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Abstract—Scratchpad memories in GPU architectures are employed as software-controlled caches to increase the effective GPU

memory bandwidth. Through the use of well-known optimization techniques, such as privatization and tiling, they are properly

exploited. Typically, they are banked memories which are addressed with amodð2NÞ bank indexing scheme. Although their bandwidth

is fully exploited for linear memory accesses, their performance is burdened when non-unit strides appear in memory access patterns

because they provoke bank conflicts. This paper explores the use of configurable bit-vector and bitwise XOR-based hash functions to

evenly distribute memory addresses of the access patterns over the memory banks, reducing the number of bank conflicts. An

exhaustive, but lightweight, search is used to configure bit-vector hash functions. Bitwise hash functions are configured with heuristics.

Hardware and software implementations are carried out. For the hardware approach, the experimental results show 24 percent

performance speed-up for 22 benchmarks on GPGPU-Sim, a Fermi-like simulator. Bank conflicts are reduced by 96 percent with bit-

vector hash functions, and 97 percent with bitwise hash functions using our proposed Minimum Imbalance Heuristic. The software

approach, using bit-vector hash functions, demonstrates 23 percent speed-up and 96 percent bank conflict reduction on a Fermi GPU,

and 33 percent speed-up and 99 percent bank conflict reduction on a Kepler GPU.

Index Terms—Computer architecture, graphics processing units, memory architecture
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1 INTRODUCTION

IN the last decade, GPU computing has burst into the field
of High Performance Computing as a booming trend,

thanks to the outstanding horsepower of GPUs and the rela-
tive easiness of programming with CUDA and OpenCL.
Many programmers have adopted GPUs to obtain impres-
sive speed-ups on their codes.

One key factor for GPU programmers to achieve such
improvements is taking advantage of the on-chip scratch-
pad memories (i.e., shared memory in CUDA, local memory
in OpenCL), which are used as software-controlled caches.
Optimization techniques such as tiling and privatization [1]
are widely-used to leverage the on-chip memory, in order
to improve data locality and reduce thread contention,
respectively.

Unfortunately, a proper use of these on-chip memories
requires programmers to have a certain level of expertise.
As these are interleaved memories with a power-of-two
number of banks, their bandwidth is only properly
exploited when all the banks are read or written concur-
rently. Thus, avoiding bank conflicts is fundamental to not
hamper the performance. An m-way bank conflict degree
means that m concurrent threads access the same bank.

Consequently, these m accesses are serialized by the
hardware.

Hash functions are used in processors for memory
address mapping to increase the bandwidth of multibank
memories and caches [2], [3]. The main aim of these func-
tions is to spread evenly the memory accesses of a running
application among the memory banks, reducing, in this
way, the bank conflict degree. Choosing the most suitable
hash function for a specific application should take into
account how well the memory references are spread and
the impact of the hash function in the final memory latency.
The selection of bank indexing bits can be performed by
exhaustive search or with heuristics [3].

In this work, we propose the use of configurable hash
functions to access the on-chip scratchpad memories. The
aim is to reduce the number of bank conflicts without
explicit actions from the programmer’s perspective. The
main contributions of this paper are the following:

� A formulation that describes scratchpad memory
access patterns (MAPs) is presented, as well as a
classification that establishes the most common
access patterns.

� Hash functions based on the permutation of memory
bank addressing bits are introduced. Bit-vector and
bitwise XOR operators are added to cope with com-
plex and combined access patterns.

� A new heuristic, the Minimum Imbalance Heuristic
(MIH), has been developed in order to discover
the best configuration of the bitwise hash functions.
It outperforms the Givargis Heuristic [3].

� A study of the hardware cost of the proposed hash
functions is carried out.
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� A framework that applies the proposed hash func-
tions to increase the performance of GPU kernel exe-
cution is proposed. This framework extracts the
access patterns present in the kernel, calculates the
hash function configuration that reduces the bank
conflicts, and reconfigures the addressing hardware.
The use of software hash functions that avoids hard-
ware modifications is also discussed.

� Exhaustive experimentation is accomplished using
22 kernels from the NVIDIA CUDA SDK, Rodinia
and Parboil benchmark suites. The results show that
our approach is able to eliminate 97 percent of the
bank conflicts achieving a geometric mean 24 percent
speed-up.

The rest of the paper is organized as follows. First, a moti-
vational experiment in Section 2 shows that scratchpad
memory bank conflicts can harm performance significantly,
and that removing these conflicts is essential to achieving
peak GPU performance. In Section 3 a memory access pat-
tern classification for scratchpad memory accesses based
on [4], [5] is shown. Four different classes of configurable
hash functions are introduced in Section 4, including an eval-
uation of their hardware costs. Heuristics are used to config-
ure these hash functions, as shown in Section 5. In this
section the new Minimum Imbalance Heuristic is presented.
Section 6 illustrates a framework that applies hash functions
to kernels running on GPU architectures. This framework
proposes the implementation of the calculated hash function
not only in hardware but also in software. The results of the
different hash functions and heuristics are presented in Sec-
tion 7. Relatedwork is discussed in Section 8. Finally, conclu-
sions and futurework are stated in Section 9.

2 MOTIVATION

Through an illustrative experiment, we show in this section
the impact of bank conflicts on two modern GPUs, AMD

Hawaii and NVIDIA K20. We have used a simple microbe-
nchmark to evaluate this impact:

int index = GenIndex(tid, way, stride);

for(int i = 0; i < repeat; i++)

index = ScratchpadMemory[index];

where the function GenIndex returns an index value
calculated as follows:

GenIndexðtid; way; strideÞ ¼ tid � stride if tid < way
tid elsewhere;

�

where tid is the threadID and way is the number of consecu-
tive threads employing a strided access of value stride.

For instance, if way ¼ 4 and stride ¼ 32, 32 consecutive
threads (a warp in NVIDIA devices, or a half-wavefront in
AMD devices) will access the following addresses: [0 32 64
96 4 5 6 . . . 31].

By changing way and stride, we can analyze the impact of
bank conflicts on performance. Fig. 1 (left) shows the normal-
ized execution time on AMD Hawaii. This GPU contains
64 kB of scratchpad memory, called LDS, per compute unit.
The LDS has 32 banks, and each bank is 4 bytes wide. Thus,
power-of-two strides provoke bank conflicts. Fig. 1 (right)
presents the corresponding results of the performance
counterLDSBankConflicts as given byCodeXLprofiler [6].

Fig. 2 shows the same experiments on NVIDIA K20. This
GPU has up to 48 kB of shared memory per streaming mul-
tiprocessor, where there are 32 banks and each bank is
8 bytes wide. This helps to decrease the number of bank
conflicts when accessing 4-byte data elements (e.g., a stride
of 2 does not provoke bank conflicts). On the right, the
results of the performance counter shared_load_replay,
given by CUDA profiler [7], are shown.

In real world benchmarks the performance penalty
caused by bank conflicts not only depends on the conflict
degree, but also on the relative number of scratchpad mem-
ory instructions in the application. For example, in the first

Fig. 1. Execution results on AMD Hawaii for access patterns to scratchpad memory with different bank conflict degrees (m-way) and strides.
(Left) Normalized execution time; (Right) Profiling results.

Fig. 2. Execution results on NVIDIA K20 for access patterns to scratchpad memory with different bank conflict degrees (m-way) and strides.
(Left) Normalized execution time; (Right) Profiling results.
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MRI benchmark from Section 7 (MRI-grid-1) only 7.6 percent
of the instructions are scratchpad memory instructions (194
loads and 141 stores). The average conflict degree is 16.3,
which results in a large potential performance gain when
the bank conflicts are removed. Anther benchmark, convo-
lution (conv-2), has a high number of scratchpad memory
instructions of 35 percent (2,560 loads and 640 stores), but
the average bank conflict degree is only 2.2. Still, perfor-
mance can be improved significantly when these conflicts
are avoided, as shown in the results of Section 7.

As shown above, bank conflicts have a dramatic impact
on performance for both the AMD and the NVIDIA architec-
tures. This encourages us to propose hardware and software
improvements that free programmers from spending their
time and effort in data rearrangements or fancy addressing
schemes that reduce the number of bank conflicts.

3 ACCESS PATTERNS TO SCRATCHPAD MEMORY

In this section, we describe typical memory access patterns to
scratchpad memory that can be found in real-world applica-
tions. We focus on the basic access pattern that generates (at
least) one memory transaction, that is, a collection of
addresses whose size is equal to the number of memory
banks. In current architectures, this size is equal to the number
of threads in awarp (NVIDIA) or in a half-wavefront (AMD).

We will be specially careful with non-unit stride memory
accesses, as they are a typical source of bank conflicts. 1D
strided accesses are defined in [8] as:

shared memory½stride � tx þ offset�; (1)

where stride is the distance between threads with consecu-
tive threadID tx. According to [8], no bank conflicts will
occur if stride is relative prime to the number of banks.

In [4], a memory access vector ~s is expressed as a combi-

nation of a memory access matrix M, an iteration vector ~i,
and an offset vector~o:

~s ¼ M~iþ~o: (2)

The authors apply this notation to loop nests of arbitrary
depth. This notation is adapted in [5] to separate inter-
thread (eMAP

����!
) and intra-thread (iMAP

����!
) components as

follows:

~s ¼ eMAP
����!þ iMAP

����! ¼ M � tid�!þ iMAP
����!

¼ M00 M01

M10 M11

� �
ty

tx

� �
þ iMAP 0

iMAP 1

� �
:

(3)

As it can be seen,M is a 2� 2 matrix, and tid
�!

and iMAP
����!

are vectors. tid
�!

identifies threads in a 2D block (or a work-
group in OpenCL terminology).

In [5] it is assumed that M00, M01, M10, M11 2 f0; 1g.
Thus, they only consider 16 cases of eMAP

����!
, where there are

no non-unit strides. In [4] non-unit stride accesses are
defined with a matrixM whereM11 is a constant C =2 f0; 1g.

In this work, we define our own adaptation of the above
notations. We linearize the notation, since we need to detect
the collection of addresses that are accessed by a warp (or

half-wavefront). For instance, if thread blocks are of size
16� 16, threads with ty ¼ 0 and ty ¼ 1 are mapped to the
same warp. This is not evident if we use a 2D notation.

Let us assume that a 2D shared memory space of size
ROWS � COLS is accessed. Our linearized notation can be
derived from Equation (3) as follows:

~s ¼ M � tid�!þ~o ¼ M00 M01

M10 M11

� �
ty

tx

� �
þ o0

o1

� �
s ¼ ðM00ty þM01tx þ o0ÞCOLS þM10ty þM11tx þ o1;

(4)

where s is now the memory position accessed by the thread

with tid
�! ¼ ðtx; tyÞ

Comparing to Equation (1), we identify a stride
M01COLS þM11. Moreover, if the size of the thread block
in the x dimension (blockDim.x in CUDA) is smaller than
the warp size, we should also consider the stride
M00COLS þM10.

3.1 Memory Access Pattern Classification

Using the notation given above, a classification of the access
patterns can be carried out. Thus four classes of memory
access patterns can be distinguished: linear, stride, block and
random. A description of these classes is given below.

Linear is the most simple class where all memory accesses
in a warp are consecutive,

~s ¼ 0 0
0 1

� �
ty
tx

� �
þ o0

o1

� �
: (5)

Stride is similar to linear, only the accesses are separated
with a stride factor S. Note that linear is a special case of
stridewhere S ¼ 1,

~s ¼ 0 0
0 S

� �
ty
tx

� �
þ o0

o1

� �
: (6)

Block is a class including 2D access pattern where the
threads in a warp have different values for tx and ty. In
some combinations of S1, S2, S3 and S4 multiple accesses
map to the same address (e.g., S1 ¼ S2 ¼ S3 ¼ S4 ¼ 0),

~s ¼ S1 S2

S3 S4

� �
ty
tx

� �
þ o0

o1

� �
: (7)

Random is the last class and contains all cases which can-
not be captured by the other classifications, similar to [4]. In
the access pattern below Zx and Zy are random numbers,

~s ¼ Zy 0
0 Zx

� �
ty
tx

� �
þ o0

o1

� �
: (8)

3.2 Examples of Access Pattern Classifications

The memory access classification will help us to understand
the access patterns that can be found in real-world bench-
marks. Once we know the strides involved, we will be able
to propose bit-vector hash functions as explained in Section
5.1. To illustrate how different memory access patterns
can be expressed, let us consider three widely-known appli-
cations included in the CUDA SDK, matrix transpose,
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reduction and Fast Walsh Transform. Matrix transpose is an
out-of-place matrix transposition, and essentially consists of
loading data from global memory into shared memory, and
then storing the transposed elements from shared memory
to global memory.

3.2.1 Matrix Transpose-Loading

In the loading stage data is written into the scratchpad mem-
ory. tile is a 2D shared memory space of size
TILE DIM � TILE DIM. It is written by one thread block
of the same size.idata is the inputmatrix in globalmemory,
and i is the index of the loop that goes through thematrix.

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

We linearize the access:

~s ¼ 1 0
0 1

� �
ty
tx

� �
þ 0

i

� �
resulting in:

s ¼ ðty þ iÞ � TILE DIM þ tx

¼ ty � TILE DIM þ tx þ i � TILE DIM:

We observe that threads with equal ty and consecutive tx
perform a linear access (unit stride). However, if
blockDim:x < warp size, threads of consecutive ty and equal
tx will have a stride TILE DIM between them. If
TILE DIM ¼ 16 and warp size ¼ 32, the memory access
pattern for warp 0 and i ¼ 0 is:

0, 1, 2, 3, . . ., 15, 16, 17, 18, 19, . . ., 31. No bank conflicts
(with 32 banks).

3.2.2 Matrix Transpose-Storing

In the storing stage data is read from scratchpad memory.
odata is the output matrix in global memory.

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

We linearize the access:

~s ¼ 0 1
1 0

� �
ty
tx

� �
þ �½

resulting in:

s ¼ tx � TILE DIM þ ty þ i:

In this case, the source of conflict is the stride TILE DIM
between threads of consecutive tx and equal ty. The memory
access pattern for warp 0 and i ¼ 0 is:

0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208,
224, 240, 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193,
209, 225, 241. 8-way bank conflict (with 32 banks).

3.2.3 Reduction

If an application does not use 2D memory spaces, the linear-
ization is trivial. For instance, in the reduction kernel
(CUDA SDK):

sdata[2*S*tx] += sdata[2*S*tx + s];

The access on the left is (S is a power-of-two,
1 � S < blockDim:x):

~s ¼ 0 0
0 2 � S
� �

ty
tx

� �
þ 0

0

� �

and consequently:

s ¼ 2 � S � tx:

The stride, i.e., the distance between consecutive threads,
is 2 � S. As S is a power of two, bank conflicts appear (with
32 banks).

3.2.4 Fast Walsh Transform

One interesting case that uses 1D blocks is the Fast Walsh
Transform (CUDA SDK). In this kernel, memory access pat-
terns in shared memory are generated by the following
code:

int lo = pos & (stride-1); // or: pos

int i0 = ((pos - lo) << 2) + lo;

float D0 = s_data[i0];

In this kernel, the variable called stride takes values of
512, 128, 32, 8 and 2 for the default data used by the code
(pos ¼ tx). When the variable stride takes values from
512 to 32 no conflicts appear (with 32 banks) and a regular
access pattern with stride 1 is generated. However, non reg-
ular access patterns are generated for stride values of 8
and 2. For instance, the addresses generated in a warp (in
this example warp 0 from block 0,0) for stride = 8 are:

0, 1, 2 ,3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66,
67, 68, 69, 70, 71, 96,97, 98, 99, 100, 101, 102, 103 (4-way bank
conflict)

In order to adapt this addressing to our notation, we
notice that the first of the above instructions can be seen as
the calculation of the thread index in a set of threads of size
stride. Thus, a warp would be divided into several sub-
warps of size stride. Let us re-write the instructions:

lo = pos - Integer_part_of(pos/stride) *

stride;

i0 = Integer_part_of(pos/stride) * stride*4

+lo;

Notice that Integer_part_of(pos / stride) is the
index of a sub-warp of size stride (we call it sw_index):
i0 = sw_index * stride * 4 + lo;.

A warp divided into sub-warps can be seen as a 2D
collection of threads with sw index ¼ ty and lo ¼ tx:

~s ¼ 4 � stride 0

0 1

� �
ty

tx

� �
þ 0

0

� �
s ¼ 4 � stride � ty þ tx:

Thus, the distance between threads of equal ty and conse-
cutive tx is 1, and the distance between threads of equal tx
and consecutive ty is 4 � stride.

4 HASH FUNCTIONS

The goal of a hash function is to distribute the memory
accesses over the memory banks as evenly as possible. The
memory consists of 2n words, divided over 2m banks. The
simplest hash function selects the least significant bits to
select the memory banks. Although this works well for
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many access patterns, it can cause bank conflicts for other
access patterns. In those cases other bits should be chosen.

Hash functions can be divided into several classes, as
illustrated in Fig. 3 by Vandierendonck and Bosschere [2].
In total there are ð2mÞð2nÞ functions to map n to m bits [2].
Many of these functions are not interesting as they do not
use all available banks or have high computational
requirements.

XOR-based functions are often used as hash functions
because of their relative good hashing properties, especially
for strided memory accesses, and their low computational
cost. According to [2], there are 2nm XOR-based hash func-
tions and Nðn;mÞ unique XOR hash functions, where
Nðn;mÞ is calculated using the following expression:

Nðn;mÞ ¼
Ym
i¼1

2n�iþ1 � 1

2m�iþ1 � 1
: (9)

The first three entries of Table 1 show the number of hash
functions contained in the previous classes and calculate
these number for a specific case: NVIDIA’s Fermi architec-
ture with 48 kB shared memory divided over 32 banks

Testing all (unique) XOR hash functions for any given
access pattern is unfeasible due to the large number of pos-
sible functions. Often a suitable hash function can be deter-
mined based on the access pattern classification. In the
following sections, two approaches to select m out of n bits
performing the bank addressing are presented. The first
one, called bit-vector approach, looks for m consecutive bits
and drastically reduces the search space. The second one,
named bit-wise approach, is more flexible and selects m
individual bits out of n arbitrary positions, generating a
much larger search space.

In addition, both approaches are also combined with an
XOR operator yielding to the four types of hash functions
described below. The hardware costs of the hash functions
is evaluated in in terms of chip-area, power consumption
and increased memory access latency in Section 4.5.

All four types of hash functions are configurable. The best
configuration can be found using either heuristics or an
exhaustive search algorithm, as will be described in Section 5.
An overview of the hash functions and the configuration
method is shown in Table 2.

4.1 Bit-Vector Permutation Hash Function

A common access pattern for a GPU’s scratchpad memory
happens when the accesses of a warp belong to the classes
linear or stride. Then, the stride S can be written as

S ¼ S0 � 2k. The number k indicates which m bits to select
out of the n address bits. In case of the linear access pattern
and k ¼ 0, the selection of the least significant bits ½0 . . .mÞ
as the hash function is the best possible choice. In case
k > 0 the access pattern is classified as stride. The best pos-
sible hash function for a pure strided memory access uses
the address bits ½k . . . kþmÞ. As it can be easily calculated,
the total number of possible bit-vector hash functions is
only n�mþ 1 (see Table 1).

4.2 Bit-Vector XOR Hash Function

The bit-vector XOR hash functions extend the bit-vector per-
mutation hash functions by combining two vectors that con-
sist of m consecutive bits from the word address with an
offset of k1 and k2, respectively. Moreover, the second vector
has a mask such that a selection of bits in this vector can be
made. The bank index is calculated from the word-address
using the formula bank ¼ addr½k1 . . . k1 þm� 	 addr½k2 . . .ð
k2 þm�&maskÞ, which is implemented as:

bank ¼ ðaddr 
 k1Þ ^ ððaddr 
 k2Þ&maskÞ;
This hash function is particularly useful when multiple

strided memory accesses with different strides S occur in
one application, or, more precisely, have different values of

k in S ¼ S0 � 2k. It can be also very appropriate when a block
access pattern is used. For instance, let us consider the mem-
ory access pattern from the Fast Walsh transform in the
CUDA SDK shown below (see also Section 3),

s ¼ 32 0

0 1

� �
ty

tx

� �
þ 0

0

� �
¼ 32 � ty þ tx

with 0 � tx < 8 and 0 � ty < 4:

(10)

Thread index tx uses bits 0-2 of the address, and thread
index ty uses bits 5-6. These bits cannot be captured in a

Fig. 3. Classification of different types of hash functions as given by
Vandierendonck and De Bosschere [2].

TABLE 1
Number of Hash Functions per Class, and an Example for

Mapping n ¼ 14 Address Bits tom ¼ 5 Bank Bits

Class Size Example

All functions ð2mÞð2nÞ 2:3e24660

XOR-based functions 2nm 1:2e21
Unique XOR-based functions Nðn;mÞ—Eq. 9 1:2e14
Bit-vector functions n�mþ 1 10
Bit-vector XOR functions ðn�mþ 1Þ � n � 2m 4;480
Bitwise permutation functions n

m

� �
2;002

Bitwise XOR functions nðnþ1Þ=2
m

� 	
9:7e7

TABLE 2
A Description of the Hash Functions Used in This Work

Along with the Technique Employed for Searching
in the Configuration Space

Bits selection Hash functions Search method

bit-vector
bit-vector perm. Exhaustive
bit-vector XOR Exhaustive

bitwise
bitwise perm. Heuristic: Givargis or MIH
bitwise XOR Heuristic: Givargis or MIH
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single bit-vector, but the bit-vector XOR hash can combine
two vectors to create a better distribution of memory
accesses over the memory banks.

Because bit-vectors are combined, instead of individual
bits, the total number of possible hash functions is limited
to ðn�mþ 1Þ � n � 2m, or 4,480 in case of a Fermi GPU’s
scratchpad memory (see Table 1). Although finding the best
possible hash function requires testing all bit-vector XOR
hash functions, often only a limited set needs to be evalu-
ated, as will be described in Section 5.1.

4.3 Bitwise Permutation Hash Function

In cases where selecting one bit-vector or combining two bit-
vectors is not flexible enough to create a good hash function,
it is also possible to selectm bits individually. The number of
possible choices of m bank addressing bits out of n address

bits is n!
ðn�mÞ!. The order of the selected bits only influences in

which bank the conflicts will occur, not the amount the con-
flicts. Therefore the actual number of choices is given by the

binomial coefficient n
m

� �
or n!

m!ðn�mÞ! (see Table 1).

4.4 Bitwise XOR Hash Function

Instead of choosing individual bits as a hash function, it is
also possible to select pairs of bits which will be combined
using the XOR operation. In the bitwise permutation hash
function m bits were selected out of the n address bits.
In the bitwise XOR hash function the n address bits are
combined into n2 combinations, and m pairs of bits are
selected. Because the XOR operation is commutative, not
all combinations have to be evaluated [9]. Instead of creat-
ing n2 options, only nðnþ 1Þ=2 combinations have to be
evaluated, as shown in the example of Table 3. The
total number of possible bitwise XOR hash functions is
about 97 million for a Fermi GPU’s scratchpad memory
(see Table 1).

4.5 Hardware Design and Evaluation

While a fixed hash function has a negligible latency, the
proposed configurable hash functions’ latency cannot be
ignored. To estimate these latencies the proposed hash func-
tions are implemented in Verilog. Latency, area and power
numbers are obtained using the Cadence Encounter� RTL
Compiler v11.20 and a 40 nm standard cell library. A range
of target clock frequencies is tested to find the best trade-off
between area, power and latency for each hash function, as
shown in Fig. 4. In case the latency obtained is low com-
pared to the GPU’s clock period (�700 ps), the configurable
hash function can be integrated in an existing clock cycle of
the memory access; otherwise each memory access has to be
extended with one more clock cycle to facilitate the hash
function.

All four configurable hash functions are evaluated: bit-
vector permutation, bit-vector XOR, bitwise permutation
and bitwise XOR. The power and area costs for a single
instantiation for these four hash functions are shown in
Figs. 4a and 4b respectively. These figures show the range
of tested clock frequencies (1.5-5 GHz) and the target clock
period just below the target clock frequency. Furthermore,
each bar displays and the achieved latency in each experi-
ment. It can be noticed that the area and power costs
increase for each of the four hash functions as the target
clock frequency increases. For the bit-vector XOR and the
bitwise XOR hash functions the target clock frequencies of
4.5 and 5.0 GHz are not feasible. The minimum latency
required for each of the hash functions is 250 ps. This is a
significant part of the �700 ps of a GPU’s clock cycle. There-
fore we increase the memory access latency by one cycle in
the experiments of Section 7 in case a configurable hash
function is used.

The hash function hardware has to be instantiated for
every bank in the scratchpad memory. An NVIDIA Fermi
GPU has a scratchpad memory consisting of 32 banks in
each of its 16 streaming multiprocessors. In total the power
consumption of the scratchpad memory ranges from 0.1 W
for the bit-vector permutation hash function to 0.5 W for
the bitwise XOR hash function. This is about 0.2 percent of
the total power consumption of an NVIDIA GTX 580. The
corresponding area costs range from 0.2 to 1.1 mm2, as
shown in Table 4.

5 HASH FUNCTION CONFIGURATION

As each kernel can employ different patterns to access
the scratchpad memory, the hash functions described in
Section 4 must be configured per kernel.1 The configuration

TABLE 3
All nðnþ 1Þ=2 Possible XOR Combinations

of 4-Element Vector (a b c d)

a b c d

a a a	 b a	 c a	 d
b b b	 c b	 d
c c c	 d
d d

Fig. 4. Power (a) and area (b) versus latency results for the four proposed
hash functions for a range of target clock frequencies (1.5-5.0 GHz).

1. When multiple kernels are executing concurrently, different hash
functions can be used for different streaming multiprocessors.
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parameters for the bit-vector permutation hash functions are
determined using an exhaustive search algorithm described
in Section 5.1, since the number of options is limited (see
Table 1). The options for the parameters of the bitwise permu-
tation hash functions are much larger, therefore heuristics are
used. Two different heuristics are evaluated: the Givargis
heuristic [3] (GH) and the proposed Minimum Imbalance
Heuristic. The extended hash function types with XOR opera-
tor are configured same as the corresponding permutation-
based types. Although the number of options might also
be large for the bit-vector XOR-based hash functions, we
show at the end of Section 5.1 that this number can be
drastically reduced under certain circumstances, making
the exhaustive search much more affordable.

5.1 Bit-Vector Exhaustive Search Algorithm

The bit-vector permutation hash function requires only one
parameter: k. The number of options for k is very limited
(e.g., only 10 options are possible in the example of Table 1).
The bit-vector XOR hash function requires three parame-
ters: k1, k2 and mask. A bit-vector permutation hash func-
tion can be emulated by selecting k1 ¼ k and mask ¼ 0.
Since every possible bit-vector permutation hash function
can easily be tested, and can also be emulated by a bit-vector
XOR hash function, we only focus on the latter one.

An example of the bit-vector XOR hash function is shown
in Fig. 5, where k1 ¼ 2, k2 ¼ 8 and mask ¼ 7, which results
in a hash function which selects the following bank bits:
b0 ¼ a2 	 a8, b1 ¼ a3 	 a9, b2 ¼ a4 	 a10, b3 ¼ a5 and b4 ¼ a6.

To select the values for k1, k2 and mask every possible
combination of k1, k2 and mask should be explored. In the
example of a Fermi GPU (Table 1) 48 kB of scratchpad mem-
ory is divided over 32 banks. Hence 14 bits are required to
index every word, and 5 bits for every bank. As a result k1
ranges from 0 to 9 to make sure always 5 bits are in the
result, k2 ranges from 0 to 13 because it can consist of only
one bit due to the mask, and mask ranges from 0 to 31
because there are 5 bits used to index the 32 banks. In total
there are 10� 14� 32 ¼ 4;480 combinations to test.

The number of combinations to evaluate can be reduced
by limiting the possible values for k1, k2 andmask. As every

stride S can be written as S ¼ S0 � 2k, the options for k1 can
be limited to the values of k of all strided memory access
patterns encountered. Similarly the most significant bit
(MSB) for every strided memory access pattern is calcu-
lated as MSB ¼ blog2 t� 1ð Þ � Sð Þc, with t the number of
threads in a warp. By taking the minimum value for all k,
and the maximum value for all MSB, the range of k2 can be
limited. Furthermore, values k2 ¼ k1 will not give good
hashing functions and do not have to be tested, since
ax 	 ay ¼ 0 if x ¼ y. For instance, if two different strides
S ¼ 4 and S ¼ 6 appear in the scratchpad memory accesses
of one kernel, k1 can be 2 or 1 respectively. The maximum
MSB is calculated as 7, so that k2 2 ½1; 7�. The options
k1 ¼ k2 ¼ 1 and k1 ¼ k2 ¼ 2 can be discarded, as they will
not give good hashing functions. Taking the various options
for mask into account, the total number of combinations to
evaluate is 188, only 4 percent of the 4,480 possible combina-
tions. In case k is equal for all strides, the algorithm will
select k1 ¼ k and mask ¼ 0 as a simple permutation will
already give the best results.

5.2 Bitwise Search Algorithm Based on Heuristic

As it was previously indicated, the search space size to find
the optimum bitwise hash function configuration can be
very high. Thus, brute-force based methods can take a long
time. To overcome this problem, two heuristics have been
employed. They are presented in this section.

5.2.1 Givargis Heuristic

Givargis introduces in [3] a heuristic to select the best m out
of n address bits to index a cache. The goal is to use the
available cache as fully as possible over the duration of a
program. Therefore all memory accesses of an application
are put in one set, and the heuristic has to find the address
bits to index the cache such that there are as few as possible
collisions in the cache.

In the case of scratchpad memory accesses, we need to
find the best address bits to eliminate bank conflicts within
one access made by one warp. This makes it possible to
apply the heuristic on every warp access pattern separately.
First, the GH is briefly described below (for a full descrip-
tion see Section 2.3 in [3]). Then, an extension is presented
to combine the results of all the warp access patterns to
select the overall best bank addressing bits.

Given a set R of memory references. Such a set could for
example be the addresses accessed by a single warp in a
single instruction. For each bit Ai in the address space a

TABLE 4
Power and Area Costs of the Four Proposed Hash Functions

Compared to an NVIDIA GTX 580 GPU

Hash function Power Area

bit-vector permutation 0.1 W (0.04%) 0.2 mm2 (0.04%)
bit-vector XOR 0.2 W (0.07%) 0.3 mm2 (0.06%)
bitwise permutation 0.3 W (0.1%) 0.5 mm2 (0.1%)
bitwise XOR 0.5 W (0.2%) 1.1 mm2 (0.2%)

Fig. 5. The bit-vector search algorithm selects the best values for k1, k2 andmask, e.g., k1 ¼ 2, k2 ¼ 8 andmask ¼ 7.
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corresponding quality measure Qi is calculated. The quality
measure is a real number ranging from 0 to 1 and is calcu-
lated by taking the ratio of zeros and ones of bit Ai in all
memory addresses in the set R as in the following equation:

Qi ¼ minðZi;OiÞ
maxðZi;OiÞ ; (11)

where Zi and Oi are the number of references having 0 and
1 at bit Ai, respectively.

For each pair of bits ðAi;AjÞ in the address space a corre-
sponding correlation measure Cij is calculated. This correla-
tion is a real number ranging from 0 to 1 and can be
calculated using the following equation:

Cij ¼ minðEij;DijÞ
maxðEij;DijÞ ; (12)

where Eij andDij are the number of references having iden-
tical and different bits at Ai and Aj respectively.

To order and select the bits, which should be used to
index the banks in the memory, the following algorithm is
used by Givargis:

loop:

select Ab = max Q0, Q1, Q2, . . . QM
for each Qi in Q0, Q1, Q2, . . . QM

Qi := Qi x Cbi

halt when all Ai’s are selected

This algorithm repeatedly selects an address bit with the
highest corresponding quality measure and then updates
the quality measures using the correlations. When all bits
are selected in the order from highest to lowest quality the
algorithm stops.

The goal of Givargis [3] was to evenly distribute all mem-
ory accesses of an application over a CPU’s cache. Therefore
all memory accesses are put in one set. In our application
we want to reduce bank conflicts for each memory access
pattern, and a balance must be found in optimizing all
access patterns together. Therefore a set of memory
addresses is created for each warp access pattern, and the
heuristic is used to select the best bank addressing bits for
the combination of these sets.

Let us take two sets of memory addresses, R1 and R2, for
example corresponding with warp access patterns from two
memory accesses in the same application. Ideally both pat-
terns should access the memory banks with the lowest num-
ber of conflicts possible. Therefore the quality and correlation
metrics of each set ofmemory addresses is calculated individ-
ually as described above. The respective quality and correla-

tion measures are called Q1
i , Q

2
i , C

1
ij and C2

ij. The proposed

updated algorithmcombines the qualitymetrics of eachmem-
ory address set using the sum operator (+). It finds the best
bits for indexing the banks in thememory as shown below.

This algorithm repeatedly calculates the combined qual-
ity of all address bits by taking the sum quality value of an
address bits over the different sets of memory addresses.
Then it selects the address bit with the highest combined
quality value and updates the quality value for all address
bits in all sets with their respective correlations.

Example: For a combination of stride=8 and stride=45
this algorithm selects address bits (ordered from highest to

lowest quality): A3; A4; A5; A6; A7f g. For a combination of
stride=8 and stride=13 it selects A3; A4; A6; A5; A7f g.

To use the GH also for the bitwise XOR hash function, all
possible combinations of two address bits are created for
each memory reference, as shown in the example of Table 3.
These combinations are then used as the input bits for the
GH. For each combination a quality measure Qi and a corre-
lation measure Cij can be calculated as described above.

loop:

//calculate the combined quality for each

address bit

for each Qi in

Qi := Q1i + Q2i

select Ab = max Q0, Q1, Q2, . . . QM
for each Q1i in Q10, Q11, Q12, . . . Q1M

Q1i := Q1i x C1bi

for each Q2i in Q20, Q21, Q22, . . . Q2M
Q2i := Q2i x C2bi

halt when all Ai’s are selected

5.2.2 Minimum Imbalance Heuristic

In this section we present a new heuristic, named Minimum
Imbalance Heuristic, that finds the best set of addressing
bits minimizing the number of bank conflicts given a set of
Rmemory references.

Similarly to Givargis, our heuristic sequentially com-
putes the best addressing bits but it introduces two impor-
tant modifications to the previous mentioned heuristic.
First, it employs a measure based on the imbalance of mem-
ory references to select the best addressing bits. Second, a
new addressing bit is chosen taking into account the contri-
bution of previous selected addressing bits.

In our heuristic Pn ¼ ðbn�1; bn�2; . . . ; b0Þ is the ordered
sequence of n previously selected addressing bits. Then, the
calculation of bn (the following selected bit) is carried out as
follows:

bn ¼ argmin
i

imbalance Aið Þð Þ for all Ai =2 Pn; (13)

where imbalance Aið Þ is given by the expression:

imbalance Aið Þ ¼
P2nþ1

j¼0 hiðjÞ � kRk
2nþ1




 



kRk (14)

and hi½j� is the jth bin of a histogram hi that contains the
number of references with addressing bits ðAi; bn�1; . . . ; b0Þ
referencing position j. Notice that a perfect balance of the

kRk references to a set of 2nþ1 histogram bins should result

in kRk
2nþ1 accesses per bin. This quantity is subtracted from the

real number of accesses per bin to calculate the imbalance
per memory position. Finally, the calculated imbalances per
memory position are added to obtain the total imbalance,
which is normalized dividing by the total number of refer-
ences kRk.

As it can be deduced from the previous expressions, the
information employed by our method to select addressing
bits for values of n > 0 (more than one addressing bit) is
much richer than those employed for Givargis as all sets of
addresses referenced by Pj at jth step are considered.

Finally, the Minimum Imbalance Heuristic can be written
as shown below:
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P0= {empty}

for(j=0; j<n; j++)

b_j = min_i(imbalance(Ai, Pj)) or all Ai

not belonging to Pj

Pj+1 = Ab, Pj // New selected bit Ab is

added to the ordered list Pj

endfor

In Fig. 6 an example of the proposed heuristic is shown.
Eight references (kRk ¼ 8) to positions 27, 12, 6, 19, 11, 4, 28
and 3 of a memory organized in eight banks are carried out.
The figure shows the three iterations needed by our heuris-
tic to select the addressing bits employed to address the
memory banks. Consequently, after applying our heuristic
the bank addressing bits are reordered as A4; A3; A0f g.

Like the GH, the MIH calculates the best set of bank
addressing bits for one set of memory references R. Since
we want to reduce bank conflicts for each memory access
pattern in an application, we have to combine the imbalance
values for each set of references to find the overall best pos-
sible set of bank addressing bits. This is achieved by adding
the imbalance values of every memory reference together
(for all address bits Ai =2 Pn), and selecting the bit with
the lowest combined imbalance value. Therefore Eq. (13) is
replaced by Eq. (15),

bn ¼ argmin
i

X
R

imbalance AR
i

� � !

for all AR
i =2 Pn for all memory reference sets R:

(15)

To use the Minimum Imbalance Heuristic also for the bit-
wise XOR hash function, all possible combinations of two
address bits are created for eachmemory reference, as shown
in the example of Table 3. These combinations are then used
as the input bits for theMinimum ImbalanceHeuristic.

6 FRAMEWORK FOR BANK CONFLICT REDUCTION

To test the performance improvements of the proposed
hash functions of Section 4 and the quality of the heuristics
of Section 5, a framework is developed as shown in Fig. 7. It

automatically processes an application’s kernel code, analy-
ses the memory access patterns and configures the pro-
posed hash functions using the aforementioned heuristics.

The first step in the framework is to analyze the kernel
code and determine the hash functions’ parameters. The
memory accesses analysis is done on source code level,
based on techniques developed in [10]. On some occasions
the analysis produces sub-optimal results, for example
because not all memory accesses in a loop are known due to
an unknown loop count. In this case a memory access trace
can be made which is then analyzed. The results of the anal-
ysis are used by the heuristics and search algorithm
described in Section 5 to find the best possible parameters
for each hash function.

The effects of the hardware hash functions on bank con-
flict numbers and execution time are tested using a modi-
fied version of GPGPU-Sim in which the different hash
functions are integrated. The source code of the benchmark
applications is modified by inserting a setup function
before a kernel is launched. This setup function will config-
ure the hash function being tested with the aforementioned
parameters.

The hash functions can also be applied in software in the
kernel code itself. In Section 7.2 we do this by hand with the
aim of presenting a proof of concept, which demonstrates
the benefits of doing it by a compiler. The hash function is
inserted in every shared memory access and is configured
using the same parameters. Only the bit-vector XOR hash is
tested as a software solution, since it gives very good results
(see Section 7) and proves to be a good trade-off between
added address calculation costs and memory access bank
conflict reductions.

7 EXPERIMENTAL RESULTS

The effect of the bit-vector XOR, bitwise permutation and
bitwise XOR hash functions on the number of bank conflicts
and consequently the execution time has been tested on a
number of benchmarks. Most of the benchmarks are taken
from the CUDA SDK 6.0, Rodinia 2.4 [11] and Parboil 2.5
[12]. We added two more benchmarks that can be burdened
by bank conflicts: matrix-scan [13], [14], and FFT [15].

The parameters of the bit-vector XOR hash function are
determined by using the search algorithm described in
Section 5.1. The parameters of the bitwise permutation and
bitwise XOR hash functions are determined using the
Givargis heuristic and the proposed Minimum Imbalance
Heuristic described in Sections 5.2.1 and 5.2.2 respectively.
The memory access patterns used by the search algorithms

Fig. 6. Minimum Imbalance Heuristic example. In three steps, (a), (b),
(c), the set of addressing bits P ¼ fb0; b1; b2g ¼ f0; 3; 4g is selected for a
set of eight addresses f27; 12; 6; 19; 11; 4; 28; 3g by calculating a histo-
gram hn and imbalance value In for each bit n in each step.

Fig. 7. Our framework for bank conflict reduction. It encompasses hard-
ware and software approaches.
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and the heuristics are extracted from the benchmarks using
either source code analysis or a memory access trace, as
describe in Section 6. The resulting parameters for each
benchmark and hash function are shown in Table 5.

The proposed hash functions can be implemented in
hardware, but also in software. To evaluate the impact of
the hash functions in hardware, all hash functions are
implemented in GPGPU-Sim version 3.2.0 [16], which is
configured as an NVIDIA GTX 480 (Fermi) GPU. The effect
of the hash functions on the number of bank conflicts and
the execution time for the benchmarks is evaluated in Sec-
tion 7.1. The hardware cost in terms of chip-area, power
consumption and added memory access latency has been
evaluated in Section 4.5. The use of hash functions as a soft-
ware solution is evaluated in Section 7.2, which shows the
benefits of adding hash functions to memory accesses either
manually by a programmer or automatically by a compiler.

7.1 Hardware Hash Function Results

The bank conflict reduction of the various hash functions is
compared against the regular GPU which does not use a
hash function in the addressing of the banks of the shared
memory. An additional fixed bit-vector hash function used
in [17] has been also included in this study for comparison
purposes. This fixed hash function calculates the bank index
as: bank ¼ addr½0 . . . 4� 	 addr½5 . . . 9�.

The relative number of bank conflicts removed by each
hash function for the benchmarks listed in Table 5 is shown
in Fig. 8. For 14 of the 22 benchmarks the fixed bit-vector
hash function from [17] removes all bank conflicts, and all
configurable hash functions do so as well. For the other
eight benchmarks the configurable hash functions also
remove all bank conflicts, except for the histogram bench-
marks which use indirect memory accesses. Average values
are displayed in Table 6. Thus, the fixed bit-vector XOR

works well and removes 86 percent of all bank conflicts on
average. The configurable bit-vector XOR hash function
(Section 4.2) improves the number of removed bank con-
flicts to 96 percent. The bitwise permutation hash function
performs worse, regardless if the Givargis or Minimum
Imbalance Heuristic is used. It only removes 49 and 47 per-
cent respectively of the bank conflicts. The bitwise XOR
hash function removes 88 percent of all bank conflicts if the
parameters are determined using the Givargis heuristic. In
case the Minimum Imbalance Heuristic is used to determine
the parameters, 97 percent of all bank conflicts are removed
and only the histogram (hist64 and hist256) benchmarks
have bank conflicts remaining.

The histogram algorithm is a special kind of algorithm in
which the location of the memory accesses is dependent on
the input data itself, and not (just) the input data dimensions.
Therefore one input image can result in more bank conflicts
than another. To take this into account in the experiments,
the parameters of the hash functions are determined using a
(randomly selected) image, and the results of Figs. 8 and 9
are obtained by averaging the results of 10 other images.

An application does not consist solely of memory
accesses, therefore the performance gains are less than the
bank conflicts reduction numbers. The speed-up obtained
by the various hash functions over the baseline GPU is
shown in Fig. 9 for a set of benchmarks. The configurable
hash functions perform similar to the fixed hash function
for the 14 benchmarks in which all conflicts are removed by
any hash function. For the other eight benchmarks the con-
figurable hash functions show a small performance impro-
vement over the fixed hash function, except for the hist64
benchmark. The geometric mean of the speed-up for the
fixed bit-vector XOR [17] is 1:21� compared to a baseline
GPU. The configurable bit-vector XOR hash function per-
forms a little bit better with a speed-up of 1:24�. The bitwise

TABLE 5
List of Benchmarks

Name Method bit-vector

XOR hash

bitwise perm.

Givargis

bitwise perm.

Min. Imbalance

bitwise XOR hash

Givargis

bitwise XOR hash

Min. Imbalance

conv-1 Analysis k1=0 k2=1 mask=16 (0) (1) (2) (3) (5) (0) (1) (2) (3) (5) (0) (0^1) (0^2) (0^3) (0^5) (0) (1) (2) (3) (5)

conv-2 Analysis k1=0 k2=4 mask=14 (0) (4) (5) (6) (7) (0) (4) (5) (6) (7) (0) (0^4) (0^5) (0^6) (0^7) (0) (4) (5) (6) (7)
dct8x8-1 Analysis k1=0 k2=5 mask=7 (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (0^3) (0^4) (0^5) (1^6) (2^7) (3) (4) (0^5) (1^6) (2^7)
dct8x8-2 Analysis k1=0 k2=5 mask=7 (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (0^3) (0^4) (0^5) (1^6) (2^7) (3) (4) (0^5) (1^6) (2^7)
dwtHaar1D Trace k1=0 k2=5 mask=15 (4) (3) (2) (1) (5) (4) (3) (2) (1) (5) (3^8) (2^7) (1^6) (0^5) (0^4) (3^8) (2^7) (1^6) (0^5) (4)
FFT-1 Trace k1=1 k2=10 mask=1 (10) (5) (1) (2) (3) (10) (5) (4) (3) (2) (1^2) (1^3) (1^4) (1^5) (1^10) (1^2) (1^3) (1^4) (1^5) (1^10)
FFT-2 Trace k1=1 k2=0 mask=0 (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (0^1) (0^2) (0^3) (0^4) (0^5) (1) (2) (3) (4) (5)

FWT Analysis k1=0 k2=2 mask=31 (0) (1) (2) (3) (4) (4) (3) (2) (1) (0) (0^2) (0^3) (0^4) (0^5) (1^6) (0^2) (0^3) (0^4) (0^5) (1^6)
hist64 Trace k1=6 k2=4 mask=1 (6) (7) (8) (9) (10) (8) (7) (6) (10) (9) (6) (6^7) (6^8) (7) (7^8) (8) (7) (6) (10) (9)

hist256 Trace k1=0 k2=6 mask=28 (8) (9) (10) (11) (12) (0) (1) (2) (3) (4) (4^8) (3^9) (2^12) (1^10) (0^7) (4^8) (3^9) (2^11) (0^10) (1^2)
lavaMD Analysis k1=1 k2=6 mask=3 (3) (4) (5) (6) (7) (3) (4) (5) (6) (7) (0^3) (0^4) (0^5) (1^6) (2^7) (3) (4) (5) (1^6) (2^7)
LUD-1 Analysis k1=0 k2=5 mask=7 (0) (1) (2) (3) (4) (0) (1) (2) (3) (7) (0^4) (1^5) (2^6) (3^7) (0^1) (0^4) (1^5) (2^6) (3^7) (13)
LUD-2 Analysis k1=0 k2=5 mask=15 (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (0^4) (1^5) (2^6) (3^7) (0^8) (4) (0^5) (1^6) (2^7) (3^8)
matrix scan Analysis k1=0 k2=5 mask=7 (3) (4) (5) (6) (7) (3) (4) (7) (6) (5) (0^3) (0^4) (0^5) (1^6) (2^7) (3) (4) (0^5) (1^6) (2^7)
MRI-grid-1 Trace k1=0 k2=5 mask=31 (4) (3) (5) (2) (1) (4) (3) (2) (5) (1) (4^9) (3^8) (2^7) (1^6) (0^5) (0^5) (1^6) (2^7) (3^8) (4^9)
MRI-grid-2 Trace k1=1 k2=6 mask=1 (5) (4) (3) (2) (6) (2) (3) (4) (5) (1) (1^6) (0^5) (0^4) (4^5) (0^3) (2) (3) (4) (5) (1^6)
MRI-grid-3 Trace k1=1 k2=6 mask=1 (5) (4) (3) (6) (2) (2) (3) (4) (5) (1) (1^6) (0^5) (0^4) (4^5) (0^3) (2) (3) (4) (5) (1^6)
MRI-grid-4 Trace k1=0 k2=5 mask=3 (2) (3) (4) (6) (5) (6) (3) (2) (5) (4) (0^2) (3^6) (2^3) (2^4) (1^4) (6) (3) (2) (0^4) (1^5)
NW-1 Trace k1=0 k2=5 mask=7 (4) (5) (6) (1) (0) (4) (5) (6) (7) (0) (1^4) (2^5) (0^6) (4^5) (3^7) (0^5) (2^4) (3^6) (1^7) (4)
NW-2 Trace k1=0 k2=5 mask=15 (4) (5) (6) (1) (0) (4) (5) (6) (7) (0) (1^4) (2^5) (0^6) (4^5) (3^7) (1^4) (2^5) (3^6) (0^7) (4)
reduction Trace k1=0 k2=5 mask=7 (4) (3) (5) (2) (1) (4) (3) (2) (1) (5) (2^7) (1^6) (0^5) (0^4) (4^5) (2^7) (1^6) (0^5) (4) (3)
transpose Analysis k1=0 k2=4 mask=14 (0) (4) (1) (2) (3) (0) (4) (1) (2) (3) (0) (0^4) (1^4) (1^5) (2^6) (0) (4) (1^5) (2^6) (3^7)

The parameters for each of the hash functions (bit-vector XOR, bitwise permutation and bitwise XOR) are determined by either code analysis or a memory trace.
The parameters for the bitwise hash functions are determined using either the Givargis heuristic or the proposed Minimum Imbalance Heuristic.
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permutation hash function removes fewer bank conflicts,
and consequently also shows a smaller speed-up of 1:14�
and 1:10� for the Givargis and Minimum Imbalance Heu-
ristic respectively. The bitwise XOR hash functions score
best, with a speed-up of 1:18� and 1:24� for the Givargis
and Minimum Imbalance Heuristic respectively. Because
memory accesses using the flexible hash functions require
one extra clock cycle (see Section 4.5), some applications
experience a slowdown due to the configurable hash func-
tions, see for example the lavaMD benchmark in Fig. 9. The
hist256 benchmark benefits the most from the configurable
hash functions with a speed-up of 2:5�. It consists mainly
of load and store operations to the scratchpad memory, and
is therefore very sensitive to bank conflicts.

Some applications use the scratchpad memory but do not
have bank conflicts. The performance impact of the extra
cycle of latency for every memory access (see Section 4.5)
on these kind of applications has been evaluated by testing
five benchmarks: back propagation, srad and hotspot from
Rodinia [11], scalar product from the CUDA SDK and
matrix-matrix multiply from Parboil [12]. The average loss in
execution time is only 1 percent, and the maximum perfor-
mance loss is 4.5 percent for the srad benchmark.

7.2 Software Hash Function Results

As indicated in Section 6, our framework can be integrated in
a compiler, which would generate optimized code using
hash functions. That way, such optimization would be trans-
parent for the programmer. In this section, we carry out a
proof of concept applying software optimization manually.
With this aim, we use the bit-vector XOR hash functions
shown in Table 5 for a number of the benchmarks. The code
below illustrates how the software optimization can be
applied in a kernel. This sample CUDA code corresponds to
the lavaMD benchmark, where rA_shared, rB_shared,
and qB_shared are three arrays in scratchpadmemory.

// k1 = 1, k2 = 6, mask = 3

__device__ int hash(int address){

int addr_xor = (address >> 6) & 3;

addr_xor = addr_xor ^ (address >> 1);

return addr_xor;

}

. . .
d.x = rA_shared[hash(4*wtx+1)]

- rB_shared[hash(4*j+1)];

. . .
fA[wtx].v += qB_shared[hash(j)] * vij;

Experiments have been run on real hardware: GTX 580
with Fermi architecture, and K20 with Kepler architecture.
The benchmark dxtc has only been run on a GTX 280 with
Tesla architecture. The shared memory of this GPU has 16
banks. More recent NVIDIA GPUs have 32-banked shared
memories, and dxtc does not present bank conflicts on them.

Fig. 10 presents the relative number of bank conflicts
reduced on the GPUs by either applying ad-hoc optimiza-
tions or hash functions. Results are compared to a baseline
implementation in which no specific software technique has

Fig. 8. Relative number of bank conflicts removed by various hash function compared to a baseline GPU (no hash function) for a set of benchmarks.

TABLE 6
Bank Conflicts Reduction Percentage Achieved
by the Different Hash Functions and Heuristics

Heuristic

Hash function None Exhaustive search GH MIH

fixed bit-vector XOR 86% - - -
bit-vector XOR - 96% - -
bit-wise permutation - - 49% 47%
bit-wise XOR - - 88% 97%

Fig. 9. Overall speed-up obtained by the various hash functions compared to a baseline GPU (no hash function) for a set of benchmarks.
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been used to reduce bank conflicts. This figures have been
obtained with the CUDA command-line profiler. For Fermi
and Tesla, the profiler returns a single number as the bank
conflict count. For Kepler, it differentiates between shared
memory loads and stores.

For each benchmark, two columns may appear. The one
on the left (darker color) stands for the results for an ad-hoc
technique, such as padding, to reduce bank conflicts. This is
the technique (if any) that can be found in the original code.
The right column (lighter color) represents the results for a
hash function. As it can be seen, hash functions always obtain
at least the same reduction of the number of bank conflicts.

The speed-up obtained by the ad-hoc techniques and the
hash functions is shown in Fig. 11. In general, the hash func-
tions achieve a speed-up relative to the baseline that is com-
parable to the ad-hoc techniques. The geometric mean of
the speed-up of the hash functions to the baseline imple-
mentations is 1:23� on Fermi and 1:33� on Kepler. More-
over, it is remarkable that the ad-hoc techniques are only
applied to 12 out of 21 benchmarks.

In those cases where there is a small performance loss

(e.g., conv-1 on GTX 580 and lavaMD on K20), the reduction

in the number of bank conflicts does not compensate for the

cost of the hash function (shift and logic operations). It is

worth noting that in this cases no ad-hoc techniques were

used in the original code. The number of bank conflicts is so

little that no improvement is obtained from them.

The benchmarks hist64 and hist256 are only a sample of
the benefits that hash functions can have on histogramming.

In these tests, histograms of 64 and 256 bins have been cal-

culated for 10 real images using a replication factor of 32,

which is the number of sub-histograms in shared memory

per thread block. More details of the use of hash functions

on software-optimized implementations of histogramming,

such as [18] and [19], can be found in [17].
In summary, a programmer could benefit from our frame-

work, since this can generate a hash function that reduces
the bank conflicts at least as effectively as manually-applied
ad-hoc techniques. Actually, the optimization could be trans-
parent for the programmer, if the proposed framework of
Section 6 is integrated into a compiler. Hash functions also
save memory space compared to the padding approach, so
that occupancymight be increased in some cases.

8 RELATED WORK

GPU memory access pattern classification have been intro-
duced in [4], [5]. Jang et al. describe in [4] six different mem-
ory access patterns which are used for loop vectorization for
AMD GPUs and memory selection (e.g., global, shared, tex-
ture, constant) on NVIDIA GPUs. Fang et al. [5] specify 33
memory access patterns. Each MAP consists of an inter- and
intra-thread component. The MAPs are used to predict per-
formance for various platforms (e.g., CPU or GPU) by que-
rying a database of MAP performance of a particular
platform. In this work we reduce the number of patterns
found to only four: linear, stride, block and random, and use
the classification in the search algorithm and heuristics to
configure the proposed hash functions.

Previous work on GPU scratchpad hash functions pro-
posed a fixed hash function for all applications [17]. These
hash functions can also be used to avoid atomic conflicts in
some implementations of atomic operations, such as

Fig. 10. Relative number of bank conflicts removed by an ad-hoc optimization technique (typically, padding), and a bit-vector XOR hash function
compared to a baseline implementation (neither hash function, nor ad-hoc technique) for a set of benchmarks, on GTX 580 (Fermi) and K20 (Kepler).
dxtc has been tested on GTX 280 (Tesla architecture).

Fig. 11. Overall speed-up obtained by an ad-hoc optimization technique (typically, padding), and a bit-vector XOR hash function compared to a base-
line implementation (neither hash function, nor ad-hoc technique) for a set of benchmarks, on GTX 580 (Fermi) and K20 (Kepler). dxtc has been
tested on GTX 280 (Tesla architecture).
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NVIDIA Tesla, Fermi and Kepler architectures [17], [20],
[21]. Other works propose configurable hash functions per
application for CPU caches [3], [9], [22], [23], [24] and inter-
leaved memories [25], [26]. Patel et al. [22], [23] find the best
possible hash function for a single set of memory references.
The proposed methods in this work find a hash function for
all sets of memory references. This work extends the heuris-
tics from previous work [3] to configure the proposed hash
functions which are an improvement performance-wise
compared to the fixed hash functions [17].

Instead of configuring the indexing of the banked mem-
ory to reduce bank conflicts, it is also possible to change the
memory itself, as shown in [27]. Diamond et al. show that it
is possible to efficiently address a banked memory with an
arbitrary modulus (instead of 2N ). When implemented on a
GPU’s L1 cache and scratchpad memory 98 percent of all
bank and set conflicts can be removed, resulting in an aver-
age speed-up of 24 percent. When the arbitrary modulus
indexing is only applied to the scratchpad memory, they get
a geometric mean 11 percent speed-up for five benchmarks.
In our work, we have proposed the use of configurable hash
functions to achieve a geometric mean 24 percent speed-up
on 22 benchmarks.

9 CONCLUSIONS

In this work four configurable hash functions for banked
memories are evaluated: bit-vector permutation, bit-vector
XOR, bitwise permutation and bitwise XOR. The impact on
the number of bank conflicts and the resulting performance
gains of hardware implementations are assessed on the
NVIDIA Fermi architecture using GPGPU-Sim. In total 22
benchmarks from the NVIDIA CUDA SDK, Rodinia and
Parboil benchmark suites are tested. Bank conflicts are
removed completely for 20 benchmarks, while a fixed hash
function from previous work [17] only managed to remove
all bank conflicts for 14 benchmarks. Bank conflict are
reduced on average by 86 percent for this fixed hash func-
tion, by 96 percent for the configurable bit-vector XOR, and
by 97 percent for the bitwise XOR hash function using the
proposed heuristic. Only the two histogram benchmarks
with their indirect, data dependent memory references have
bank conflicts remaining. In terms of performance, a geo-
metric mean 24 percent speed-up over all benchmarks is
attained for the configurable hash functions. Also the hard-
ware costs in terms of latency, power and area are evalu-
ated. These are estimated to be no more than 0.2 percent of
the power and area budget of a contemporary GPU for the
most complex configurable hash function.

Next to this hardware solution a software approach is
proposed, which does not require any changes to the hard-
ware. This software approach can reduce the average num-
ber of bank conflicts by 99 percent in load accesses and 90
percent in store accesses, and leads to a 1.33� speed-up on
the NVIDIA Kepler architecture.

To configure the hash functions, the Givargis heuristic [3]
is extended to select the overall best bank addressing bits for
multiple sets of memory references, not just for a single set.
Also the Minimum Imbalance Heuristic is introduced, which
removes 97 percent of all bank conflicts for the bitwise XOR
hash functions, outperforming theGivargis heuristic.

9.1 Future Work

The proposed bitwise / bit-vector permutation and XOR
hash functions are initialized at launch time for the com-
plete duration of a kernel’s execution. An alternative
would be to incorporate the hash functions’ parameters
in the load- and store instructions, which makes it possi-
ble to use different hash functions for different memory
accesses. One problem is that different hash functions
can map different memory addresses to the same mem-
ory location. This can be prevented by dividing the
memory in regions, for example by using the most sig-
nificant bits of the address.
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