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LAB 5 – Implementing an ALU 

Goals 

• Implement an Arithmetic Logic Unit (ALU) in Verilog. 

• Learn how to evaluate the speed and FPGA resource utilization of a circuit in 

Vivado. 

To Do 

• Draw a block level diagram of the MIPS 32-bit ALU, based on the description in 

the textbook. 

• Implement the ALU using Verilog. 

• Synthesize the ALU and evaluate speed and FPGA resource utilization. 

• Follow the instructions. Paragraphs that have a gray background like the current 

paragraph denote descriptions that require you to do something. 

• To complete the lab, you have to show your work to an assistant before the 

deadline. The required tasks are clearly marked with gray background throughout 

this document.  

• You will have an additional exercise in the report. 

Introduction 

So far, we implemented fairly small circuits using Verilog. In this exercise, we tackle 

something more formidable, which is the heart of a processor – the arithmetic logic unit 

(ALU). We implement an ALU that is similar to the one described in Section 5.2.4 of the 

H&H textbook. We will reuse this ALU as a part of the small micro-controller we will 

build in the following exercises. 

This exercise will take two lab sessions to complete. We will write HDL code in this lab 

(Lab 5), and verify that it works correctly using a testbench in the next lab (Lab 6). 

We did not investigate performance-related numbers such as the delay and area (i.e., FPGA 

resource utilization) of the circuit so far.  

In this exercise, we build a larger circuit in comparison to the previous labs and will try to 

understand how fast the circuit is able to perform the arithmetic operations and what 

fraction of the available FPGA resources it occupies. We will also try to see whether our 

coding style has an effect on the speed and FPGA resource utilization. 

Part 1 – Designing an ALU 

We will design an ALU that can perform a subset of the ALU operations of a full MIPS 

ALU. You can refer to Appendix B of the H&H textbook to see the full set of operations 

that MIPS can support. In this exercise, we develop an ALU that takes two 32-bit inputs A 

and B, and executes the following seven instructions: 

add, sub, slt, and, or, xor, nor 



 

 2 

The ALU generates a 32-bit output that we call ‘Result’ and an additional 1-bit flag ‘Zero’ 

that will be set to ‘logic-1’ if all the bits of ‘Result’ are 0. The different operations will be 

selected by a 4-bit control signal called ‘AluOp’ according to the following table. 

AluOp (3:0) Mnemonic Result = Description 

0000 add A + B Addition 

0010 sub A - B Subtraction 

0100 and A and B Logical and 

0101 or A or B Logical or 

0110 xor A xor B Exclusive or 

0111 nor A nor B Logical nor 

1010 slt (A - B)[31] Set less than 

Others n.a. Don’t care  

Table 1. Summary of the ALU control 

(Note 1: You should extend the result of slt to 32 bits (i.e., 32’b00 or 32’b01).) 

(Note 2: And, or, xor, nor are bitwise operations.) 

For example, if ‘AluOp’ is 0101, ALU should evaluate Result as A or B.  

Many values of ‘AluOp’ does not correspond to any operation. It is not important what 

the circuit does when ‘AluOp’ has these values since the ‘Result’ will simply be ignored 

in such cases. You can use this to your advantage to simplify the circuit. 

These operations may look random for now, but they will make more sense once we learn 

more about the MIPS instruction set architecture.  

Designing the Block diagram 

First, you need to draw a block diagram of the ALU, like the one seen in Figure 5.15 of the 

H&H textbook. This exercise is based on an almost real example; there will not be a clear 

textbook ‘best’ solution for the circuit. 

The following is one approach to analyze what we need and to come up with a block 

diagram. You are free to follow this example or come up with your own ideas.  

Let us first examine the different operations. You should see that we have two types of 

instructions. The three instructions add, sub, and slt require arithmetic operations, whereas 

the four remaining and, or, xor, and nor are bitwise operations. Now let us look at Table 

1 and determine for which values of AluOp we perform an operation from which type. It 

should be clear that when AluOp[2] is logic-0, we have an arithmetic operation and when 
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AluOp[2] is logic-1, we select a logic operation. This means that the output of either type 

can be selected by a 2-input multiplexer that is controlled by AluOp[2]. Figure 1 depicts 

an ALU design that includes a separate logic block (i.e., arithmetic part and logic part) for 

each type of operation.  

 

Figure 1. A possible division for the ALU 

Now we can take a look at the two types individually. For the logic part, AluOp[1:0] selects 

one of the 4 simple bitwise operations. In the arithmetic part, we realize that we have an 

addition (add) or a subtraction (sub, slt). We can see that AluOp[1] is logic-0 for additions 

and logic-1 for subtractions. This could allow us to build a structure like the one in Figure 

5.15 of the H&H textbook to design an adder-subtractor (controlled with AluOp[1] instead 

of F[2]). Figure 2 shows such a design. 

 

Figure 2. Possible organization for the adder subtractor in ALU 

There is one more thing left, depending on the AluOp[3] we can select whether we take 

only the most significant bit (logic-1, slt instruction), or we take the output as it is. We 

show an example design in Figure 3.   
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Figure 3. A possible organization to implement slt  

Draw a block diagram that will implement the ALU operations listed in Table 1. You are 

free to decide how to implement the ALU and do not have to base the block diagram on 

the above explanations. You may use arbitrary size adders, multiplexers, logic gates, 

zero/sign extend, comparators and shifters. 

Part 2 - Implementation 

Once we have a good block diagram it is straightforward to implement the circuit in 

Verilog. Replace each block with a Verilog description and use the signal names in the 

block diagram.  

Start Vivado and create a new project (you can call it Lab5). Make sure to select 

“xc7a35tcpg236-1” as your FPGA since otherwise, you cannot download the bitstream of 

your design to the Basys 3 board. Implement the ALU based on your block diagram. 

Synthesize and implement your design. (We do not transfer the design to FPGA in this lab, 

therefore we do not provide you a constraints file. Thus, the implementation will run 

correctly, but the bitstream generation will fail.) 

Hint 1: You can use 32’b0 to represent a 32-bit zero. 

Hint 2: In Verilog, you can concatenate multiple bits together using curly braces {}. For 

example: {2’b10, 1’b1} results in 3’b101. 

At this point, we really do not know if our circuit functions properly. Unlike the other 

exercises, we cannot verify that our circuit works by directly trying it out since there are 

too many input bits. Instead, we use a testbench to verify the functionality in the next lab 

(Lab 6). 

For your convenience, the questions from part 2 have been moved to a 

separate sheet at the end of this document. 

Please answer those now. 
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Part 3 – The Performance of the Circuit 

Until now, we did not evaluate the speed and area of our implementation. In this lab, we 

will learn to check the speed (i.e., max frequency our circuit can run at) and area (i.e., 

FPGA resource utilization). 

 

We provide instructions for evaluating speed and area using Vivado. In Vivado, after 

running Implementation, go to ‘Window → Project Summary’. It shows a window similar 

to the one shown in Figure 4. The design summary window provides many of the important 

design parameters (e.g., the Timing and Utilization panes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Design Summary window (example) 

 

In the Utilization pane (left bottom area), click on the “Table” button in the “Post-

Implementation” tab. The size of the circuit is expressed in terms of the fraction of the total 

available resources of the FPGA that used for the design. For instance, the above example 

uses 108 out of 20800 Look-up Tables (LUTs) of the FPGA, which is less than 1% of the 

total.  

Getting the timing report in Vivado is slightly more complicated. Design tools such as 

Vivado are not always able to come up with the best possible circuit implementation for a 

given Verilog description as the placement and routing procedures are computationally 

expensive. Instead, the tools try to come up with a circuit that satisfies the given user 

constraints. In other words, you are passing the description of the circuit and requiring an 

implementation that can operate with 50MHz. Vivado tries to satisfy this constraint and 
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reports whether or not it has achieved it. In the Project Summary, it has a section of 

‘Timing’, which lists how many of the timing paths violate the given timing constraints. In 

the above example, it is shown as NA (not available). That is because we did not set any 

timing constraints, so Vivado cannot report the timing. We will add a timing constraint to 

set the maximum delay that we would like our ALU to have. 

Adding Simple Timing Constraints 

All user constraints are included in an XDC file that we have previously used for 

connecting the input/output ports of the top module to the FPGA pins. Make sure to add an 

XDC file into your project. In cases that we know the exact way to express the timing 

constraints, we can type the constraints in a text editor as we did for determining the pins. 

We can use a GUI to define timing constraints. GUI edits the constraints file in the 

background. Thus, we can simply edit the constraints file in a text editor as an alternative 

method. 

We always use fairly simple circuits in the exercises and adjust the requirements so that 

exercises can be done easily. In real life, we sometimes need to add many different 

constraints to get a working circuit. This is why the constraint editor is slightly complex. 

 

In the Flow Navigator, click on “Implementation → Open Implemented Design → Edit 

Timing Constraints”. In the newly opened “Timing Constraints” tab, click in the left tree 

view on “Exceptions → Set Maximum Delay” and add a new constraint by clicking on the 

green plus sign. A new window will pop up as shown in Figure 5. Set “Specify path delay” 

to 20ns, “From” and “To” to “*” and, click OK. 
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Figure 5. Constraints for the ALU 

Setting this constraint tells Vivado that you want to take a maximum of 20 ns to propagate 

a signal from any input to any output. Press “Ctrl+S” to save the file, and create an 

additional constraint profile, if necessary. You can ignore all dialogue windows that pop 

up. You will see that an XDC file has been added to the design. If you open the file with a 

text editor, you will notice that it includes a simple line: 

set_max_delay -from * -to * 20.000 

If you know how the constraint can be expressed, it is usually much easier (and faster) to 

type in the constraints in a text editor.  

Since we have constrained our design, we can re-run the implementation to generate the 

timing report, which we can see in the Project Summary.  

After implementing the design, you should see values in the ‘Timing’ pane in the ‘Project 

Summary’. You should see that your constraint of 20 ns was achieved. The slack (around 

1 ns in this case) is the difference between the delay that the circuit actually has and the 

constraint 20 ns. 

More detailed reports can be found in “Taskbar → Window → Reports”. For the timing 

report, select in its tree structure "Implementation -> Route Design -> Timing Summary 

Report". The report provides you the slow paths. You see from which input pin each path 

begins, which locations it goes through, and where it ends. At each step, you see how much 

delay comes due to a logic operation and routing. 

 

Last Words 

It is possible to design a digital circuit without first developing a block diagram on paper. 

However, it is always easier to write a hardware description of a circuit that exists as a 

block diagram. After all, the ‘hardware description’ is just a translation of the circuit idea 

into the syntax of the specific language. 

Synthesis tools can convert your hardware idea into a working circuit and can report 

performance on all related numbers. However, if you do not have an expectation of the 

architecture and the performance, you cannot judge whether or not these are good numbers.  

We have learned that usually adders are the most critical elements when it comes to 

determining the performance of an arithmetic circuit. A high-performance adder can be a 

costly block. In our example, three operations (add, sub, slt) are based on an adder. A naive 

implementation would have a separate adder for each of these operations, resulting in a 

relatively large circuit. We should make sure that all three operations are realized by 

sharing one adder (at least if we are concerned about the area cost of the circuit).  

For your convenience, the questions from part 3 have been moved to a 

separate sheet at the end of this document. 

Please answer those now. 
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Modern synthesis tools are quite sophisticated and do most of the work for you. Moreover, 

they are continuously improving. Chances are very good that they automatically figure out 

what is the best implementation for your code. Unfortunately, they are far from perfect, 

and for larger designs with complex functionality (in designs where things matter), 

experienced design engineers are still indispensable. 
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Part 2 

Until now, we have always verified our circuits by exhaustively testing them. Assume 

that we can test 1 input every second, how long would it take us to test our ALU by 

trying each and every possible input combination. Please consider only the 7 valid 

combinations for the AluOp in Table 1. Provide the calculations. 

 

 

 

 

 

 

 

 

 

 

 

Part 3 

 

Investigate the different reports to find the answers to the questions below. Show the 

assistants your result in this part. 

Number of LUTs  

Number of bonded IOBs  

Which pin of the FPGA is the output ‘zero’ connected? 

(pin name) 

 

Where does the longest path start from  

Where does the longest path end  

How long is the longest path  

How much of the longest path is routing  

How many levels of logic is in the longest path  

 


