53

CONSIDERATIONS IN THE DESIGN OF A COMPUTER
WITH HIGH LOGIC-TO-MEMORY SPEED RATIO

Leon Bleem,* Morris Cohen, * Sigmund Porter *

SUMMARY

Design assumptions of three levels of logic per nancsecond, 300 levels of logic per memory
cycle, and multiprogram simultaneity lead to ¢ machine with 1, Exiremely powerful, efficient and
flexible commend structure; 2. No look-chead, but o *look~cside™ (o small logic speed memory
invisible to the programmer); 3. Accumulaiors and Index Registers which exist logically but not
physically; 4. Muliiple sequence operations with date and program protection; 5. Exiremely flex-
ible and versatile Input-output capability. '

INTRODUCTION

The principal design assumption for the system deseribed in this paper was a high logic speed
fo memory speed ratio. The numbers used were 10 memory cycles per microsecond and 3,000 levels of
logic per microsecond, where a level of legic Is "and®, “or®, “not", ®nor", or the like. Our object-
ive was the development of new machine organizations o thet the various aspecis of these orgeniza-
fions could be analyzed for their efficiency. Total system cost and mechanization were not considera=
tions, although we anticipated that a large expensive machine, perhaps most suitable for use in g
service center would result, We felt that the sest way o utilize the large amount of logic time in
each memory cycle is to have an efficiently encoded, and consequently complex, command struciure
so fhat as much of the logic capability as wes sraciiceble could be used for each memory cycle. This.
commend structure will be described later afier a discussion of principal organization feafures.

LOOK-ASIDE

ne command structure includes vericble instruction length and composition combined with o
ciex addressing scheme which incorporatcs many levels of relative and indirecs addressing in any
comzination, This complex structure made a look-chead tyse of organization infeasible. Another
organizational technique called look-~aside, which appears o supply at least as many benefits as would
lock-chead, wes adopted instead. Lock-cside consists of @ sef of logic speed registers, which are in-
visible to the programmer as they are never eddressed end are not dddressable by the programmer. Thus,
fney are, philosophically, part of the main memory. The conventional memory in this system will
henceforth be called the “store® and the eniire memory, including look-aside, will be referred fo as

““maln memory®,

Each lock-aside register consists besically of three sections: The first of these holds the con-
tenis of a store cell, the second section holds the store address of that cell, and the third is o usage
indicator, (See Figure 1) The store address portions of the look-aside registers are connected to a
comparator which hes the ability to simultanecusly compare the cell addresses in look-aside with the
codress of a celi requested by the system. If the address is in look-cside, an operation on the con-
cnts of that cell may take place immediately without cyciing the store. If there is no matching

cdress, the main store must be accessed, When the store is accessed, the contents of the cell and the
cell address are placed in their respective places in look-aside.

g

5]

* The National Cash Register Company, Electronics Division

n_"){{‘—

Obvicusly, since the number of look-cside registers is not infinite, the placement of a cell
in lock-aside will often require that a cell clrecc’y in Iook—abade dlSplGCCd (As a maiter of fact,
once the machine has operated for a short period of time, Iook ~aside will always be full.) The first
order of business then is o determine which cell is fo be displac d.. The classical method for determ=
ning such things is to have a digital usage c:igonr.‘m which might determine, on the basis of elapsed t
ime since the previous access or rrequency of aecess, which ceil is least lik eiy to be rcqui"ed in the '
mmediate future. This method, unfor una.e!y, may be so time consuming thet it completely destroys
the advantage gained by this orgenization, unless the look-cside word is much lerger than in the
mechine under discussion. Instead an enalog usege indicaicr wes chosen which might, for example,

ist of having a condenser cssociated with each look-aside register, the condenser being chu..ged
ec:c"\ time that register is accessed. Thus, af any given time, the condenser with the lowest voliag I
has essociated with it the regisrer which has not been used feor rhe longest period of iime. A more |

sophisticated recnmquﬁ might involve two condensers per register, one of which is charged to full val-

ue and the other of which is charged with a constant mcrem.ni', ccsch time the register is accessed.

Differences With Other Maechines

The organization of look-aside is reminiscent of organizations using hierarchies of memories
in other .‘aySn.. ms, especially the illiac Il end the Arlas, lock-cside differs from the memory orgeni-
zation of both these systems. [t differs from the Atles in iwo ways: First, Atlas transfers information
in “pages” of 512 contiguous words while look-aside concerns itself with the contents of individual
store cells. (A cuantafive distinction which is grect enough to be gualitative in its effect.) The
second di ‘Fercn & is the method of determining which portion of memory is to be displaced. As stated
cbove look-aside mckes use of an analog usage indicator while Atlas accomplishes the selection of the
*sage ® to be displeced by a programmed digital algorithm. Atles and look-asice have the seme char-
acteristic in that both are invisable o the programmer {in Atlas the clgorithm program is part of the
executive routine, and as such is not the concern of any C'“gx ammer, save the execufive programn*er)

The difference b‘_‘we look-aside end the use of fest regisiers of Illiae Il is that the registers in liliae
Il are not invisable end the progremmer must be concerned with their operation.

- —

Use With Single Program

‘lr

‘thers is one program in the machine, there is nothing for the processor fo do but wait for the
s’rore-cccess o be completed. If is anticipated however, that quite often the required cell will alrecdy
be in ioai(—as:ue, huv.ng found its way there in the manner described cbove. This will be particularly

true in the case of accumulaiors, index registers, shori program loops, or repetitively accessed data.

A simplified exemple of how a look-cside memory would werk en @ machine with conveniioncl
command structure might be useful in illustrating the manner in which a program's execution time may be
reduced., Assume a single address compuier with a commend struciure allowing for the eddressing of
multinle accumulators and index registers. Assume also that these registers are all buried in memory.
Temporarily assume look-eside Is very large; later the effect of small look-aside will be discussed. The
problem is to sum a list of 50 amounis into a single grend total. Each emount is in a field one word in
length.

* The word displaced, rather than replaced, in the store, is used advisedly here. Each look-cside
register is provided with an extra bit, called a change bit, which indicates whether the contents
of the regisier had seen aitered during ifs stay In ioo&-—csxde. Naturally, if the store uses non-
destructive recd or a compleie read-write cycle, an uncliered cell in look-aside need not be |

replaced in the sfore,

Y D

Sy " i
Such a routine might be:

L

i Clear Index Regisier 1

{
{2) Clear Accumulator 1
(3) r- Add Amount into Accumulator 1 using Index Register 1
{4) | Increase Index Register 1 by 1
(5) Compcre contents of Index Register 1 to 50
(&) ~ Test
? = Finished |

After the first instruction, the instruction and then the clecred index register are fo be found

; he second instruction and the cleared accumulator will be found in look-aside follow-
ing the execution of clear accumulator, When the third instruction is executed, it and the first amount
will ke placed in look-cside also. Note that we have clready saved 2 memory accesses since the index
register and accumularor required by instruction (3) are clready in look-aside, Execution of (4) (5) and
(8) bring those insiruciions info look-aside (we cssume *hat the modifier (1) and the comperator (50) cre
contained as literals in the instruction). It cen be seen that once the instructions, eccumulator, and
incex register cre in look-aside, each pass through the lcop will require only one memory access, viz.
that needed to pick up the next amount. This 15 compared fo 9 memory accesses that would have been
reguired per pass for this machine without look-cside; witn live registers for accumulators and index]

i1

registers 3 memory accesses per pass would have been required without look-csice.

Lzt us assume that the look-aside mermory is 7 words long. After execution of command (4) we
find thet ali seven words of look-aside are filled. Their contents is the four instructions, the index
register, the accumulator and the first addend. When insiruction (5) is brought into look-eside, the
cnalog device will show that the cell containing instructicn (1) has been inactive longesi so thet in-
siruciion (5) will displace insiructica (1). Similarly instruction (6) will displace insiruction (2). At
this soint, following the first pass through the routine, it should be noted that look-aside contains the
four instructions of the tight loop, the required index register and accumulator and the cddend. All
this 1s without the knowledge or planning of the programmer. Each subsequent time through the locp,
the addend will be replaced by the next addend because all other cells in lock-aside wiil have been
cctive after the cell containing the cddend had been cetive. It should be noted thai if a non-desiruc-
five types memory is used for the main memory, there is no need to take the time to restore any of the

o=
mem

I
memery cells accessed during the running of this entire routine.

Multi Programming

o

[f there cre multiple programs in the machine, waiting for a store access will cause transfer
nirol to ancther program sequence which has its required instructions and data clready in look-
cside. When this newly activeted program requires a store access, contirol is trensferred cgain, per-
haps o the original progrem, if by this fime it has completed its store access and placement of the
recuired cell contents in look-cside. This automatic transfer of control is particularly meaningful when
incut or output may be required before a program may continue.

o]
“*
0
O

Effect Of Anglog Usage Indicator

I+ is inferesting fo note that because of the use of en analog usage indicator the procedure

which the comouter will follow need not be exactly the seme each time the problem is run. This veri-
csilizy, however, doss not alter the final result, and clthough it will cause different inieractions

U all programs., ri
y speed up a single program with tight
fa multi 1.. program cperafion,
cad to srovice live registers for accumulators, index

, for each prog ricy be in ster of any one time. When o progrem be-
comes cctive, irs acrive cells will cutomatically, witheut effort (or knowledge) of the programmer,
find their way into look-aside and cliow operarions on these cells to procesd at logic speed.

hould be mentioned before r.':ovIng on
look-cside need not be fixed for dif
ii

-

on of the number of lock-aside regi is=

de of the c‘"cve example.’ 1t can be seen that
during each pass through the locp to
accumulator back info look-aside from

(i

S ally, o rccucrton to 6 cells will cause
ed. 'ha loop would in this case require seven
th n woul uired by c\.,nw,n ional machine. A five cell look-

y, more than seven look-aside cells would allow

~

oo

aly the index register. Converse
‘ longer loops to be hendied effi iently, since it is quite cbvious that the number of

words in look-cslce must be af least eqbal to *he number of instructions in the loop plus the numbder of
cccumulators and index registers used by the loop in order to be opfimal lly efficient. The complex com-

a this peper drastically reduces the rumbar

¢ structure of the computer descrised

te i
of instructions recuired in a loop, thus reducing the required size of look-asice. The example prodlem
in

-equired only one simple instruction used in con';unci* on with cn index register cnd
Il become o5vious as The instruction format and index register organizafion are ces-
oi far more complex routines can be exscutec which sﬂfl require only one irsfruci'ion
egister. A great deal more anclysis wil

- 1 Ll j] £
cside can Se sgpecitied 1or H’HS mucn.ne.

ACCUMULATORS AND INDEX REGISTER

e Funciioncl characreristics which distinguish

cells ia memory cre that the former are few in number an

neT many accumulators and index regisrers it is nof necessary w0 encode the data in the most compact

manner, cnd it is cossible to use just a few bifs to spe ccify @ pariicular register. Because they are used
,

oftan, it is dasi TCD.L. for i‘ne o I'IC'.\I’”3 a S"’tOrl uuC.:'(:‘:So not '-:)e CO..’nDl Ha eﬂCGdgd and be ;GDin acces—
2 3 v
at logic speed, and since often

ceumulators and index regisiers from other
are u sed n.icuwt.iy often. Because there cre
G

cible. Look-aside ccuses any cell in memory to appear fo de available
i

ly be aveilable ot logic speed. Hence we have niot

date will remcin in 1ook aside, it will actuc
live registers, but have assigned the first ‘miz‘!y—*wo 128 bit fields of memory (for each
index registers and the next thirty-iwo fo be accumulators. The reason for choosing
128 bits 1o that it is a power of 2, and hence there is a simale relafion between tne register number and
ddress of the data contained in the register. This is useful to a programmer because it aliows
nodify the information in an index register or accumulator in a manner other than that per'mi'u,d
i

- of the index register or accumulator, by addressing this data in the normel manner rather

¥ Sae following section on ''X-Register'’

=5

Although thirty=iwo accumulators and thirty=hwo index regisiers are assigned to each progrem,
the number of each type of register a program cen have can be greater or smaller than thirty=two. In
the description of the command siructure it will be seen rhat any memory area in a program can be used
os either cn accumulaior or an index register, but mere biss will be required to address accumulators or
index registers other then the basic thirty=twe. If a program requires less than thirty-two accumulators

bl

cad thirty=-two index registers the area of memory cssigned fo any unused register can be used for gen=
eral storage.

Scoumuidior Tormar

T

Eech cccurulator will have 120 bits for data groper and eight bifs for a description byte,
which coniains the sign (if any), the descriptica of the data (whether it is decimal or binary, fixed
soint, floating point, etc.), some interrupt criteric, cnd an extension bit, The exvension bit Is used
when 123 bits is not long enough an accumulator for some cariiculer application. If the extension bir
is cae, then the next 128 bit field follewing this accumy lator is tacked on as an extension to the ac-
cumulator. The exiension also has an exiension bit and so we can exiend ca accumu lator indefinitely.

Index Register Format

1 -~

Index registers, like the accumulators, have relatively fixed formet. The sections that com-
prise on index register are the value — 32 Lits, increment -—— 16 bits, repeat counier — 16 bits, re-

fill counter — 16 bits, refill address — 32 bits, increment sign — 1 bit, and formet conirol — 15 bits.

“he value fizld is edded into the eventual address regisier (where the operand address is generated) .

The increment field contains the amount cdded fo the value field when the command requesis that the
value in the index register be incremented. The repeat counter is used to repeat a command witnout re=
cuiring another command fo jump back fo the command which is baing repected. The repeci counter
Loass track of the number of times remaining that @ command is fo be repeated. it can be used for such
thincs o5 conercting tebles of polynomial funcilons with one add command. The refill counter and re-

' con be used when stepping non-unifermly through memory. The format indicares which sec~
index register are to be replaced by deta from the area in memory beginning with the address
‘1l oddress section. This replacement occurs immediately offer the refill counter is counted to

X-REGISTER

Ve have stated in the description of the look-aside that we have multiple sequence conirol.
in ordar to minimize the interference in use of index registers and accumuy lators by the various programs
cnd minimize the complexity necessary in having programs completely floatable, we have what we call

iy-Rosisters®, One X-Register is assigned fo eaca program. The sum of the X-Register and eventual
cddress register is fransferred into the memory selection register. This in effect, causes each cddress
referenced in o particular progrem o be indexed fo a common base address, in addifion to whatever
oiher indexing may be used, Since the accumulciors anc index registers are the sixty-four 128 it fields
with the lowest cddresses in the main store, and each program has ifs own first 64 fields, consequently
cach program hes its own accumutators and index registers. In this machine, the cccumulators and in-
dex registers are not separate live registers, they have no physical location in memory and the actucl

cumber of them is @ function of the number of programs which are being operated upon at a given time.

A further necess.’.-y, since we hav orotect one program from another.

he word may be put by other commands. If the proi
A

he two protection probelms are protectin programs going on a rampage,
and security. A use is less likely to want to have his
programs and he thinks the competitor can recd
or hi to sach memery word 4 addition-
cl < re not included in the 128 ccta
bits end 1 memory wcrd wiil consist of 128 daie biis, four proteciion bits, and nine redun-
dancy bits. The protection number in a memory word Is used in the inferprefation of commands in that
et v
e

rection number is zwo, Then
is cell ere supervisory program, and can cccess d ith o..y protection number.
hey are the c.".:y ommands wmcH can execure instructions which affect grotection bifs. Thus, only

' n number is 1 then commands are from
tants. If the p orcci’tcn number is 2, the cell is un~-
15, the cell is pcrr of an individual operating program.
ating srograms may fransfer or sequence 0-1./ to commands having the seme protection number
o tion numbper 1. ihey may write 0:::\/ in the data portion of cells having the same protection
number, and recd only from the data poriion of cells having rhe same protection number or profection

number 1.
I+ is desircble for the whole library of subroutines to be available to all operating programs.
When ¢ command with protection number | is execcuted, the protection number of the com-

mend which coused the transfer is stored, end as fong cs subroutine commands are being executed
g OTCCdOﬂ number 1) the mechine behaves exacily as if the original protection
Hence, a subroutine mey cffect only working storage or commeands

to %m. operating program which called it up. Any number of opera.: ng programs

: i me subroutine quasi-simultaneously, since a subroutine (except when called up

by fhe suservicory srogram) cannot alter itself. Since subroutines can use and modity index registers
; I =) r

commanas, and saris of commands from the operating program, the lack of self-alteration is not a

proolem.
EVENTUAL ADDRESS REGISTER
A ccn':':-c.[feature of the machine is the "ear" or eventual address register, around which the

. |

whole commend siructure is besed. The ear is used fo compute operand addresses. The command cs
Figure 2 consists of a series of operand groups, each of which is made up of address groups.
‘aforrciion contained in the address groups is combined in the ear, genercting the operand address.
irst eddress group of an operand group states whether or not the operand is found in an accumulator,
hich case there will be no ofher cddress groups required. If this address group does nof specify an
mulator, then we have the option of clearing the whole ear, clearing Iusi' the portion of the ear that
address group refers to, or clea. ing none of the ear. We can then add the address portion (called A)
ess group into the ear, the length of the portion being determined by the 5 bit address]eng.n
of the cddress group. Where in the ear A is added in is determined by the address offset portion of

Because of the indexing features su..opllcd by the ear and the X-Register, it is rarely
ted

a full 32 bir address in A, so the length of A must be specified to minimize wasfe

ddress gro--p
ve

Usually it is not necessary o address fo the bif, so if we are using a byie size which is a power
of 2, then by eliminating least significant bits of an address and specifying the offset, we further com-
r
[

c
ccct the command. To achieve indirect acdressing of fne usual variety, instead of just adding A into

o tha conients of A o fne ear, fnen ine
ar an b e ¢co i mcmcry. The remaining variction Is
to put A piqo the contents of the contents of the.ecr in the ear. In this case, the lengin and offset of
the fialds are in the commend. Having specified ¢ sef of sar modifications, the command must next
state whether or not the ecr computations cre ;v?'?icien:".y ;:;frr:pf;t, to sartially execute the command.
If we perticlly execute, there are fhree opiions ¢ fo w ot fhe co...g..d' of the ecr Is. The content of the
el f i t command. En i'l'.e

ute case, and
st group which is

GENERAL COMMAND STRUCTURE

Ei’-‘; fields in the odd command are desaribed in the order they are scanned by the computer.
ior fields in the add command have been numbered. All of the subfields have never
Ids belong to one of three clesses: comm ind nc[u.,, operand fields, and cddress

ield. Maeny of the fields to be described need not

7—~(5

lusirates each of these types of f

[y

cpsear af ali, most may appear many times.

A command contains command fields (acck of which apseers not more then once in cny given

commanc) cad eny numb oer of operand groups. An operend group centeins operand d fields (ccch appecr-

ing not more then once in any given oparand u-.oup) and eny number of address groups, cach of which

contcins only acdress § (ecun cppecring not more than ence in any given address group). ihe first

field ccntains the comman d de, which describes the basic type of operu.:on performed. "Add" does
L = |

+
not spegify wf".e':'.c the cc.‘di ion is fixed or ric:c:‘-...g or decimal or binary. This cen be specified later
cen be determined by the data operated on. A command programmed using fhe
floating point numbers or fixed poinf n mbers or floating and fixed numbers anc so

e
ification, or explicit festing on the part of the programmer required. Thus, the basic
operation spec?‘:ied oy the co'r'rnund code is modified by p;‘eﬁyes, suffixes, sign alreration bifs, number

of oscrends, cic. The next field cetermines whc. s done in the case of overflow and uncerilow. We
heve o field consisting of cne bit which states whether or not the first operand cddress in the add com-
mand 1s used for an cddend in addition to being used cs ¢ pui-away. Thai is, if we hcv n operand
groups in a glven command, ‘we can either put the sum of the n operands where the Tirst operand was,
or we can pu ¢ the sum of just the last n — 1 ope *:c's where the first one was., Next follows an indef-
inite number of operand groups followed by a 2 bI link or transfer conirol field, which indicates whethe
s-s naxi commend is configuous, a return, or an arbifrary absolute trensfer. If the trensfer control field
5 indicates the last field in the command is the number of an index register used to modify the adcress

At cach operend there is a sign alieration fleld which siates whether the opercad is signed or
unsigned, if the sign should be inverted, or if the sign should be changed cbsoluiely to plus or minus.

Next is a field which specifies whether this cperand | an accumulator (in which Gaas. 1o further ad-
aress groups are in this operand group) or instead, i gru.::\ specifies an index register, or
neither, [Fon gccumu !cro, cr index register is specified, ther also specified wh&rhcr this registe

is cddressed In long nort form. The next field .3 ecr we are going to be decling with.
There ore 5 sars. e hich is add ! as da i5 usec o combut g ooarand addre Nora
iners are o oears; eq ch of w ic s aadressanle as da 1o LSSl (o comzute o n cperana acdarass. hoie
tnat since the ear is not au:oma.rc*‘*ll cleared, it is desirable to have more than one ear. Next follows

£

|
oIfowmg this string is the data type or location field which tells if the data
nt, binary, decime!, cr described with th

' v

-:‘.gin Es ccr"leo’ w.m rh data or is
i

e dai“ . The next field indicarss if
ing fleld of the command. Similarly
d wif'n the data or in the command as
er or not this operand field is the

ieid. The last FteId in an operand grous tel

~ i

the command.

0
wy
e
(&}
U
¢
-1
o
S
50 55
o
EI
51
=
“[

ne general type of address group (illusirared in Figure 2) has been explained in the section on

s
“Eventual Adcress Register", above. The case that has not been described is that in which the cddress
1
f

i
grous calls ocut inde i in thi ise the field following | frol field is the five
grou I ran incex regisier. In inis case ing field following the ecr clear control field is the five

-

it index register number. Next follows a very complex group with @ number of sub-groups which are

used for conirolling the index register. The first sub-group, which Is two bits leng, tells how repect is

fo be handied. In combinciion zero, this portion of the command will not request repeat and the repeat
! i

W

Ter F&TC.:TGG fo is not couni ¢ 's"i‘lf'& Gi‘."‘n_':: tnre COmJiﬂC}TIO!‘.S, T

—s
—

3
count is counted, unfess tis inhibited, s will be descrized. These latter three combinations differ only
in the initicl loading of the repeat counter of the index register. In combingtion two, the first fime we
run farough this commend under the control of e repeat we will copy @ number found later in the com-
mand info the repect counter. In combination three, the address of the number o be put in the repeat
counter is found later in the command, instecd of the number of repects being in the command itself, In
combinciion one, the repect counter is not changed.

In progressing through @ command, when the machine first comes fo a grou p which requests o
repect and which refers to en index register whose repect counter contains @ number greater than one,
¥7.
0D

o, which we will call R, is turned on. The state of R has no effect on groups which do not re-
T R is already on when the machine comes %o ¢ group which requests repecf, counting in

repect counters is inhibited and the value will not be incremented. When the end of the

commcad is reached, R Is turned off and the commend will be repeated if end only if R had bezn on.
Because of the action of R, if in each index n.g...u,r used for repeat in a given cummar:c., the refill and

repeat counters start with the same number and the index register is refilled with the original number,
then the foial number of times that the command will be ex et_mec af @ time is the product of all the num-
n ine repeat counters, These features allow such things as the generation of a table of values of a
poiynomical with one add command.

The next five bits defermine whei‘iﬂ'—‘-“ or niot the ear is cieo.e...’, the value is added fo the ear,

cded to the value, the refill counter counis, and the refill feature is enabled. Refill
urs immediately ofter :-he refill counter is counted fo zero. Next appears the number of repeats,

waich is fo be copied info the repeat counter. This field is present if and only if we have earlier stated
that the number of repeats wiH be found initiclly in the command.

INPUT-OUTRPUT

The last ftem fo be described is input-output. There ere facilities for exir emely flexible con-

of the perigherals. Cne can plug any perisheral info any input-output receptacle on the CPU

=Bl

allowing us to choose cny mix of peria herals. One con use any present day peripheral, end cliowence
was made for future n»ﬁriﬁnem!;«. whose nature is not known at this time. There is no fixed legic directly
attached o each pL:g, but rather a field in memory corresponds to each plug. Consecuently, es far as’
the CPU is concerned, no wire has o fixed function. A given wire might be conirol, might be data,
might be going in, might be coming out. Conseguently whoever writes the supervisory program or ex-
ecutive input-output program must know the nature of the perigherals, and the supsrvisory program must
be told what perigheral is on each plug. Not all of the operations here must be dire ctly programmed in
gned fo a plug, we have a deta byte and a control

-

the vsuel Feshion, however. In the memory fleld cul
byte whi C"‘l, Sveryiime waouipul device requ <o data, are sent ouf ciong the lines from the plug to the
e s clso @ fleld which stetes how rﬂ*r./ c:.“d erch its co'ﬁprise the contrcl end deta
b/.ea. A.mCCl\..a :d with the data byte is a field which 4ells where the next daia byte comes from (or goes
to, In the case of an input device). Thus, ot each peripheral clock time we automatically go to the
plug; copy the data oyr.. oui, which contains new data, copy the conirol byte out, which changes rath-
er rarely, and updete the date byte,

What the progremmer will call the deta byte will not be what the machine designer considers

data, because coniro i E;F rmatien which changes often in o predetermined manner would be siored with

changed in an un pred:mcnln fashion, wiil be changed by progrem control. There is an interrupt
associated with ecch plug, which determines which bits coming beck from the plug should cause

e rup tion of the main progrem, or fo phrase it differently, initiate another program sequence by put-

ting another conirol register into look-aside.

-
—

the deta, end consequently the data byte is enlarged by this factor. Control which is changed only slow-
is

——a

STORE
ADDRESS Vi
HEMORY STACK
; CECODING %

DATA BUFFER REGISTER

I v .’%\
[CONTROL | . ~ |
i LGOK - ASIDE
i o
1 | i | B
! | L2 e I i | sl
. 1 s ot 2 | | — =
—hl_ 1 = ; - -~
=i I : {
— i L3 e : | — -+
T | I T : e &
B L |
; ANALOG ASSOCIATIVE| ADDRESS DATA STCRAGE
USAGE STORAGE
INDICATORS N .
[PUT
aemmmﬁ*l

FICGURE 1i.

RN
it

15 Y
ADDRESS REGISTER l ‘

>y
DATA BUFFER REGISTER

MEMORY (In this example,

store is destructive read).

e —————

oo

Y2 EE DT

ANOYD $$A_AAY NV 40 37dHVK3

] i T

P 5] o -

mnwm,__m.muaf :ﬂ L) utw. S524Ppn

220X |DIMBY ars _._Ew 20 1}iBus| ssaippo ~
[2HU03 ID2[D 4RI

$s01ppb ulio) Bue| 1o 10151601 xapup—

$N0YD ANVUALO -0 SATIWYXE

Y
Jou 1o puoisdo (D7 g
0JNIOXD |BIID -
laquinn funoayy

- ¢ | Y LTI
5591ppo woy Buoy do/pud 10151551 xopuy THTITY
uoipisljo ubig

diBley SSDAPOY - dnolay 5531004 dnolny 5591
5 PRY T 3| PPV 9 PPV
150 puz 1St
L 7% .
ﬂl uoitpao] 1o adi} piop . 1
YiBun| p2iy jo uolnoo| lzquiny Ind
tou 1o pupiado jsn |- 2715 91Aq JO UOD30] SSOUEPD ULIOY mmﬂ 10,/pun 19151804 ®apul N2y
2715 2jAq uoiioloip ublg

195110 §O UOLIDI0|

aNYANOD YV 40 71dWVX3

dnogy pusitedQ dinotgy puniadg dnoigy puniadg
150 puz 151 »

jou 10 puappn printsdo ps1 _IQ.
moh_.cou }zo_m.ﬁu_a_._: ,@ ‘ﬁc_m‘._oh.,.o
Umuou r__u:.u_._.:.m_._—

Jaqunn 1951 Bat eapun)
Pl

[SHIUeD uInial g HulT]

