
Grand Pwning Unit: Accelerating Microarchitectural

Attacks with the GPU

Pietro Frigo

Vrije Universiteit

Amsterdam

p.frigo@vu.nl

Cristiano Giuffrida

Vrije Universiteit

Amsterdam

giuffrida@cs.vu.nl

Herbert Bos

Vrije Universiteit

Amsterdam

herbertb@cs.vu.nl

Kaveh Razavi

Vrije Universiteit

Amsterdam

kaveh@cs.vu.nl

Abstract—Dark silicon is pushing processor vendors to add
more specialized units such as accelerators to commodity pro-
cessor chips. Unfortunately this is done without enough care to
security. In this paper we look at the security implications of
integrated Graphical Processor Units (GPUs) found in almost
all mobile processors. We demonstrate that GPUs, already
widely employed to accelerate a variety of benign applications
such as image rendering, can also be used to “accelerate”
microarchitectural attacks (i.e., making them more effective) on
commodity platforms. In particular, we show that an attacker
can build all the necessary primitives for performing effective
GPU-based microarchitectural attacks and that these primitives
are all exposed to the web through standardized browser ex-
tensions, allowing side-channel and Rowhammer attacks from
JavaScript. These attacks bypass state-of-the-art mitigations and
advance existing CPU-based attacks: we show the first end-to-
end microarchitectural compromise of a browser running on
a mobile phone in under two minutes by orchestrating our
GPU primitives. While powerful, these GPU primitives are not
easy to implement due to undocumented hardware features. We
describe novel reverse engineering techniques for peeking into the
previously unknown cache architecture and replacement policy
of the Adreno 330, an integrated GPU found in many common
mobile platforms. This information is necessary when building
shader programs implementing our GPU primitives. We conclude
by discussing mitigations against GPU-enabled attackers.

I. INTRODUCTION

Microarchitectural attacks are increasingly popular for leak-

ing secrets such as cryptographic keys [39], [52] or compro-

mising the system by triggering bit flips in memory [42], [45],

[48], [51]. Recent work shows that these attacks are even

possible through malicious JavaScript applications [7], [18],

[20], [38], significantly increasing their real-world impact. To

counter this threat, the research community has proposed a

number of sophisticated defense mechanisms [8], [9], [29].

However, these defenses implicitly assume that the attacker’s

capabilities are limited to those of the main CPU cores.

In this paper, we revisit this assumption and show that it

is insufficient to protect only against attacks that originate

from the CPU. We show, for the first time, that the Graphics

Processing Units (GPUs) that manufacturers have been adding

to most laptops and mobile platforms for years, do not just

accelerate video processing, gaming, deep learning, and a host

of other benign applications, but also boost microarchitectural

attacks. From timers to side channels, and from control over

physical memory to efficient Rowhammer attacks, GPUs offer

all the necessary capabilities to launch advanced attacks.

Worse, attackers can unlock the latent power of GPUs even

from JavaScript code running inside the browser, paving the

way for a new and more powerful family of remote microarchi-

tectural attacks. We demonstrate the potential of such attacks

by bypassing state-of-the-art browser defenses [9], [29], [44]

and presenting the first reliable GPU-based Rowhammer attack

that compromises a browser on a phone in under two minutes.

We specifically focus on mobile platforms given that, on

such platforms, triggering Rowhammer bit flips in sandboxed

environments is particularly challenging and has never been

demonstrated before. Yet, mobile devices are particularly

exposed to Rowhammer attacks given that catch-all defenses

such as ANVIL [5] rely on efficient hardware monitoring

features that are not available on ARM.

Integrated Processors While transistors are becoming ever

smaller allowing more of them to be packed in the same chip,

the power to turn them all on at once is stagnating. To mean-

ingfully use the available dark silicon for common, yet com-

putationally demanding processing tasks, manufacturers are

adding more and more specialized units to the processors, over

and beyond the general purpose CPU cores [12], [14], [49].

Examples include integrated cryptographic accelerators, audio

processors, radio processors, network interfaces, FPGAs, and

even tailored processing units for artificial intelligence [43].

Unfortunately, the inclusion of these special-purpose units in

the processor today appears to be guided by a basic security

model that mainly governs access control, while entirely ig-

noring the threat of more advanced microarchitectural attacks.

GPU-based Attacks One of the most commonly integrated

components is the Graphics Processing Unit (GPU). Most

laptops today and almost all mobile devices contain a pro-

grammable GPU integrated on the main processor’s chip [26].

In this paper, we show that we can build all necessary

primitives for performing powerful microarchitectural attacks

directly from this GPU. More worrying still, we can perform

these attacks directly from JavaScript, by exploiting the We-

bGL API which exposes the GPU to remote attackers.

More specifically, we show that we can program the GPU

to construct very precise timers, perform novel side channel

attacks, and, finally, launch more efficient Rowhammer attacks

from the browser on mobile devices. All steps are relevant.

Precise timers serve as a key building block for a variety of

side-channel attacks and for this reason a number of state-

of-the-art defenses specifically aim to remove the attackers’

ability to construct them [9], [29], [44]. We will show that our

GPU-based timers bypass such novel defenses. Next, we use

our timers to perform a side-channel attack from JavaScript

that allows attackers to detect contiguous areas of physical

memory by programming the GPU. Again, contiguous mem-

ory areas are a key ingredient in a variety of microarchitectural

attacks [20], [48]. To substantiate this claim, we use this

information to perform an efficient Rowhammer attack from

the GPU in JavaScript, triggering bit flips from a browser

on mobile platforms. To our knowledge, we are the first to

demonstrate such attacks from the browser on mobile (ARM)

platforms. The only bit flips on mobile devices to date required

an application with the ability to run native code with access

to uncached memory, as more generic (CPU) cache evictionx

techniques were found too inefficient to trigger bit flips [48].

In contrast, our approach generates hundreds of bit flips

directly from JavaScript. This is possible by using the GPU

to (i) reliably perform double-sided Rowhammer and, more

importantly, (ii) implement a more efficient cache eviction

strategy.

Our end-to-end attack, named GLitch, uses all these GPU

primitives in orchestration to reliably compromise the browser

on a mobile device using only microarchitectural attacks in

under two minutes. In comparison, even on PCs, all previ-

ous Rowhammer attacks from JavaScript require non default

configurations (such as reduced DRAM refresh rates [7] or

huge pages [20]) and often take such a long time that some

researchers have questioned their practicality [8].

Our GLitch exploit shows that browser-based Rowhammer

attacks are entirely practical even on (more challenging) ARM

platforms. One important implication is that it is not sufficient

to limit protection to the kernel to deter practical attacks, as

hypothesized in previous work [8]. We elaborate on these and

further implications of our GPU-based attack and explain to

what extent we can mitigate them in software.

As a side contribution, we report on the reverse engineering

results of the caching hierarchy of the GPU architecture for

a chipset that is widely used on mobile devices. Constructing

attack primitives using a GPU is complicated in the best of

times, but made even harder because integrated GPU archi-

tectures are mostly undocumented. We describe how we used

performance counters to reverse engineer the GPU architecture

(in terms of its caches, replacement policies, etc.) for the

Snapdragon 800/801 SoCs, found on mobile platforms such

as the Nexus 5 and HTC One.

Contributions We make the following contributions:

• The first study of the architecture of integrated GPUs,

their potential for performing microarchitectural attacks,

and their accessibility from JavaScript using the standard-

ized WebGL API.

• A series of novel attacks executing directly on the GPU,

compromising existing defenses and uncovering new

grounds for powerful microarchitectural exploitation.

• The first end-to-end remote Rowhammer exploit on mo-

bile platforms that use our GPU-based primitives in

orchestration to compromise browsers on mobile devices

in under two minutes.

• Directions for containing GPU-based attacks.

Layout We describe our threat model in Section II before

giving a brief overview of the graphics pipeline in Section III.

In Section IV, we discuss the high-level primitives that the

attackers require for performing microarchitectural attacks

and show how GPUs can help building these primitives in

Section V, VI, VII and VIII. We then describe our exploit,

GLitch, that compromises the browser by orchestrating these

primitives in Section IX. We discuss mitigations in Section X,

related work in Section XI and conclude in Section XII.

Further information including a demo of GLitch can be found

in the following URL: https://www.vusec.net/projects/glitch.

II. THREAT MODEL

We consider an attacker with access to an integrated GPU.

This can be achieved either through a malicious (native)

application or directly from JavaScript (and WebGL) when the

user visits a malicious website. For instance, the attack vector

can be a simple advertisement controlled by the attacker. To

compromise the target system, we assume the attacker can only

rely on microarchitectural attacks by harnessing the primitives

provided by the GPU. We also assume a target system with all

defenses up, including advanced research defenses (applicable

to the ARM platform), which hamper reliable timing sources

in the browser [9], [29] and protect kernel memory from

Rowhammer attacks [8].

III. GPU RENDERING TO THE WEB

OpenGL is a cross-platform API that exposes GPU hard-

ware acceleration to developers that seek higher performances

for graphics rendering. Graphically intensive applications such

as CAD, image editing applications and video games have

been adopting it for decades in order to improve their perfor-

mances. Through this API such applications gain hardware

acceleration for the rendering pipeline fully exploiting the

power of the underlying system.

The rendering pipeline: The rendering pipeline consists of

2 main stages: geometry and rasterization. The geometry

step primarily executes transformations over polygons and

their vertices while the rasterization extracts fragments from

these polygons and computes their output colors (i.e., pixels).

Shaders are GPU programs that carry out the aforementioned

operations. These are written in the OpenGL Shading Lan-

guage (GLSL), a C-like programming language part of the

specification. The pipeline starts from vertex shaders that

perform geometrical transformations on the polygons’ vertices

provided by the CPU. In the rasterization step, the polygons

are passed to the fragment shaders which compute the output

color value for each pixel usually using desired textures. This

output of the pipeline is what is then displayed to the user.

2

https://www.vusec.net/projects/glitch

WebGL: WebGL is the result of the increasing demand of

porting the aforementioned graphically intensive applications

to the Web. This API exposes the GPU-accelerated rendering

pipeline to the Web to bolster the development of such

applications. Currently supported by every major browser [3]

it provides most of the functionalities accessible from the

OpenGL ES 2.0 API. Since it was conceived with the purpose

of porting native graphics application to the Web, the anatomy

of these two APIs is almost equivalent. This means that the

aforementioned shaders can be compiled and run seamlessly

from both the environments providing a fast lane to hardware

acceleration to every JavaScript-enabled developer.

While these APIs were designed with the purpose of

accelerating image rendering we will show throughout this

paper how this acceleration acquires another meaning while

we exploit it to build the necessary primitives to carry out

microarchitectural attacks.

IV. ATTACKER PRIMITIVES

”Microarchitectural attacks” aim to either (a) steal data

using variety of side channels or (b) corrupt data using

hardware vulnerabilities such as Rowhammer.

In this section we analyze the two aforementioned attacks’

families identifying the required primitives required by an

attacker to conduct them. We further explore why the GPU

”accelerates” these attacks; i.e., makes them more effective

than what is possible when malicious code runs on the CPU.

A. Leaking data

A primary mechanism for leaking data using microarchitec-

tural attacks is to time operations over resources shared with

a victim process. For example, in a FLUSH+RELOAD cache

attack [52], the attacker checks whether accessing a shared

memory page with a victim is suddenly faster, which reveals

that the victim has accessed the shared page, bringing it to the

cache. In FLUSH+RELOAD and many other popular variants

[39], the attacker needs a mechanism that can tell whether a

certain memory operation on the memory hierarchy executed

fast or slow. This hints at our first primitive:

P1. Timers: Having access to high-resolution timers is a

primary requirement for building timing side-channel attacks.

There are many examples of these attacks executed na-

tively [6], [21], [39], [40], [52], but more recently Oren et

al. [38] showed that it is possible to mount such attacks from

JavaScript, extending the threat model to remote exploitation.

Browser vendors immediately responded by reducing the reso-

lution of JavaScript timers in order to thwart these attacks [10],

[11], [18], [53]. However, recent work has shown the inefficacy

of this solution by extracting homebrewed timers crafted

from JavaScript interfaces such as SharedArrayBuffers

to build even more advanced attacks [18], [28]. While the

vendors’ response consisted again in undertaking the timing

source by disabling it [1], [41], [47], [50], advanced defenses

have been trying to address the issue in a more principled

manner. Kohlbrenner and Shacham [29] proposed Fuzzyfox,

a solution that introduces randomness in the JavaScript event

loop to add noise to timing measurements performed by an

attacker. Antithetically, Cao et al. [9] presented DeterFox

which attempts to make all interactions to/from browser frames

that have a secret deterministic in order to completely disable

the timing channel.

We show in Section V how WebGL can be used for building

high- precision timing primitives that are capable of measuring

both CPU and GPU operations, bypassing all existing, even

advanced defenses.

P2. Shared resources: Another fundamental requirement in

a side-channel attack is having access to resources shared

with other (distrusting) processes. For example, in a cache

attack used to leak information from a victim process, the

cache should be shared by the attacker process. Previous work

shows variety of ways for leaking information over shared

resources, such as CPU data caches [18], [39], [52], the

translation lookaside buffer [23] and memory pages [7], [40].

Co-processors, such as (untrusted) GPUs, may share various

resources with the CPU cores, but at the very least, they share

memory pages with the rest of the system.

We discuss how the integrated GPU of a modern ARM

processor can get access to the system memory in Section VI,

allowing an attacker to perform a side-channel attack directly

from the GPU. To do this, an attacker needs to bypass mul-

tiple levels of undocumented GPU caches which we reverse

engineer and report on for the first time as part of this work.

Unlike CPU caches that are large and optimize for a general-

purpose workload by implementing either random [31] or non-

deterministic [20] replacement policies, we show that GPU

caches are small and follow a deterministic replacement policy.

This allows an attacker to reason about cache hits or misses

with great precision, paving the way for fast and reliable

side-channel attacks with little noise, as we will show in

Section VII.

B. Corrupting data

Rowhammer is a prime example of an attack that corrupts

data by abusing a hardware fault. Previous work shows that it

is possible to corrupt page tables for privilege escalation [45],

[48], compromise the browser [7], [20] and cloud VMs [42],

[51]. The main obstacles in performing these attacks are (I)

knowing the physical location of the targeted row and (II) fast

memory access [48].

P3. Knowledge of the physical location: Knowing the phys-

ical location of allocated memory addresses is a requirement

in order to understand which rows to hammer. The typical

approach is to exploit physically contiguous memory in order

to gain knowledge of relative physical addresses. Previous

work abuses the transparent huge page mechanism that is on-

by-default on x86 64 variants of Linux [20], [42], [45], which

provided them with 2 MB of contiguous physical memory.

Huge pages are off-by-default on ARM. To address this

requirement, the Drammer attack [48] abuses the physically

contiguous memory provided by the Android ION allocator.

3

This remains a fundamental requirement even when ap-

proaching this from the GPU. We discuss how we can use a

novel timing side-channel executed from the GPU that mixes

the knowledge of the DRAM architecture [40] and low-level

memory management to find contiguous physical regions of

memory from the browser in Section VII.

P4. Fast memory access: Accessing memory quickly is a

necessary condition when performing Rowhammer attacks. In

order to be able to trigger bit flips, in fact, the attacker needs

to quickly access different DRAM rows. The CPU caches,

however, absorb most, if not all, of these reads from DRAM.

On the x86 architecture, flushing the CPU cache using the

unprivileged clflush instruction is a common technique to

bypass the caches [42], [45], [51]. On most ARM platforms,

evicting the CPU cache is a privileged operation. Dram-

mer [48] hence relies on uncached DMA memory provided

by the Android ION allocator for hammering.

In the browser, there is no possibility for executing cache

flush instructions or conveniently accessing DMA mem-

ory through JavaScript. Rowhammer.js [20] and Dedup Est

Machina [7] rely on eviction buffers to flush the cache. While

this works on x86, flushing CPU caches on ARM is too slow

to trigger bit flips [48]. Hence, it remains an open question

whether it is possible to perform Rowhammer attacks from

the browser on most mobile devices.

In Section VIII, we report on the first successful Rowham-

mer bit flips in the browser on ARM devices. This is now

possible from the GPU by (i) enabling more efficient double-

sided Rowhammer variant with physical memory layout infor-

mation leaked by P3, and, more importantly, (ii) implementing

an efficient cache eviction (and thus hammering) strategy due

to the small size and deterministic behavior of the GPU caches.

We use these bit flips to build GLitch in Section IX, our

reliable end-to-end exploit that orchestrates all the GPU-based

primitives we described to compromise the browser running

on a mobile phone in less than two minutes by relying on

microarchitectural attacks alone.

V. THE TIMING ARMS RACE

To implement timing side-channel attacks, attackers need

the ability to time a secret operation (P1). Recent work has

shown the impact of these attacks on browsers [18], [28], [38]

forcing vendors to disable high-precision timers [1], [41], [47],

[50] and bringing researchers to investigate new advanced

defenses [9], [29]. In this section, we present explicit and

implicit GPU-based timing sources demonstrating how such

defenses are flawed due to their incomplete threat model that

does not take the GPU into account. We start by presenting

two explicit timing sources showing how these allow us to

time both GPU’s and CPU’s operations. We then present two

other commutable implicit timers based on the second revision

of the WebGL API. We test all these timers against major

browsers as well as state of the art defenses (i.e., Fuzzyfox

and DeterFox) and discuss the implications of these timing

sources.

A. Explicit GPU timing sources

EXT_DISJOINT_TIMER_QUERY is an OpenGL exten-

sion developed to provide developers with more detailed

information about the performance of their applications [46].

This extension, if made available to the system by the GPU

driver, is accessible from both WebGL and WebGL2, and

provides the JavaScript runtime with two timing sources:

(1) TIME_ELAPSED_EXT and (2) TIMESTAMP_EXT. Such

timers allow an attacker to measure the timing of secret

operations (e.g., memory accesses) performed either by the

CPU or the GPU.

T1. TIME ELAPSED EXT: This functionality allows

JavaScript code to query the GPU asynchronously to measure

how much time the GPU took to execute an operation. While

there are different instances of JavaScript-based side channels

on the CPU [7], [18], [28], [38], there are no current examples

of remote GPU-based attacks. In Section VII, we will show

how we can use the timer we are now presenting to implement

the first timing side channel targeting DRAM executed directly

on a remote GPU.

Since TIME_ELAPSED_EXT is based on a WebGL ex-

tension that requires the underlying OpenGL extension to

be accessible, its availability and resolution are driver and

browser dependent. The specification of the extension requires

the return value to be stored as a uint64 in a nanosecond

variable as an implementation dependent feature, it does not

guarantee nanosecond resolution, even in a native environ-

ment. Furthermore, when adding the browser’s JavaScript

engine on top of this stack the return value becomes browser-

dependent as well. Firefox limits itself to casting the value

to an IEEE-754 double in accordance to the ECMAScript

specification which does not support 64 bit integers, while

Chrome rounds up the result to 1µs, reducing the granularity

of the actual measurements.

T2. TIMESTAMP EXT: Besides the asynchronous timer, the

extension also provides a synchronous functionality capable

of measuring CPU instructions. Specifically, by activating the

extension the OpenGL context acquires a new parameter,

TIMESTAMP_EXT, which the code can poll using the WebGL

getParameter() function. The result is a synchronous

timestamp returned from the GPU that can be used in lieu

of the well-known performance.now() to measure CPU

operations. What makes this timer even more relevant is the

fact that we are able to discern CPU cached and uncached ac-

cesses with it by implementing a variant of clock-edging [29]

that executes a (padding) count down over an empty loop

before checking for the new timestamp value. This makes it

possible to revive currently mitigated attacks [18], [28], [38].

Like TIME_ELAPSED_EXT, this timer is driver- and browser-

dependent. Firefox supports it, while Chrome disables it due

to compatibility issues [15].

B. WebGL2-based timers

The timers introduced in the previous section are made

available through a WebGL extension. We now demonstrate

4

how WebGL represents a more fundamental issue in the timing

arms race, by showing how an attacker can craft homebrewed

timers using only standard WebGL2 functions. WebGL2 is the

latest version of the API and, while not as widely available

as WebGL1 yet, it is supported by default in major browsers

such as Chrome and Firefox.

The API provides two almost commutable timing sources

based on WebGLSync, the interface that helps develop-

ers synchronize CPU and GPU operations. GLSync objects

are fences that get pushed to the GPU command buffer.

This command buffer is serialized and accepts commands

sequentially. WebGL2 provides the developer with several

functions to synchronize the two processors, and we use

two of them to craft our timers: clientWaitSync() and

getSyncParameter().

T3. clientWaitSync: This function waits until either the

sync object gets signaled, or a timeout event occurs.

The attacker first sets a threshold and then checks

the function’s return value to see if the operation

completed (CONDITION_SATISFIED) or a timeout

occurred (TIMEOUT_EXPIRED) Unfortunately, the

timeout has an implementation-defined upper bound

(MAX_CLIENT_WAIT_TIMEOUT_WEBGL) and therefore

may not work in all cases. For instance, Chrome sets

this value to 0 to avoid CPU stalls. To address this

problem, we adopted a technique which we call ticks-

to-signal (TTS) which is similar to the clock-edging

proposed by Kohlbrenner and Shacham [29]. It consists

of calling the clientWaitSync() function in a tight

loop with the timeout set to 0 and counting until it returns

ALREADY_SIGNALED. The full timing measurement consists

of several smaller steps: first 1© flush the command buffer,

and 2© dispatch the command to the GPU, then 3© issue

the WebGLSync fence, and finally 4© count the loops of

clientWaitSync(0) until it is signaled.

If measuring a secret CPU operation we execute the se-

cret between steps 3© and 4©. Whether the CPU or the

GPU acts as ground truth depends on the secret the at-

tacker is trying to leak. However, when measuring a secret

CPU operation, we require the GPU operation to run in

(relatively) constant time. Since the measurement requires a

context change it can be more noisy to the timers based

on EXT_DISJOINT_TIMER_QUERY. Nonetheless, this tech-

nique is quite effective, as we will show in Section V-C.

T4. getSyncParameter: This function provide an equivalent

solution. If called with SYNC_STATUS as parameter after

issuing a fence, it returns either SIGNALED or UNSIGNALED,

which is exactly analogous to clientWaitSync(0).

The timers we build using both these functions work on

every browser that supports the WebGL2 standard (such as

Chrome and Firefox). In fact, in order to comply with the

WebGL2 specification none of these functions can be disabled.

Also, due to the synchronous nature of these timers, we can

use them to measure both CPU and GPU operations.

TABLE I: Results on different browsers for the two families

of timers. With * we indicate driver dependent values.

Chrome Firefox Fuzzyfox DeterFox

TIME_ELAPSED_EXT 1µs 100ns* - -

TIMESTAMP_EXT - 1.8µs* - -

clientWaitSync 60µs 400ns 400ns 1.8µs

getSyncParameter 60µs 400ns 400ns 1.8µs

300 350 400 450
Counter value

0.02

0.04

0.06

Fr
e
q
u
e
n
cy Uncached

Cached

Fig. 1: Clock-edging [29] applied to TIMESTAMP_EXT on

Firefox on Intel HD Graphics 4000.

C. Evaluation

We evaluate our timers against Chrome and Firefox, as well

as two Firefox-derived browsers that implement state-of-the-

art defenses in effort to stop high-precision timing: Fuzzy-

fox [29] and DeterFox [9]. We use a laptop equipped with

an Intel Core i5-6200U processor that includes an integrated

Intel HD Graphics 520 GPU for the measurements. We further

experimented with the same timers on an integrated Adreno

330 GPU on an ARM SoC when developing our side-channel

attack in Section VII and on an Intel HD Graphics 4000 GPU.

Table I shows the results of our experiments. The two

explicit timers, as mentioned before, are driver-/browser-

dependent, but if available, return unambiguous values. So far,

we found that the extension is fully available only on Firefox.

Both Fuzzyfox and DeterFox disable it, without any mention

of it in their manuscripts [9], [29]. Chrome rounds up the

value for TIME_ELAPSED_EXT to 1µs and returns 0 for

TIMESTAMP_EXT.

The two WebGL2-based timers are accessible in all four

browsers. While on Chrome we get a coarser resolution of

60µs, we obtained 400ns resolution on Firefox and Fuzzyfox

and 1.8µs resolution on Deterfox. We further tested our

WebGL2-based timers against Chrome Zero [44], a Chrome

plugin developed to protect users against side channels. This

did not affect them.

TIMESTAMP_EXT represents the biggest threat among

these timers. As we show in Figure 1, by exploiting the

aforementioned clock-edging technique on Firefox we are

capable of crafting a timer with 2.5ns resolution making it

possible to discern cached and uncached accesses. This revives

currently mitigated attacks [18], [28], [38] by providing an

attacker with a high-precision timer.

D. Discussion

We showed how the GPU provides an attacker with

explicit timing sources directly and aids the crafting of

new timers—allowing attackers to bypass state-of-the-art de-

fenses from both industry and academia. As long as the

JavaScript context can synchronously interact with external

contexts such as WebWorkers [18], WebGL and potentially

5

others (e.g., audio), a diligent attacker can craft new tim-

ing sources. Even though disabling some of these interfaces

(e.g., SharedArrayBuffer [1], [41], [47], [50]) allows

to temporarily mitigate the threat of advanced cache attacks,

our homebrewed timers are a demonstration of how tackling

the threat posed by timing side channels by besieging timing

sources does not represent a viable and long term solution to

the issue.

VI. A PRIMER ON THE GPU

Modern SoCs accommodate multiple co-processors within

the same chip to gain better performances while saving space

and power. In order to fully exploit the advantages of this

design, these co-processors usually share resources over the

memory hierarchy. In this section, we look at the general ar-

chitecture of integrated GPUs before studying a concrete GPU

implementation on a commonly deployed ARM SoC. Like

many similar implementations, this integrated GPU shares

DRAM at the bottom of the memory hierarchy with the CPU

(P2). However, to reach DRAM from the GPU, we need to

evict two specialized GPU caches with an entirely different

architecture than that of modern CPUs. We present a novel

reverse engineering technique that makes usage of OpenGL

shaders to reconstruct the architecture of these GPU caches.

We use this knowledge in Section VII for building a DRAM-

based side channel that leaks information about the layout of

data in physical memory.

Fig. 2: Building blocks of an integrated GPU

A. The GPU architecture

A Graphics Processing Unit is a specialized circuit con-

ceived with the purpose of accelerating image rendering.

As mentioned in Section III, this system aids the rendering

pipeline by executing the shaders provided by the developer.

We now discuss how the GPU architecture implements this

pipeline.

Processing units: Figure 2 shows the general architecture of a

GPU. The Stream Processors (SPs) are the fundamental units

of the GPU that are in charge of running the shaders. To maxi-

mize throughput when handling inputs, GPUs include multiple

SPs, each incorporating multiple ALUs to further parallelize

the computation. Shaders running on the SPs can then query

the texture processors (TPs) to fetch additional input data used

during their computations. This data is typically in the form

of textures used to compute the fragment colors to which TPs

apply filters of different natures (e.g., anti-aliasing).

GPU caching: During their execution, shaders can request

external data in the form of textures by querying the TPs.

All this data is stored in DRAM due to its large size. Since

fetching data from DRAM is slow and can cause pipeline

stalls, GPUs often include a two-level private cache (i.e., L1

and L2) to speed up accesses to vertices and textures. While

the larger L2 is used by both SPs, to store vertices, and TPs

to store textures, the latter makes use of a faster (but smaller)

L1 cache to further speed the inner execution of the shader.

We later discuss the architecture of these caches in the Adreno

330 GPU.

In order to increase performances when writing to frame-

buffers, integrated GPUs are usually equipped with smaller

chunks of faster on-chip memory (OCMEM) that allow them

to store portions of the render target and to asynchronously

transfer them back to DRAM, as shown in Figure 2.

B. The Adreno 330: A case study

To better understand the architecture of integrated GPUs,

we analyze the Adreno 330, a GPU found in the common

Snapdragon 800/801 mobile SoCs. These SoCs are embedded

in many Android devices such as LG Nexus 5, HTC One, LG

G2 and OnePlus One.

The A330 exposes a similar architecture to what we de-

scribed earlier in this section. Main peculiarity of this system,

however, is the presence of an IOMMU in between DRAM

and the L2 cache (known as UCHE). This essentially means

that the GPU operates on virtual memory rather than physical

memory, unlike the CPU cores.

Considering the architecture in Figure 2, an attacker can ac-

cess memory either by inputting vertices to the vertex shaders

or fetching textures within the shaders themselves for building

a P2 primitive. Another possibility for accessing memory is by

writing to the framebuffer. All these operations, however, need

careful access patterns that avoid the caches or the OCMEM

in order to reach memory. We found that buffers containing

vertices are lazily instantiated and the implicit synchronization

between parallel executions of the same shader on different

SPs makes it difficult for an attacker to achieve predictable

behavior when accessing memory. Accessing memory through

OCMEM is also tricky given its larger size and asynchronous

transfers. We hence opted for texture fetching. Texture fetching

takes place within the boundaries of a shader, providing strong

control over the order of the memory accesses. Moreover,

textures’ allocations are easy to control, making it possible

to obtain more predictable memory layouts as we explain in

Section VII.

The remaining obstacle is dealing with L1 and L2 in be-

tween the shaders and the DRAM, and the less obvious texture

6

addressing necessary for converting from pixel coordinates to

(virtual) memory locations. We start by analyzing this mapping

function which allows us to access desired memory addresses

before analyzing the cache architecture in A330. We then use

this information to selectively flush the GPU caches in order

to reach DRAM.

1) Texture addressing: Integrated GPUs partition textures

in order to maximize spatial locality when fetching them from

DRAM [16]. Known as tiling, this is done by aggregating

data from close texels (i.e. texture pixels) and storing them

consecutively in memory so that they can be collectively

fetched. Tiling is frequently used on integrated GPUs due to

the limited bandwidth available to/from system memory.

These tiles, in the case of the A330, are 4 × 4 pixels. We

can store each pixel’s data in different internal formats, with

RGBA8 being one of the most common. This format stores

each channel in a single byte. Therefore, a texel occupies

4 bytes and a tile 64 bytes.

Without tiling, translation from (x, y) coordinates to virtual

address space is as simple as indexing in a 2D matrix.

Unfortunately tiling makes this translation more complex by

using the following function to identify the pixel’s offset in

an array containing the pixels’ data:

f(x, y) =
(y

TH

∗
W + TW − 1

TW

+
x

TW

)

∗ (TW ∗ TH)+

(y mod TH) ∗ TW + x mod TW

Here W is the width of the texture and TW , TH are respec-

tively width and height of a tile.

With this function, we can now address any four bytes

within our shader program in the virtual address space. How-

ever, given that our primitive P2 targets DRAM, we need

to address in the physical address space. Luckily, textures

are page-aligned objects. Hence, their virtual and physical

addresses share the lowest 12 bits given that on most modern

architectures a memory page is 4 KB.

2) Reverse engineering the caches: Now that we know

how to access memory with textures, we need to figure out

the architecture of the two caches in order to be able to access

DRAM through them. Before describing our novel reverse

engineering technique and how we used it to understand the

cache architecture we briefly explain the way caches operate.

Cache architecture: A cache is a small and fast memory

placed in-between the processor and DRAM that has the

purpose of speeding up memory fetches. The size of a cache

usually varies from hundreds of KBs to few MBs. In order

to optimize spatial locality the data that gets accessed from

DRAM is not read as a single word but as blocks of bigger

size so that (likely) contiguous accesses will be already cached.

These blocks are known as cachelines. To improve efficiency

while supporting a large number of cachelines, caches are

often divided into a number of sets, called cache sets. Cache-

lines, depending on their address, can be place in a specific

cache set. The number of cachelines that can simultaneously

1 #define MAX max // max offset

2 #define STRIDE stride // access stride

3

4 uniform sampler2D tex;

5

6 void main() {

7 vec4 val;

8 vec2 texCoord;

9 // external loop not required for (a)

10 for (int i=0; i<2; i++) {

11 for (int x=0; x < MAX; x += STRIDE) {

12 texCoord = offToPixel(x);

13 val += texture2D(tex, texCoord);

14 }

15 }

16 gl_Position = val;

17 }

Listing 1: Vertex shader used to measure the size of the

GPU caches.

be placed in a cache set is referred to as the wayness of the

cache and caches with larger ways than one are known as

set-associative caches.

When a new cacheline needs to be placed in a cache

set another cacheline needs to be evicted from the set to

make space for the new one. A predefined replacement policy

decides which cacheline needs to be evicted. A common

replacement strategy is LRU or some approximation of it.

From this description we can deduce the four attributes we

need to recover, namely (a) cacheline size, (b) cache size, (c)

associativity and (d) replacement policy.

Reversing primitives: To gain the aforementioned details

we (ab)use the functionalities provided by the GLSL code

that runs on the GPU. Listing 1 presents the code of the

shader we used to obtain (b). We use similar shaders to

obtain the other attributes. The OpenGL’s texture2D()

function [19] interrogates the TP to retrieve the pixels’ data

from a texture in memory. It accepts two parameter: a texture

and a bidimensional vector (vec2) containing the pixel’s

coordinates. The choice of these coordinates is computed

by the function offToPixel() which is based on the

inverse function g(off) = (x, y) of f(x, y) described earlier.

The function texture2D() operates with normalized device

coordinates, therefore we perform an additional conversion to

normalize the pixel coordinates to the [-1,1] range. With this

shader, we gain access to memory with 4 bytes granularity

(dictated by the RGBA8 format). We then monitor the usage

of the caches (i.e., number of cache hits and misses) through

the performance counters made available by the GPU’s Per-

formance Monitoring Unit (PMU).

Size: We can identify the cacheline size (a) and cache size (b)

by running the shader in Listing 1 – with a single loop for

(a). We initially recover the cacheline size by setting STRIDE

to the smallest possible value (i.e., 4 bytes) and sequentially

increasing MAX of the same value after every iteration. We

recover the cacheline as soon as we encounter 2 cache misses

(Cmiss = 2). This experiment shows that the size of cacheline

7

L1miss
= L1 req

0 256 512 768 1024 1280

0

32

64

96

128

160

0 32 64 96 128 160

MAX value (bytes)

L1 requests

L1
 m

is
se

s

UCHEmiss
= UCHE req

8 16 24 32

256

512

768

1024

256 512 768 1024

MAX value (KB)

UCHE requests

U
C

H
E

 m
is

se
s

Fig. 3: Cache misses over cache requests for L1 and UCHE caches. The results are extracted using the GPU performance

counter after each run of the shader in Listing 1 with STRIDE equal to cacheline size and increasing MAX value.

in L1 and UCHE are 16 and 64 bytes respectively.

We then set STRIDE to the cacheline size and run Listing 1

until the number of cache misses is not half of the requests

anymore (Cmiss 6= Creq/2). We run the same experiment for

both L1 and UCHE. Figure 3 shows a sharp increase in the

number of L1 misses when we perform larger accesses than

1 KB and for UCHE after 32 KB, disclosing their size.

Associativity and replacement strategy: The non-

perpendicular rising edge in both of the plots in Figure 3

confirms they are set-associative caches and it suggests a

LRU or FIFO replacement policy. Based on the hypothesis

of a deterministic replacement policy we retrieved the details

of the cache sets (c) by means of dynamic eviction sets. This

requires two sets of addresses, namely S, a set that contains

the necessary amount of elements to fill up the cache, and E,

an eviction set that initially contains only a random address

E0 /∈ S. We then iterate over the sequence {S,E, Pi} where

Pi is a probe element belonging to S ∪ E0. We perform

the experiment for increasing i until Pi generates a cache

miss. Once we detect the evicted cacheline, we add the

corresponding address to E and we restart the process. We

reproduce this until Pi = E0. When this happens we have

evicted every cacheline of the set and the elements in E can

evict any cacheline that map to the same cache set (i.e., an

eviction set). Hence, the size of E is the associativity of the

cache.

Once we identified the associativity of the caches, we can

recover the replacement strategy (d) by filling up a cache set

and accessing again the first element before the first eviction.

Since this element gets evicted even after a recent use in both

of the caches, we deduce a FIFO replacement policy for both

L1 and UCHE.

Synopsis: All the details about these two caches are summa-

rized in Table II. As can be seen from this table, there are many

peculiarities in the architecture of these two caches and in their

interaction. First, the two caches have different cacheline sizes,

which is unusual when comparing to CPU caches. Then, L1

presents twice the ways UCHE has. Furthermore, one UCHE

cacheline is split into 4 different L1 cachelines. These are

shuffled over two different L1 cache sets as shown in Figure 4.

Fig. 4: Mapping of a 64-byte UCHE cacheline into multiple

L1 cacheline over two different L1 sets.

TABLE II: Summary of the two level caches.

L1 UCHE

Cacheline (bytes) 16 64

Size (KB) 1 32

Associativity (#ways) 16 8

Replacement policy FIFO

Inclusiveness non-inclusive

We will exploit this property when building efficient eviction

strategies in Section VII. Finally, we discovered L1 and UCHE

to be non-inclusive. This was to be expected considering that

L1 has more ways than UCHE.

C. Generalization

Parallel programming libraries, such as CUDA or OpenCL,

provide an attacker with a more extensive toolset and have

already been proven to be effective when implementing side-

channel attacks [24], [25], [34]. However, we decided to

restrict our abilities to what is provided by the OpenGL ES 2.0

API in order to relax our threat model to remote WebGL-based

attacks. Newer versions of the OpenGL API provide other

means to gain access to memory such as image load/store,

which supports memory qualifiers, or SSBOs (Shader Storage

Buffer Objects), which would have given us linear addressing

instead of the tiled addressing explained in Section VI-B1.

However, they confine the threat model to local attacks carried

out from a malicious application.

Furthermore, the reverse engineering technique we de-

scribed in Section VI-B2 can be applied to other OSes

and architectures without much effort. Most of the GPUs

8

(a) (b) (c) (d)

Fig. 5: The diagrams show an efficient GPU cache (set) eviction strategy. We use the notation a.b to abbreviate the lengthy

v[4K×a+16×b]. The eviction happens in 4 steps: (a) first we fill up the 8 slots available in a cache set by accessing v[4K×i];
(b) after the cache set is full we evict the first element by accessing v[4K×8]; (c) then, in order to access again v[0] from

DRAM we need to actually read v[32] since v[0] is currently cached in L1. The same holds for every page v[4K×i] for

i ∈ [1, 6]; (d) finally, we evict the first L1 cacheline by performing our 17th access to v[4K×7+32] which replaces v[0].

available nowadays are equipped with performance counters

(e.g. Intel, AMD, Qualcomm Adreno, Nvidia) and they all

provide a userspace interface to query them. We employed

the GL_AMD_performance_monitor OpenGL extension

which is available on Qualcomm, AMD and Intel GPUs.

Nvidia, on the other hand, provides its own performance

analysis tool called PerfKit [13].

VII. SIDE-CHANNEL ATTACKS FROM THE GPU

In Section VI, we showed how to gain access to remote

system memory through the texture fetch functionality exposed

from the WebGL shaders. In this section, we show how we are

able to build an effective and low-noise DRAM side-channel

attack directly from the GPU. Previous work [24], [25], [34]

focuses on attacks in discrete GPGPU scenarios with a limited

impact. To the best of our knowledge, this is the first report of

a side-channel attack on the system from an integrated GPU

that affects all mobile users. This attack benefits from the small

size and the deterministic (FIFO) replacement policy of the

caches in these integrated GPUs. We use this side channel

to build a novel attack that can leak information about the

state of physical memory. This information allows us to detect

contiguous memory allocation (P3) directly in JavaScript,

a mandatory requirement for building effective Rowhammer

attacks.

First, we briefly discuss the DRAM architecture. We then

describe how we are able to build efficient eviction sets

to bypass two levels of GPU caches to reach DRAM. We

continue by explaining how we manage to obtain contiguous

memory allocations and finally we show how, by exploiting

our timing side channel, we are able to detect these allocations.

A. DRAM architecture

DRAM chips are organized in a structure of channels,

DIMMs, ranks, banks, rows and columns. Channels allow

parallel memory accesses to increase the data transfer rate.

Each channel can accommodate multiple Dual In-line Memory

Modules (DIMMs). These modules are commonly partitioned

in either one or two ranks which usually correspond to the

physical front and back of the DIMM. Each rank is then

divided into separate banks, usually 8 in DDR3 chips. Finally

every bank contains the memory array that is arranged in rows

and columns.

DRAM performs reads at row granularity. This means that

fetching a specific word from DRAM activates the complete

row containing that word. Activation is the process of ac-

cessing a row and storing it in the row buffer. If the row

is already activated, a consecutive access to the same row

will read directly from the row buffer causing a row hit.

On the other hand, if a new row gets accessed, the current

row residing in the buffer needs to be restored in its original

location before loading the new one (row conflict) [40]. We

rely on this timing difference for detecting contiguous regions

of physical memory as we discuss in Section VII-D.

B. Cache Eviction

Considering the GPU architecture presented in Section VI,

the main obstacle keeping us from accessing the DRAM from

the GPU is two levels of caches. Therefore, we need to build

efficient eviction strategies to bypass these caches. From now

on we will use the notation v[off] to describe memory access

to a specific offset from the start of an array v in the virtual

address space.

Set-associative caches require us to evict just the set contain-

ing the address v[i], if we want to access v[i] from memory

again. Having a FIFO replacement policy allows us to evict

the first cacheline loaded into the set by simply accessing a

new address that will map to the same cache set. A UCHE set

can store 8 cachelines located at 4 KB of stride (i.e., v[4K×i]
as shown in Figure5a). Hence, if we want to evict the first

cacheline, we need at least 8 more memory accesses to evict it

from UCHE (Figure 5b). In a common scenario with inclusive

caches, this would be enough to perform a new DRAM access.

In these architectures, in fact, an eviction from the Last Level

Cache (LLC) removes such cacheline from lower level caches

as well. However, the non-inclusive nature of the GPU caches

neutralizes this approach.

To overcome this problem we can exploit the particularities

in the architecture of these 2 caches. We explained in Sec-

tion VI-B2 that a UCHE cacheline contains 4 different L1

cachelines and that two addresses v[64×i] and v[64×i+32]

map to two different cachelines into the same L1 set (Figure 4).

As a result, if cacheline at v[0] was stored in the UCHE and

was already evicted, we can load it again from DRAM by ac-

cessing v[0+32]. By doing so we simultaneously load the new

v[0+32] cacheline into L1 (Figure 5c). This property allows

us to evict both of the caches by alternating these 9 memory

9

Allocation order

0
1 1 1 1 1 1

3 3 3 3 3 3 3 3

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

0
1
2
3
4
5
6

orders

Bank 0 Bank 1 Bank 7Bank 6

0
1
2
3
4
5
6

b

a

Bank 0 Bank 1 Bank 7Bank 6

3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

b

a

Bank 0 Bank 1 Bank 7Bank 6

hit

conflict

orders

Access order

(a) (b) (c)

Fig. 6: The diagrams show how we can force the buddy allocator into providing us with contiguous physical memory and how

we can detect this contiguous areas using our hit-pattern. (a) shows the buddy allocator keeping track of available memory in

its free_lists. (b) shows the process of allocating 2 arrays namely a and b of respectively 15 and 40 pages, and the result

of this process on the buddy’s free_lists. (c) shows how our hit-pattern detects the contiguous memory backing b.

accesses between v[4K×i] and v[4K×i+32] (Figure 5d). Our

access patterns will exploit this to be completely oblivious of

L1. As a consequence, from now on we will simply mention

accesses to addresses v[4K×i]. Nonetheless, every time we

will use this notation it is important to remember that it

implicitly conceals both of the accesses.

C. Allocating contiguous memory

Before discussing how the Adreno GPU allocates memory,

we need to explain the relationship between physical memory

contiguity and DRAM adjacency.

Contiguity & Adjacency: In order to carry out a reliable

Rowhammer attack, we need three adjacent rows inside a

DRAM bank. It is important to understand that adjacency 6=
contiguity. The memory controller decides where to store

the data on a DRAM location based on the given physical

address. Pessl et al. [40] reversed engineered the mapping

between physical addresses and DRAM locations for the Snap-

dragon 800/801 chipsets. For simplicity, we adopt a simplified

DRAM model and assume contiguity ≅ adjacency, but the

interested readers can find how we relax this assumption in

Appendix A using the information in [40]. In the Snapdragon

800 each row n stores two consecutive pages (i.e., 8 KB). With

2 pages per row and 8 banks within the module, rows n and

n+ 1 are 16 pages apart.

The buddy allocator: The Adreno 330 GPU operates on

virtual addresses due to the presence of an IOMMU. This

means that it is capable of dealing with physically non-

contiguous memory and it allows the GPU driver to allocate

it accordingly. The Adreno android kernel driver allocates

memory using the alloc_page() macro which queries the

buddy allocator for single pages [33].

The buddy allocator manages free memory in

free_lists containing chunks of power-of-two number

of available pages [17]. The exponent of this expression is

known as the order of the allocation. Figure 6a shows these

free_lists. When the buddy allocator receives a request

for a block of memory, it tries to satisfy that allocation from

the smallest possible orders. Figure 6b shows an example

of such process. We want to allocate two buffers, namely a
with 15 pages and b with 40 pages. We start by allocating

a. alloc_page() asks for pages one by one (i.e., order 0

allocations). The order 0 free_list contains one single

page. Therefore, the first allocation makes it empty. The

following page then needs to come from order 1 (i.e., 21

contiguous pages). This means that buddy needs to split the

block in two separate pages and return one back to the buffer

while storing the other one in the order 0 free_list.

This process is repeated for every requested page and can be

executed for every order n < MAX_ORDER. That is, if no

block of order n is vacant, a block from the next first available

order (i.e., n+ k) is recursively split in two halves until order

n is reached. These halves are the so-called buddies and all

the allocated memory coming from order n+ k is physically

contiguous. As a consequence, considering our example in

Figure 6b array a will be served by blocks of order 0, 1 and

3, while b by a single block of order 6, since all the small

orders are exhausted.

We use this predictable behavior of the buddy allocator for

building our primitive P3. Due to our precondition of 3 adja-

cent rows to perform a reliable Rowhammer attack, we there-

fore require an allocation of order ⌈log2(16pages × 3row)⌉ = 6.

D. Detecting contiguous memory

Now that we know that we can force the buddy allocator into

providing us with contiguous memory necessary to perform

our Rowhammer attack, we require a tool to detect these

contiguous areas. Our tool is a timing side-channel attack.

We introduce a side channel that measures time differences

between row hits and row conflicts in order to deduce infor-

mation about the order of the allocations.

To distinguish between contiguous and non-contiguous al-

locations, we can either test for row conflicts or row hits. In

Figure 6b, we allocated array b of 40 pages from an order six

allocation that spans over four full rows. In our example, a

full row is 64 KB of contiguous physical memory that maps

to the same row n over the different banks. It would be

intuitive to exploit the row conflicts to detect memory located

in adjacent rows. For example, accessing b[0] and b[64 K]

generates a row conflict since b is backed by physically-

contiguous memory. However, this solution is limited due to

the way buddy allocator works. We previously explained that

to obtain a block of order n+1 from buddy we need to exhaust

every n-order block available. This implies that allocations

of order n are likely to be followed by other allocations of

the same order. Since every allocation of order ≥ 4 spans

over a full row, every access to allocations coming from these

orders following the v[64K×i] pattern will always generate

row conflicts. At the same time, allocations of order < 4 are

10

also likely to generate conflicts since the blocks in the buddy’s

free_lists are not predictable (Figure 6b). To address this

problem, we detect blocks of order ≥ 4 by testing for row hits

instead. This allows us to obtain the same granularity while

achieving less noisy measurements.

This access pattern, which we call hit-pattern, touches 15

virtually-contiguous pages. To extract a single measurement

we repeatedly iterate over it in order to minimize the noise. In

Figure 6c we show how the hit-pattern behaves when touching

pages belonging to arrays a and b. As you can see, sequential

accesses over pages of b generate only row hits (green pages)

while the same access pattern over a can arbitrarily generate

row conflicts (red pages) or row hits depending on the backing

allocations.

We limit our hit-pattern to 15 pages instead of the 16 pages

of a full row because of the unknown physical alignment of

our first access v[0]. For instance, in Figure 6c, we set our

v[0]=b[13] and, as you can see, v[4K×(16)](=b[29]) generates

a row conflict since v[0] is not row-aligned.

E. Results

We evaluate our side channel to show how it can detect allo-

cation trends of the buddy allocator. To obtain these measure-

ments, we employ the TIME_ELAPSED_EXT asynchronous

timer presented in Section V. We run the hit-pattern for v[0]

equal to every page within 512 KB areas. After collecting all

these measurements, we use their median value to maximize

the number of row conflicts for allocations of order < 4 while

filtering out the noise from those of order ≥ 4. .

Figure 7 shows the mean access time over the allocation

order. Allocations of order ≥ 4 have a lower median and

are less spread compared to allocations of order < 4. Due

to the deterministic replacement policy of the GPU caches,

we can see how the measurements have very little noise for

allocation of order ≥ 4. While the granularity of our side

channel is limited to order 4, this still provides us with valuable

information regarding the allocation trend that allows us to

infer the current status of the allocator. This makes it possible

to heuristically identify the order of the underlying allocations.

95

119

143

167

0 1 2 3 4 5 6
Allocation Order

M
ea

n
A

cc
es

s
T

im
e

(n
s)

Fig. 7: Evaluation of contiguous memory timing side channel.

Mean access time is equal to Ttotal/#accesses. Number of

accesses is dependent on the resolution of the available timer.

VIII. ROWHAMMER ATTACKS FROM THE GPU

We now have access to contiguous physical memory directly

in JavaScript using our GPU-based side-channel attack dis-

cussed in Section VII. We demonstrate how we can remotely

trigger Rowhammer bit flips on this contiguous memory by

exploiting the texture fetching functionality from a WebGL

shader running on the GPU. After a brief introduction of the

Rowhammer bug, we discuss how we can trigger these bit flips

from the GPU by efficiently evicting GPU caches. Finally,

we evaluate the results of our implementation and discuss its

implications.

A. The Rowhammer bug

In Section VII-A, we described the organization of a DRAM

chip explaining the concept of rows. These rows are composed

of cells where each cell stores the value of a bit in a

capacitor. The charge of a capacitor is transient, and therefore,

DRAM needs to be recharged within a precise interval (usually

64 ms).

Rowhammer is a software-based fault injection attack that

can be considered a fallout of this DRAM property. By

frequently activating specific rows an attacker can influence the

charge in the capacitors of adjacent rows, making it possible

to induce bit flips in a victim row without having access to its

data [27].

There are two main variants of Rowhammer: (1) single-

sided Rowhammer and (2) double-sided Rowhammer. (1)

Single-sided Rowhammer access a specific aggressor row n
triggering bit flips on the two adjacent rows n− 1 and n+1.

(2) Double-sided Rowhammer, instead, amplifies the power of

single-sided Rowhammer by reversing the roles of these rows.

Therefore, the attacker quickly access rows n − 1 and n + 1
(i.e., aggressor rows) in order to impose higher pressure on

row n (i.e., victim row) capacitors triggering more bit flips.

Double-sided Rowhammer, however, requires some knowledge

about physical memory in order to select aggressor rows.

This information is not available in JavaScript and cannot be

derived if the system does not support huge pages.

In many instances, double-sided Rowhammer is necessary

for triggering Rowhammer bit flips. For example, in the Dedup

Est Machina attack [7], the authors report that they could not

trigger bit flips with the default refresh rate with single-sided

Rowhammer given that Windows does not support huge pages.

The situation is quite similar with ARM-based devices that

often do not support huge pages. Fortunately, our novel GPU-

based side-channel attack discussed in Section VII, provides us

with information about contiguous physical memory regions in

JavaScript, allowing us to perform double-sided Rowhammer

on ARM devices in the browser.

B. Eviction-based Rowhammer on ARM

In order to trigger bit flips we need to be able to access

the aggressor rows fast enough to influence the victim row.

Therefore, we need to build an access pattern that allows

us to optimize the access time to the aggressor rows. In

Section VII, we demonstrated an efficient cache eviction

11

TABLE III: Ability to trigger bit flips natively (left) and

remotely (right). * implements eviction-based Rowhammer.

Drammer Rowhammer.js∗ GPU∗

Nexus 5 X/ - - / - X/ X

HTC One M8 X/ - - / - X/ X

LG G2 X/ - - / - X/ X

strategy to implement our contiguous memory detection side

channel. This efficient technique gains even more relevance

when trying to trigger Rowhammer bit flips. The FIFO replace-

ment policy requires us to perform DRAM accesses to evict

a cacheline. This is much slower compared to architectures

with the common LRU policy where the attacker can reuse

cached addresses for the eviction set. Nonetheless, we can

benefit again from the limited cache size and deterministic

replacement policy in GPUs to build efficient access patterns.

Since DRAM rows cover 8 KB areas (split among the

ranks) of the virtual address space and each UCHE set stores

addresses at 4 KB of stride we can map at most two addresses

from each row to a cache set. Having two aggressor rows

when performing double-sided Rowhammer we can load 4

cachelines from these rows. With 8 ways per UCHE set we

need to perform 5 more DRAM accesses in order to evict

the first element from the cache set. We call these accesses

idle-accesses, and we choose their addresses from other banks

to keep the latency as low as possible. Our access pattern

interleaves hammering-accesses with idle-accesses in order

to obtain a pareto optimal situation between minimum and

maximum idle time. Since we have no knowledge about the

row alignment among the different allocations we need to

indiscriminately hammer every 4 KB offset.

C. Evaluation

Drammer [48] studies the correlation between median ac-

cess time per read and number of bit flips. The authors

demonstrate that the threshold time needed to trigger bit

flips on ARM platforms is ∼260ns for each memory access.

We computed the mean execution time over the 9 memory

accesses following our hammer-pattern. The distance between

two hammer-access is on average ∼180ns, which means that

our GPU-based hammering is fast-enough for triggering bit

flips. We tested our implementation on 3 vulnerable smart-

phones: Nexus 5, HTC One M8 and LG G2. All of them

including the Snapdragon 800/801 chipsets. We managed to

obtain bit flips on all three platforms.

We compare our implementation against a native eviction-

based implementation running on the CPU adopting cache

eviction strategies proposed in Rowhammer.js [20]. Even on

our most vulnerable platform (i.e., Nexus 5) and with perfect

knowledge of physical addresses for building optimal eviction

sets, we did not manage to trigger any bit flip. The reason

for this turned out to be the slow eviction of CPU caches on

ARM: Each memory access, including the eviction of CPU

caches, takes 697ns which is too slow to trigger Rowhammer

bit flips. Table III summarizes our findings. Our GPU-based

Rowhammer attack is the only known technique that can

produce bit flips remotely on mobile platforms.

Furthermore, we demonstrate the advantages of GPU-

accelerated microarchitectural attacks by measuring the time to

first bit flip and #flips/min on the Nexus 5. We excluded the

other two platforms due to their limited number of vulnerable

cells. This includes the time required to detect contiguous

memory via our side-channel attack in Section VII).

D. Results

We run the experiment 15 times looking for 1-to-0 bit

flips. After each experiment, we restart the browser. It took

us between 13 to 40 seconds to find our first bit flip with an

average of 26 seconds in the case of 1-to-0. This difference in

the time that our attack takes to find its first bit flip is due to

locating contiguous memory given that the browser physical

memory layout is different on each execution. Finding bit flips

usually takes few seconds once we detect an allocation of order

≥ 4. Moreover, after identifying the first bit flip, on average,

we find 23.7 flips/min. We try the same experiment looking

for 0-to-1 bit flips and obtained similar results. But after the

first flip, on average, we find 5 flips/min, making them less

frequent than 1-to-0 bit flips.

IX. EXPLOITING THE GLITCH

In this section, we describe GLitch, our remote end-to-end

exploit that allows an attacker to escape the Firefox JS sandbox

on Android platforms. We start with bit flips in textures from

the previous section and show how they can be abused.

A. Reusing Vulnerable Textures

After templating the memory by using page sized textures,

we need to release the textures containing the exploitable

bit flips. To improve performance, WebGL uses a specific

memory pool for storing textures. This pool contains 2048

pages. Hence, to avoid our target texture to remain in this pool,

we first need to release 2048 previously-allocated textures

before releasing the vulnerable texture(s). After releasing our

target texture, we can start allocating ArrayObjects which

will be containers for data that we will later corrupt. The

probability that our target texture gets reused by one of

our ArrayObjects depends on the memory status of the

system. For example, our target texture gets reused by our

ArrayObjects 65% of the time when allocating 50 MB

of them and 100% of the times when allocating 300 MB

ArrayObjects. These results are taken when the system is

under normal memory conditions (i.e., Firefox together with

other applications running in background).

B. Arbitrary Read/Write

We now discuss how we corrupt elements of an

ArrayObject to escape the Firefox JS sandbox. We rely on

a technique known as type flipping [7] in order to leak pointers

(i.e., breaking ASLR) and create references to counterfeit

objects. By exploiting this technique we are able to gain an

arbitrary read/write primitive.

12

Type flipping: Firefox employs a common technique known

as NaN-boxing [2], [7] to encode object pointers in IEEE-

754 doubles as NaN values. Every value stored in an

ArrayObject is of 64 bits. The first 32 bits of this value are

the so-called tag which identifies the type of the object. If the

tag value is below 0xffffff80 (i.e., JSVAL_TAG_CLEAR)

the whole 64-bit word is considered an IEEE-754 double,

otherwise the last 32 bits are considered as a pointer to an

object. This allows us to exploit every bit flip within the first

25 bits of the tag to turn any pointer into a double and vice

versa. Such property provides us with two powerful primitives

that we use in our exploit: 1) leaking any object pointer by

triggering a 1-to-0 bit flip (breaking ASLR), and 2) the ability

of forging a pointer to any memory location.

The exploit chain: The goal of the exploit is this of obtaining

an arbitrary read/write primitive which can eventually lead to

remote code execution [4]. ArrayBuffers are the best fit to

gain such primitive since they provide the attacker with full

control over their content. As a consequence, we want to create

a reference to a fake ArrayBuffer whose data pointer we

control. The attack unfolds in 3 steps: 1© we use a 1-to-0 bit

flip to leak ASLR, then we use a 0-to-1 bit flip to gain first
2© an arbitrary read, and finally 3© arbitrary write.
1© We start by storing the pointer to an inlined

ArrayBuffer (i.e., header adjacent to data) in the 1-to-0

vulnerable location. Triggering a bit flip turns this reference

into a double that we can read, breaking ASLR. 2© Af-

terwards, we want to craft our fake ArrayBuffer. This

requires an arbitrary read to leak fields of its header yet

unknown to the attacker. We gain this by crafting a UTF-16

JSString which only requires a pointer to the string’s data.

JSStrings are immutable, hence the read-only primitive.

We build the fake string inside the leaked ArrayBuffer

pointing to its header. We can then craft a soon-to-be pointer

(i.e., double) to the JSString due to the inlined nature

of the leaked ArrayBuffer. By storing the double in the

0-to-1 vulnerable cell and triggering the bit flip we are able

to reference the JSString to extract the content of the

ArrayBuffer’s header. 3© Finally, we can craft our fake

ArrayBuffer. We simply store the fake header within the

leaked ArrayBuffer, and we proceed to crafting a reference

as we did for the JSString. This provides us with the

desired arbitrary read/write primitive.

C. Results

We run GLitch 17 times on the Nexus 5. Out of the 17

trials, GLitch successfully compromised the browser in 15

cases and in the remaining two cases, one of the bit flips

did not trigger (i.e., no crash). The results along with a

comparison of related attacks are summarized in Table IV.

The end-to-end exploitation time is varied and dominated by

finding exploitable bit flips. We achieved the fastest end-to-end

compromise in only 47 seconds while the slowest compromise

took 586 seconds. On average, GLitch can break ASLR in

only 27 seconds and fully compromise the browser remotely in

116 s, making it the fastest known remote Rowhammer attack.

TABLE IV: End-to-end attack time for breaking ASLR and

compromising the system with GLitch and comparison with

related attacks. We use ‘-’ when the attack does not have that

target or ‘*’ when we did not find the exploitation time.

Attack Compromise Breaking ASLR

GLitch 116 s 27 s

Dedup Est Machina [7] 823 s 743 s

Rowhammer.js [20] * -

AnC [18] - 114 s

X. MITIGATIONS

In this section we discuss possible mitigations against

GPU-based attacks. We divide the discussion in two parts:

1) defending against side-channel attacks, and 2) possible

solutions against browser-based Rowhammer attacks.

A. Timing side channels

To protect the system against both GPU and CPU side-

channel attacks, currently the only practical solution in the

browser is disabling all possible timing sources. As we dis-

cussed earlier, we do not believe that breaking timers alone

represents a solid long-term solution to address side-channel

attacks. However, we do believe that eliminating known timers

makes it harder for attackers to leak information. Hence, we

now discuss how to harden the browser against the timers we

built in Section V.

First, we recommend disabling the explicit timers pro-

vided by EXT_DISJOINT_TIMER_QUERY. As described

in Section V by combining clock-edging [29] with

TIMESTAMP_EXT we are able to discern CPU cached and

uncached accesses reviving recent attacks [18], [28], [38].

Furthermore, we suggest impeding every type of explicit syn-

chronization between JavaScript and the GPU context that can

be used to build precise timers. This can be accomplished by

redesigning the WebGLSync interface. As a first change we

suggest to completely disable the getSyncParameter()

function since it explicitly provides information regarding

the GPU status through its return value (i.e., signaled vs.

unsignaled). In order to mitigate the timer introduced from the

clientWaitSync() function we propose a different design

adopting callback functions that execute in the JavaScript event

loop only when the GPU has concluded the operation. By

doing so it would be impossible to measure the execution

time of an operation while also avoiding the issue of possible

JavaScript runtime stalls.

Another mitigation possibility is introducing extra memory

accesses as proposed by Schwarz et al. [44]. This, however,

does not protect against the attack we described in Section VII

since the attack runs from the GPU. The potential security

benefits of implementing this solution on GPUs and its per-

formance implications require further investigation.

B. GPU-accelerated Rowhammer

Ideally, Rowhammer should be addressed directly in hard-

ware or vendors need to provide hardware facilities to address

13

Rowhammer in software. For example, Intel processors pro-

vide advanced PMU functionalities that allows efficient detec-

tion of Rowhammer events as shown by previous work [5].

Unfortunately, such PMU functionalities are not available on

ARM platforms and, as a result, detecting Rowhammer events

will be very costly, if at all possible. But given the extent of

the vulnerability and the fact that we could trigger bit flips in

the browser on all three phones we tried, we urgently need

software-based defenses against GPU-accelerated attacks.

As discussed in Section VIII, to exploit Rowhammer bit

flips, an attacker needs to ensure that the victim rows are

reused to store sensitive data (e.g., pointers). Hence, we

can prevent an attacker from hammering valuable data by

enforcing stricter policies for memory reuse. A solution may

be enhancing the physical compartmentalization initiated by

CATT [8] to userspace applications. For example, one can

deploy a page tagging mechanism that does not allow the reuse

of pages tagged by an active WebGL context. By isolating

pages that are tagged by an active WebGL context using guard

rows [8], one can protect the rest of the browser from potential

bit flips that may be caused by these contexts.

There are trade-offs in terms of complexity, performance,

and capacity with such a solution. Implementing a basic

version of such an allocator with statically-sized partitions

for WebGL contexts is straightforward, but not flexible as it

wastes memory for contexts that do not use all the allocated

pages. Dynamically allocating (isolated) pages increases the

complexity and has performance implications. We intend to

explore these trade-offs as part of our future work.

XI. RELATED WORK

Olson et al. [37] provide a taxonomy of possible integrated

accelerators threats classified based on the confidentiality,

integrity and availability triad. They discuss that side-channel

and fault attacks can potentially be used to thwart the con-

fidentiality and integrity of the system. To the best of our

knowledge, the attacks presented in this paper are the first

realization of these attacks that make use of timing information

and Rowhammer from integrated GPUs to compromise a

mobile phone. While there has been follow up work that

shields invalid memory accesses from accelerators [36], we

believe further research is necessary to provide protection

against microarchitectural attacks. We divide the analysis of

these microarchitectural attacks in the rest of this section.

A. Side-channel Attacks

Side channels have been widely studied when implemented

natively from the CPU [6], [18], [30], [35], [39], [40], [52].

In recent years, however, researchers have relaxed the threat

model by demonstrating remote attacks from a malicious

JavaScript-enabled website [18], [38]. All these instances,

however, are attacks carried out from the CPU.

There is some recent work on showing possibilities of exe-

cuting microarchitectural attacks from the GPU, but they target

niche settings with little impact in practice. Jiang et al. [24],

[25] present two attack breaking AES on GPGPUs, assuming

that the attacker and the victim are both executing on a shared

GPU. Naghibijouybari et al. [34] demonstrate the possibility of

building covert-channels between two cooperating processes

running on the GPU. These attacks focus on general-purpose

discrete GPUs which are usually adopted on cloud systems,

whereas we target integrated GPUs on commodity hardware.

B. Rowhammer

Since Kim et al. [27] initially studied Rowhammer, re-

searchers proposed different implementations and exploitation

techniques. Seaborn and Dullien [45] first exploited this hard-

ware vulnerability to gain kernel privileges by triggering bit

flips on page table entries. Drammer uses a similar exploitation

technique to root ARM Android devices [48]. These imple-

mentations, however, relied on the ability of accessing memory

by bypassing the caches, either using the CLFLUSH instruction

on x86 64 or by exploiting DMA memory [48]. Our technique

does not require any of these expedient.

Dedup Est Machina [7] and Rowhammer.js [20] show

how Rowhammer can be exploited to escape the JavaScript

sandbox. These attacks rely on evicting the CPU caches in

order to reach DRAM. On the ARM architecture, eviction-

based Rowhammer is too slow to trigger Rowhammer bit flips

even natively due to large general-purpose CPU caches. We

showed for the first time how GPU acceleration allows us to

trigger bit flips evicting the GPU caches. This allowed us to

trigger bit flips from JavaScript on mobile devices.

XII. CONCLUSIONS

We showed that it is possible to perform advanced mi-

croarchitectural attacks directly from integrated GPUs found

in almost all mobile devices. These attacks are quite pow-

erful, allowing circumvention of state-of-the-art defenses and

advancing existing CPU-based attacks. More alarming, these

attacks can be launched from the browser. For example, we

showed for the first time that with microarchitectural attacks

from the GPU, an attacker can fully compromise a browser

running on a mobile phone in less than 2 minutes. While we

have plans for mitigations against these attack, we hope our

efforts make processor vendors more careful when embedding

the next specialized unit into our commodity processors.

DISCLOSURE

We are coordinating with the Dutch Cyber Security Centrum

(NCSC) for addressing some of the issues raised in this paper.

ACKNOWLEDGEMENTS

We would like to thank our shepherd Simha Sethumadhavan

and our anonymous reviewers for their valuable feedback.

Furthermore, we want to thank Rob Clark for his precious

insights throughout the research. This work was supported

by the European Commission through project H2020 ICT-32-

2014 SHARCS under Grant Agreement No. 644571 and by

the Netherlands Organisation for Scientific Research through

grant NWO 639.023.309 VICI Dowsing.

14

REFERENCES

[1] “Actions required to mitigate Speculative Side-Channel Attack tech-
niques,” https://www.chromium.org/Home/chromium-security/ssca, Ac-
cessed on 20.01.2018.

[2] “Value.h,” https://dxr.mozilla.org/mozilla-central/source/js/public/Value.
h, Accessed on 30.12.2017.

[3] “WebGL current support,” http://caniuse.com/#feat=webgl, Accessed on
30.12.2017.

[4] argp, “OR’LYEH? The Shadow over Firefox,” in Phrack 0x45.

[5] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks,” in ASPLOS’16.

[6] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[7] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P’16.

[8] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAnt
Touch This: Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory,” in SEC’17.

[9] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic Browser,” in CCS’17.

[10] A. Christensen, “Reduce resolution of performance.now,” https://bugs.
webkit.org/show bug.cgi?id=146531, Accessed on 30.12.2017.

[11] Chromium, “window.performance.now does not support sub-millisecond
precision on windows,” https://bugs.chromium.org/p/chromium/issues/
detail?id=158234#c110, Accessed on 30.12.2017.

[12] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture Support for Accelerator-rich CMPs,” in DAC’12.

[13] N. Corporation, “Nvidia perfkit,” https://developer.nvidia.com/
nvidia-perfkit, Accessed on 30.12.2017.

[14] Esmaeilzadeh, Hadi and Blem, Emily and St. Amant, Renee and
Sankaralingam, Karthikeyan and Burger, Doug, “Dark Silicon and the
End of Multicore Scaling,” in ISCA’11.

[15] I. Ewell, “Disable timestamps in WebGL.” https://codereview.chromium.
org/1800383002, Accessed on 30.12.2017.

[16] F. Giesen, “Texture tiling and swizzling,” https://fgiesen.wordpress.com/
2011/01/17/texture-tiling-and-swizzling/, Accessed on 30.12.2017.

[17] M. Gorman, “Chapter 6: Physical Page Allocation,” https:
//www.kernel.org/doc/gorman/html/understand/understand009.html,
Accessed on 30.12.2017.

[18] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS’17.

[19] K. Group, “OpenGL ES Shading Language version 1.00,” https:
//www.khronos.org/files/opengles shading language.pdf, Accessed on
30.12.2017.

[20] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in DIMVA’16.

[21] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on AES to practice,” in S&P’11.

[22] M. Hassan, A. M. Kaushik, and H. Patel, “Reverse-engineering embed-
ded memory controllers through latency-based analysis,” in RTAS’15.

[23] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks Against Kernel Space ASLR,” in S&P’13.

[24] Z. H. Jiang, Y. Fei, and D. Kaeli, “A Novel Side-Channel Timing Attack
on GPUs,” in GLSVLSI 2017.

[25] ——, “A complete key recovery timing attack on a GPU,” in HPCA’16.

[26] G. Key, “ATX Part 2: Intel G33 Performance Review,” https://www.
anandtech.com/show/2339/23, Accessed on 30.12.2017.

[27] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in SIGARCH

2014.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” 2018.

[29] D. Kohlbrenner and H. Shacham, “Trusted Browsers for Uncertain
Times.” in SEC’16.

[30] N. Lawson, “Side-channel attacks on cryptographic software,” in
S&P’09.

[31] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in SEC’16.

[32] S. M., “How physical addresses map to rows and
banks in DRAM,” http://lackingrhoticity.blogspot.nl/2015/05/
how-physical-addresses-map-to-rows-and-banks.html, Accessed
on 30.12.2017.

[33] I. Malchev, “KGSL page allocation,” https://android.googlesource.com/
kernel/msm.git/+/android-msm-hammerhead-3.4-marshmallow-mr3/
drivers/gpu/msm/kgsl sharedmem.c#621, Accessed on 30.12.2017.

[34] H. Naghibijouybari, K. Khasawneh, and N. Abu-Ghazaleh, “Construct-
ing and Characterizing Covert Channels on GPGPUs,” in MICRO-50.

[35] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure Page Fusion
with VUsion,” in SOSP’17.

[36] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control:
Sandboxing accelerators,” in MICRO-48.

[37] L. E. Olson, S. Sethumadhavan, and M. D. Hill, “Security implications of
third-party accelerators,” in IEEE Computer Architecture Letters 2016.

[38] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
implications,” in CCS’15.

[39] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of AES,” in RSA’06.

[40] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks.” in SEC’16.

[41] F. Pizlo, “What Spectre and Meltdown Mean For WebKit,” https:
//webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/,
Accessed on 20.01.2018.

[42] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in
SEC’16.

[43] K. Sato, C. Young, and D. Patterson, “Google Tensor Pro-
cessing Unit (TPU),” https://cloud.google.com/blog/big-data/2017/05/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu, Accessed
on 30.12.2017.

[44] M. Schwarz, M. Lipp, and D. Gruss, “JavaScript Zero: Real JavaScript
and Zero Side-Channel Attacks,” in NDSS’18.

[45] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” in Black Hat 2015.

[46] V. Shimanskiy, “EXT disjoint timer query,” https://www.khronos.
org/registry/OpenGL/extensions/EXT/EXT disjoint timer query.txt,
Accessed on 30.12.2017.

[47] M. E. Team, “Mitigating speculative execution side-
channel attacks in Microsoft Edge and Internet Ex-
plorer ,” https://blogs.windows.com/msedgedev/2018/01/03/
speculative-execution-mitigations-microsoft-edge-internet-explorer/
#b8Y70MtqGTVR7mSC.97, Accessed on 20.01.2018.

[48] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in CCS’16.

[49] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation Cores: Reducing
the Energy of Mature Computations,” in ASPLOS’10.

[50] L. Wagner, “Mitigations landing for new class of tim-
ing attack,” https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/, Accessed on 20.01.2018.

[51] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation.” in
SEC’16.

[52] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in SEC’14.

[53] B. Zbarsky, “Clamp the resolution of performance.now() calls to 5us,”
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab,
Accessed on 30.12.2017.

APPENDIX A

SNAPDRAGON 800/801 DRAM MAPPING

In Section VII-C, we explained that contiguity differs

from adjacency. However, we also stated that, we could

assume the congruency between these two attributes for the

Snapdragon 800/801 SoCs. Here we show how we can relax

that assumption.

As explained in Section VII-A, DRAM is organized in

channels, DIMMs, ranks, banks, rows and columns. The

CPU/GPU, however, only access DRAM using virtual ad-

dresses. After a translating a virtual address to its physical

addresses, the memory controller converts the physical address

15

https://www.chromium.org/Home/chromium-security/ssca
https://dxr.mozilla.org/mozilla-central/source/js/public/Value.h
https://dxr.mozilla.org/mozilla-central/source/js/public/Value.h
http://caniuse.com/#feat=webgl
https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://developer.nvidia.com/nvidia-perfkit
https://developer.nvidia.com/nvidia-perfkit
https://codereview.chromium.org/1800383002
https://codereview.chromium.org/1800383002
https://fgiesen.wordpress.com/2011/01/17/texture-tiling-and-swizzling/
https://fgiesen.wordpress.com/2011/01/17/texture-tiling-and-swizzling/
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.khronos.org/files/opengles_shading_language.pdf
https://www.khronos.org/files/opengles_shading_language.pdf
https://www.anandtech.com/show/2339/23
https://www.anandtech.com/show/2339/23
http://lackingrhoticity.blogspot.nl/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.nl/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://android.googlesource.com/kernel/msm.git/+/android-msm-hammerhead-3.4-marshmallow-mr3/drivers/gpu/msm/kgsl_sharedmem.c#621
https://android.googlesource.com/kernel/msm.git/+/android-msm-hammerhead-3.4-marshmallow-mr3/drivers/gpu/msm/kgsl_sharedmem.c#621
https://android.googlesource.com/kernel/msm.git/+/android-msm-hammerhead-3.4-marshmallow-mr3/drivers/gpu/msm/kgsl_sharedmem.c#621
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/#b8Y70MtqGTVR7mSC.97
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/#b8Y70MtqGTVR7mSC.97
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/#b8Y70MtqGTVR7mSC.97
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

Bank 0 Bank 1 Bank 7Bank 6

0 4 8 16 6456 72

Physical address space (KB)

Rank 1

Rank 0

Row n
Row n+1

Fig. 8: Snapdragon 800/8011 DRAM mapping

TABLE V: Snapdragon 800/801 DRAM mapping function

Channel DIMMs Ranks Banks

Bits - - 10 13,14,15

to a DRAM address consisting of the elements we mentioned

above. This mapping of physical addresses to DRAM ad-

dresses is undocumented, but it has been reverse engineered

for many architectures [22], [32], [51] including Snapdragon

800/801 [40], shown in Table V.

Snapdragon 800/801 does not employ multiple channels or

DIMMs and as a result no bits in the physical addresses are

assigned to their selection. Within the DIMM, we find two

ranks and eight banks within the ranks. Bit ten of a physical

address is responsible for choosing these ranks, while bits [13-

15] are responsible for choosing the banks. As we show in

Figure 8, this configuration translates to 1 KB aligned areas

of the physical address space shuffled over the two different

ranks (210 = 1KB) and a change of bank every 8 KB (213 =
8KB). Since the division among the ranks happens at a smaller

granularity than a page, it means that every row (within a bank)

is 4 KB large and stores 2 half-pages as shown in Figure 8.

Remembering the assumption we made in Section VII-C,

now it should be clear why we are allowed to simplify our

model considering two pages per row. Since we are only

interested in touching memory at page level, due to the

stride imposed by the UCHE cache (i.e., 4 KB), we can build

our model completely oblivious of the ranks. Thus, we can

consider rows of 8 KB.

16

	Introduction
	Threat Model
	GPU rendering to the Web
	Attacker Primitives
	Leaking data
	Corrupting data

	The Timing Arms Race
	Explicit GPU timing sources
	WebGL2-based timers
	Evaluation
	Discussion

	A Primer on the GPU
	The GPU architecture
	The Adreno 330: A case study
	Texture addressing
	Reverse engineering the caches

	Generalization

	Side-Channel Attacks from the GPU
	DRAM architecture
	Cache Eviction
	Allocating contiguous memory
	Detecting contiguous memory
	Results

	Rowhammer Attacks from the GPU
	The Rowhammer bug
	Eviction-based Rowhammer on ARM
	Evaluation
	Results

	Exploiting the GLitch
	Reusing Vulnerable Textures
	Arbitrary Read/Write
	Results

	Mitigations
	Timing side channels
	GPU-accelerated Rowhammer

	Related Work
	Side-channel Attacks
	Rowhammer

	Conclusions
	References
	Appendix A: Snapdragon 800/801 DRAM mapping

