Digital Design & Computer Arch.
Lecture 3b: Introduction to the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)
ETH Zurich
Spring 2021
4 March 2021
Lab Sessions

- **Where?**
 - Online (Zoom Meetings)

- **When?**
 - Tuesday 16:15-18:00
 - Wednesday 16:15-18:00
 - Friday 08:15-10:00
 - Friday 10:15-12:00
Grading

- **10** labs, **30** points in total

- We will put the lab manuals online

Grading Policy

- In-class evaluation (70%) and *mandatory* lab reports (30%)
 - 1-point penalty for late submission of the report
- You can use your grades for labs from past years
 - You can find your grades in last year’s Moodle page: https://moodle-app2.let.ethz.ch/course/view.php?id=12285
 - You should finish the labs within 1 week after they are announced

For questions

- Piazza (preferred)
- digitaltechnik@lists.inf.ethz.ch (Emails are sent to all TAs)
Agenda

- Logistics
- **What Will We Learn?**
 - FPGAs in Today’s Systems
 - Overview of the Lab Exercises
- What is an FPGA?
- Programming an FPGA
- Tutorial and Demo
What Will We Learn?

The Transformation Hierarchy

- Problem
- Algorithm
- Program/Language
- System Software
- SW/HW Interface
- Micro-architecture
- Logic
- Devices
- Electrons

Understanding how a processor works underneath the software layer

Touch on implementation details

Hands-on experience in digital circuit design and implementation
What Will We Learn? (2)

- How to make *trade-offs* between *performance* and *area/complexity* in your hardware implementation

- **Hands-on experience on:**
 - Hardware *Prototyping* on FPGA
 - *Debugging* Your Hardware Implementation
 - Hardware Description Language (*HDL*)
 - Hardware Design Flow
 - Computer-Aided Design (*CAD*) Tools
Agenda

- Logistics
- What Will We Learn?
- **FPGAs in Today’s Systems**
- Overview of the Lab Exercises
- What is an FPGA?
- Programming an FPGA
- Tutorial and Demo
FPGAs in Today’s Systems: Project Brainwave

“Microsoft’s Project Brainwave is a deep learning platform for real-time AI inference in the cloud and on the edge. A soft Neural Processing Unit (NPU), based on a high-performance field-programmable gate array (FPGA), accelerates deep neural network (DNN) inferencing, with applications in computer vision and natural language processing. Project Brainwave is transforming computing by augmenting CPUs with an interconnected and configurable compute layer composed of programmable silicon.”

https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
FPGAs in Today’s Systems: Amazon EC2 F1

- “Amazon EC2 F1 instances use FPGAs to enable delivery of custom hardware accelerations. F1 instances are easy to program and come with everything you need to develop, simulate, debug, and compile your hardware acceleration code, including an FPGA Developer AMI and supporting hardware level development on the cloud. Using F1 instances to deploy hardware accelerations can be useful in many applications to solve complex science, engineering, and business problems that require high bandwidth, enhanced networking, and very high compute capabilities.”

https://aws.amazon.com/ec2/instance-types/f1/
DRAGEN’s suite of analysis pipelines are engineered to run on FPGAs, offering hardware-accelerated implementations of genomic analysis algorithms, including BCL conversion, mapping and alignment, sorting, duplicate marking and haplotype variant calling.

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA Short Read Mapping", Bioinformatics, 2017.

Alser+, "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs", Bioinformatics, 2020.
FPGAs in Today’s Systems: SoftMC

- An open-source FPGA-based infrastructure for experimental studies on DRAM
- Flexible
- Easy to Use (C++ API)
- Open-source

github.com/CMU-SAFARI/SoftMC

SoftMC for DDR4

Frigo+, "TRRespass: Exploiting the Many Sides of Target Row Refresh", S&P 2020
Kim+, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques", ISCA 2020
RowHammer: Seven Years Ago…

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,

"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]
RowHammer in 2020 (I)

- Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,

"Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim\dagger, Minesh Patel\dagger, A. Giray Yaglikci\dagger
Hasan Hassan$, Roknoddin Azizi$, Lois Orosa$, Onur Mutlu$\dagger$

\daggerETH Zürich, \daggerCarnegie Mellon University
RowHammer in 2020 (II)

- Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,

"TRRespass: Exploiting the Many Sides of Target Row Refresh"

[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]

Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶
Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi*

*Vrije Universiteit Amsterdam §ETH Zürich ¶Qualcomm Technologies Inc.
FPGAs in Today’s Systems: Characterizing Flash Memories

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
Accelerating Climate Modeling Using FPGAs

- Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,

"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"

Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]

One of the four papers nominated for the Stamatis Vassiliadis Memorial Best Paper Award.
Agenda

- Logistics
- What Will We Learn?
- FPGAs in Today’s Systems
- **Overview of the Lab Exercises**
- What is an FPGA?
- Programming an FPGA
- Tutorial and Demo
Basys 3: Our FPGA Board

High Level Labs Summary

- At the end of the exercises, we will have built a 32-bit microprocessor running on the FPGA board
 - It will be a small processor, but it will be able to execute pretty much any program

- Each week we will have a new exercise
 - Not all exercises will require the FPGA board

- You are encouraged to experiment with the board on your own
 - We may have some extra boards for those who are interested – unlikely, but ask
 - **It is not possible to destroy the board by programming!**
Comparison is a common operation in software programming.
- We usually want to know the relation between two variables (e.g., <, >, ==, ...)

We will compare two electrical signals (inputs), and find whether they are same.
- The result (output) is also an electrical signal.

No FPGA programming involved.
- We encourage you to try later.
Lab 2: Mapping Your Circuit to FPGA

- Another common operation in software programming?
 - Addition

- Design a circuit that adds two 1-bit numbers

- Reuse the 1-bit adder multiple times to perform 4-bit addition

- Implement the design on the FPGA board
 - Input: switches
 - Output: LEDs
Lab 3: Verilog for Combinatorial Circuits

- Show your results from Lab 2 on a Seven Segment Display

https://reference.digilentinc.com/reference/programmable-
logic/basy3s-3/reference-manual
Lab 4: Finite State Machines

- Blinking LEDs for a car’s turn signals
 - Implement and use memories
 - Change the blinking speed
Lab 5: Implementing an ALU

- Towards implementing your very first processor
- Implement your own Arithmetic and Logic Unit (ALU)

- An ALU is an important part of the CPU
 - Arithmetic operations: add, subtract, multiply, compare, ...
 - Logic operations: AND, OR, ...

Source: https://en.wikipedia.org/wiki/Arithmetic_logic_unit
Lab 6: Testing the ALU

- **Simulate** your design from Lab 5
- Learn how to **debug** your implementation to resolve problems
Lab 7: Writing Assembly Code

- Programming in **assembly language**
 - MIPS

- Implement a program which you will later use to run on your processor

- Image manipulation

```
High-level code

int sum = 0;
for(int i = 0; i <= 10; i += 2) {
    sum += i;
}

MIPS assembly

addi $s0, $0, 0
addi $s1, $0, 0
addi $t0, $0, 12
loop: beq $s0, $t0, done
      add $s1, $s1, $s0
      addi $s0, $s0, 2
      j loop
done:
```
Lab 8: Full System Integration

- Will be covered in two weeks
- Learn how a processor is built
- Complete your first design of a MIPS processor
- Run a “snake” program
Lab 9: The Performance of MIPS

- Improve the **performance** of your processor from Lab 8 by adding new **instructions**
 - Multiplication
 - Bit shifting
Agenda

- Logistics
- What Will We Learn?
- FPGAs in Today’s Systems
- Overview of the Lab Exercises
- **What is an FPGA?**
- Programming an FPGA
- Tutorial and Demo
Basys 3: Our FPGA Board

What is an FPGA?

- Field Programmable Gate Array: FPGA

- FPGA is a **software-reconfigurable** hardware substrate
 - Reconfigurable **functions**
 - Reconfigurable **interconnection** of functions
 - Reconfigurable **input/output (IO)**
 - ...

- When used well, FPGAs:
 - Provide **higher performance** than running software on a CPU
 - Provide **more flexibility of implementation** than dedicated hardware or a CPU
We configure logic blocks, their connections, and IO blocks to create hardware circuits and map programs onto those circuits.

Image source: https://www.electronicdesign.com/technologies/fpgas/article/21801527/the-principles-of-fpgas
FPGA Architecture - Looking Inside an FPGA

- Two main building blocks:
 - Look-Up Tables (LUT) and Switches

How Do We Program LUTs?

- **3-bit input LUT (3-LUT)**

 - **Data Input**
 - **Select Input**

 3-LUT can implement any 3-bit input function

 - **Multiplexer (Mux):**
 - Chooses one of the 8 data inputs that corresponds to the 3-bit select input.

 - **Input (3 bits):**
 - 000
 - 001
 - 010
 - 011
 - 100
 - 101
 - 110
 - 111
An Example of Programming a LUT

Let’s implement a function that outputs ‘1’ when there are at least two ‘1’s in a 3-bit input

In C:

```c
int count = 0;
for (int i = 0; i < 3; i++) {
    count += input & 1;
    input = input >> 1;
}
if (count > 1) return 1;
return 0;
```

In an FPGA:

```c
switch(input){
    case 0:
    case 1:
    case 2:
    case 4:
        return 0;
    default:
        return 1;
}
```
How to Implement Complex Functions?

- FPGAs are composed of many LUTs and switches

Modern FPGA Architectures

- Typically use LUTs with 6-bit select input (6-LUT)
 - Thousands of them

- MegaBytes of distributed on-chip memory

- Hard-coded special-purpose hardware blocks for high-performance operations
 - Memory interface
 - Low latency and high bandwidth off-chip I/O
 - ...

- Even a general-purpose processor embedded within the FPGA chip
Advantages & Disadvantages of FPGAs

Advantages

- An algorithm can be implemented directly in hardware
 - No ISA, high specialization → high performance, high energy efficiency
- Low development cost (vs. a custom hardware design)
- Short time to market (vs. a custom hardware design)
- Reconfigurable in the field
- Usable and reusable for many purposes
 - Good for both prototyping and application acceleration

Disadvantages

- Not as fast and power efficient as dedicated hardware customized for an algorithm
- Reconfigurability comes at a cost: significant area overhead
Agenda

- Logistics
- What Will We Learn?
- FPGAs in Today’s Systems
- Overview of the Lab Exercises
- What is an FPGA?
- Programming an FPGA
- Tutorial and Demo
Computer-Aided Design (CAD) Tools

- FPGAs have many resources (e.g., LUTs, switches)

- They are hard to program manually

How can we
- represent a high-level functional description of our hardware circuit using the FPGA resources?
- select the resources to map our circuit to?
- optimally configure the interconnect between the selected resources?
- generate a final configuration file to properly configure an FPGA?
FPGA Design Flow

Problem Definition

Your task!

Hardware Description Language (HDL)
Verilog, VHDL

Logic Synthesis

Placement and Routing

Bitstream Generation

Xilinx Vivado tools

Programming the FPGA
Vivado

- A software that helps us throughout the FPGA design flow
- Provides tools to **simulate** our designs
 - Validate the correctness of the implementation
 - Debugging
- Provides drivers and graphical interface to easily **program** the FPGA using a USB cable
- **Installed** in computer rooms in HG (E 19, E 26.1, E 26.3, E 27)
Tutorial and Demo

- We will see how to
 - use Vivado to write Verilog code
 - follow the FPGA design flow steps
 - download the bitstream into the FPGA

- Simple Keyboard Demo
 - An example for a simple hardware that you can easily develop by the end of semester

https://reference.digilentinc.com/learn/programmable-logic/tutorials/basys-3-keyboard-demo/start
Introduction to FPGAs: Tutorial and Demo

In this video, we will show how to program a F4V5 $3 FPGA board using an example project that interfaces a keyboard and sends the ASCII code of the pressed key over a serial interface to a computer.

http://www.youtube.com/watch?v=33_Z6vrd9gQ
Today We Covered:

- Logistics
- What Will We Learn?
- FPGAs in Today’s Systems
- Overview of the Lab Exercises
- What is an FPGA?
- Programming an FPGA
- Tutorial and Demo
Digital Design & Computer Arch.
Lecture 3b: Introduction to the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)
ETH Zurich
Spring 2021
4 March 2021