percent, and it is
interesting to observe that this efficiency corresponds to those
s/c values in Figure 3 that are less than 2. This gives some evidence
that references are not randomly distributed over all possible
blocks but rather over some localities. For this particular example
of Figure 12, s/c is actually slightly above 3 in the 4K memory case.

Among the Class-2 algorithms, AR-l and 8-3 exhibit the best
overall efficiency and consistency. The difference between these
algorithms becomes significant for a memory with a few large
blocks, in which case AR-l is consistently superior to 8-3. In this
situation, the P bits are usually set for 8-3, and only the A bits
are informative. With large blocks, the A bits as well are too
often set, and the algorithm degenerates to RAND.

The other Class-2 algorithms generally perform better than
those of Class 1, but not as well as AR-l. The only non-status-bit
algorithm (LT) is the least consistent; although LT is the best
for certain parameter values, its overall efficiency is unpredictable.
I ts efficiency is good for very few memory blocks, where the
degree of uncertainty is already low, and the block to which no
reference occurred for the longest time is frequently the best
replacement candidate.

ATLAS, the only Class-3 algorithm tested, typically does
slightly better than RAND or FIFO. For very large blocks, however,
its performance is poor because the memory always contains an
unused reserve block.

Figure 13 Efficiency bounds of algorithms for a wide range of memory sizes
RAND

~1.x-.EBQ8LEM PROGRAMS

AR·l

f\r~"""..........,------....",.......

--._.~-_._----
LOWER BOUNDS .-- ",-- RANo'.-- ..,'".=...:.==..-====;,:==.-.:::::==;~----0.2

0.4

0.6

°lL
6
---~----,''--------'-----.,-L---___=_":_--__:_:_':c:_---'

98 L. A. BELADY

After testing the various replacement algorithms, RAND, FIFO,

and AR-l were selected as having efficiencies that could justify
implementation (subject to other technical constraints). The first
two have the advantage that updating of memory status involves
only block presence or absence. FIFO is especially simple in that
even a (pseudo) random-number generator is unnecessary. As
pointed out earlier, AR-l needs such a generator because it picks
at random from the subset defined by status bits.

Figure 13 exhibits efficiency bounds of the selected algorithms
for a wide range of memory sizes. The results were obtained using
six problem programs. The superiority of AR-l is clear; its efficiency
is at least 30 percent in all cases. FIFO and RAND are close to each
other; FIFO is preferable because of its simpler implementation;
RAND is interesting because of its simple mathematical formulation.

Computation of the efficiencies refers to the number of pulls
only, and-as mentioned before-each pull mayor may not be
coupled with a push. If A bits are used, it is useful to recall the
special version of MIN that minimizes the sum of pulls and pushes
and to define an adjusted efficiency as the ratio of this sum to
that generated by another algorithm using A bits.

Figure 14 shows the average ratio of pushes to pulls for AR-l

and the regular MIN (using A bits) on the same problem program.
The relative number of pushes increases for larger blocks, because
a change in a single word causes the entire block to become
active, and the probability of at least one change per block is
higher for larger blocks. Note that the push/pull ratio of AR-l

is higher than that of MIN for small blocks, and lower for large
blocks. The latter case can be explained by AR-l'S property to

push/pull
ratio

Figure 14 Typical VSC push/pull ratios

r O

PROBLEM PROGRAM A

0.2

25612B64

OL- ..l-L -"- --'- --l

32

STUDY OF REPLACEMENT ALGORITHMS 99

prefer a nonactive block for replacement. With only a few blocks
in memory, AR-l'S saving in pushes can be significant. This is
also the explanation for the interesting fact that sometimes the
combined push and pull efficiency of AR-l for very large blocks
exceeded unity because MIN minimizes only the pulls. Reruns with
the special version of MIN showed that the minimum of the sum
is such that the adjusted efficiency actually does not exceed
unity. The fact that AR-l produces relatively more pushes than
MIN for very small block sizes suggests that the use of A bits
is not only irrelevant in this case but might even be detrimental
to the efficiency.

Summary connnent
This paper groups replacement algorithms into three major
classes according to their use of relevant information, and develops
an optimal replacement algorithm for system study purposes.
Simulation of typical programs on a postulated virtual-storage
computer reveals the behavior of several algorithms for varying
block and memory sizes.

In most cases, the simulated algorithms generated only two
to three times as many replacements as the theoretical minimum.
The simulated system was found to be sensitive to changes in
block size and memory size. From the viewpoint of replacement
efficiency (which disregards the operational effects of external-
storage access times), small block sizes appear to be preferable.
In spite of the obvious advantages of a large memory, the algo-
rithms achieved reasonable efficiency even for large program-to-
memory ratios.

The results of the study suggest that a good algorithm is one
that strikes a balance between the simplicity of randomness and
the complexity inherent in cumulative information. In some cases,
too much reliance on cumulative information actually resulted
in lower efficiency.

The virtual-storage concept appears to be of special relevance
to time-sharing/multiprogramming environments. Here, it enables
the user to deal with a larger and private virtual storage of his
own, even though the computer's memory is shared with other
users. Because of the capability of loading small program parts
(blocks), the memory can be densely packed with currently needed
information of unrelated programs.

ACKNOWLEDGMENT

The author wishes to express his thanks to R. A. Nelson who
initiated and guided the study described in this paper, and to
Dr. D. Sayre for his helpful suggestions in preparation of the
manuscript.

100 L. A.. BELADY

CITED REFEI~ENCE AND FOOT,:IIO'i'ES

1. The term memoru, as used in this paper, refers only to the direct-access
main storage of It computer,

2. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, "One
level storage system," IRE Transactions on Electronic Computers Ee-H,
No.2, 223-235 (1962).

3. An algorithm applicable to this problem is presented by L. P. Horwitz,
H. lVL Karp, R. E. Miller, and S. Winograd in "Index register allocation,"
ACJl Journal 13, No.1, 43-61 (January 1966).

4. SIM, an experimental program package, was developed by R. A. Nelson of
the IBM Research Division.

Appendix-List of sample programs

,\25 000 ti.i:iK l<'AP

59 000 12.5K b'AP

8 .500 000 IS.OK b'AP

1 900 000 16.5K l<'AP
20 000 000 1.8K FORTRAN
15 000 oon =28 OK

=1 300000 =26.0K

Description

A Integer Programming
(of the class of linear
programming)

B ;,;IMC (a version of 81M,
interpretively exe-
cuting sample
program A)

C Pre-processor (for
FOR'l'RAN language
programs)

D Logical manipulations
on bits (study for
logical connectives)

E Arithmetic translator
(an experimental
compiler module)

F Numerical integration
G WISP (list processor)
H SNOBOL

Number of
executed
instructions

11 000 000

Program size
(without COMMON,
system, and library
routines) Remarks

3.2K l<'ORTRAN

STUllY OF .REPLACEMENT ALGORI'rHM8 101

