
J. Parallel Distrib. Comput. 72 (2012) 1117–1126
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Performance models for asynchronous data transfers on consumer Graphics
Processing Units
Juan Gómez-Luna a,∗, José María González-Linares b, José Ignacio Benavides a, Nicolás Guil b
a Department of Computer Architecture and Electronics, University of Córdoba, Spain
b Department of Computer Architecture, University of Málaga, Spain

a r t i c l e i n f o

Article history:
Available online 12 August 2011

Keywords:
GPU
CUDA
Asynchronous transfers
Streams
Overlapping of communication and
computation

a b s t r a c t

Graphics Processing Units (GPU) have impressively arisen as general-purpose coprocessors in high
performance computing applications, since the launch of the Compute Unified Device Architecture
(CUDA). However, they present an inherent performance bottleneck in the fact that communication
between two separate address spaces (the main memory of the CPU and the memory of the GPU)
is unavoidable. The CUDA Application Programming Interface (API) provides asynchronous transfers
and streams, which permit a staged execution, as a way to overlap communication and computation.
Nevertheless, a precise manner to estimate the possible improvement due to overlapping does not exist,
neither a rule to determine the optimal number of stages or streams in which computation should be
divided. In thiswork,wepresent amethodology that is applied tomodel the performance of asynchronous
data transfers of CUDA streams on different GPU architectures. Thus, we illustrate this methodology by
deriving expressions of performance for two different consumer graphic architectures belonging to the
more recent generations. These models permit programmers to estimate the optimal number of streams
in which the computation on the GPU should be broken up, in order to obtain the highest performance
improvements. Finally,wehave checked the suitability of our performancemodelswith three applications
based on codes from the CUDA Software Development Kit (SDK) with successful results.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Communication overhead is one of the main performance
bottlenecks in high-performance computing systems. In dis-
tributed memory architectures, where the Message Passing Inter-
face (MPI) [10] has the widest acceptance, this is a well-known
limiting factor. MPI provides asynchronous communication prim-
itives, in order to reduce the negative impact of communication,
when processes with separate address spaces need to share data.
Programmers are able to overlap communication and computation
by using these asynchronous primitives [9,19].

Similar problems derived from communications are being
found in Graphics Processing Units (GPU), which have spectacu-
larly burst in the scene of high-performance computing, since the
launch of Application Programming Interfaces (API) such as the
Compute Unified Device Architecture (CUDA) [14] and the Open
Computing Language (OpenCL) [7]. Their massively parallel ar-
chitecture is making possible impressive performances at cheap
prices, although there exists an inherent performance bottleneck

∗ Corresponding author.
E-mail address: el1goluj@uco.es (J. Gómez-Luna).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.07.011
due to data transfers between two separate address spaces, the
main memory of the Central Processing Unit (CPU) and the mem-
ory of the GPU.

In a typical application, non-parallelizable parts are executed
in the CPU or host, while massively parallel computations can be
delegated to a GPU or device. With this aim, the CPU transfers
input data to the GPU through the PCI Express (PCIe) [15] bus
and, after the computation, results are brought back to the CPU.
Since its first release, the CUDA API provides a function, called
cudaMemcpy() [12], that transfers data between the host and
the device. This is a blocking function in the sense that the
GPU code, called kernel, can be launched only after the transfer
is complete. Despite that the PCIe supports a throughput of
several gigabytes per second, both transfers inevitably burden the
performance of the GPU. In order to alleviate such a performance
bottleneck, later releases of CUDA provide the non-blocking
cudaMemcpyAsync() [12], which requires host pinned memory.
It permits asynchronous transfers, i.e. enables overlap of data
transfers with computation, in devices with compute capability
equal or higher than 1.1 [12]. Such a concurrency is managed
through streams, i.e. sequences of commands that are executed in
order. Streams permit transfers and execution to be broken up into
a number of stages, so that some overlapping of data transfer and
computation is achieved.

http://dx.doi.org/10.1016/j.jpdc.2011.07.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:el1goluj@uco.es
http://dx.doi.org/10.1016/j.jpdc.2011.07.011

1118 J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126

for (int i = 0; i < number_of_streams; ++i)
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size,

cudaMemcpyHostToDevice, stream[i]);
for (int i = 0; i < number_of_streams; ++i)

MyKernel<<<num_blocks / number_of_streams, num_threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

for (int i = 0; i < number_of_streams; ++i)
cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size,

cudaMemcpyDeviceToHost, stream[i]);
cudaThreadSynchronize();
This paradigm is closely related to the streaming programming
model, which has been used to facilitate code portability to GPU
architectures [6] and cooperative application execution on multi-
core processors and accelerators [18].

Some researchworks havemade use of the CUDA streammodel
in order to improve application performance [2,4,16]. However,
finding optimal configurations, i.e. the best number of streams or
stages in which transfers and computation are divided, requires
many attempts for tuning the application. Moreover, CUDA liter-
ature [11,12] does not provide an accurate way to estimate the
performance improvement due to the use of streams. Such a lack
of reliable analytical models limits the usefulness of asynchronous
transfers and streams. In this way, we consider that this research
work covers an empty space, because we have obtained perfor-
mance models, which have been validated from both architectural
and experimental points of view. Theypermit programmers to esti-
mate the execution time of a streamed application and the optimal
number of streams that is recommended for use.

GPU performance modeling has been tackled in some valuable
researchworks [1,5,20], but none of them deals with data transfers
between CPU and GPU and the use of streams. To the best of
our knowledge, there is only one research work focused on CUDA
streams performance [8]. It presents some theoretical models
for asynchronous data transfers, but they are not empirically
validated, neither related to architectural issues. The authors do
not give any hint about the applicability of these models and
assume that the optimal number of streams is 8 for any application.

Our work starts with a thorough observation of CUDA streams
performance, in order to accurately characterize how transfers and
computation are overlapped. We have carried out a huge number
of experiments by changing the ratio between kernel execution
time and transfers time, and the ratio between input and output
data transfer times. Then, we have tried out several performance
estimates, in order to check their suitability to the results of
experiments. Thus, our main contributions are:

• Wepresent a novelmethodology that is applicable formodeling
the performance of asynchronous data transfers when using
CUDA streams.

• We have applied this methodology to devices with compute
capabilities (c.c.) 1.x and 2.x. Thus, we have derived two
performance models, i.e. the one for devices with c.c. 1.x and
the other for devices with c.c. 2.x.

• Moreover, from the mathematical expressions obtained can be
derived the optimal number of streams to reach the maximum
computation time speed-up. The optimal number of streams
to be used for a specific application only depends on the data
transfer time and the kernel computation time of the non-
streamed application.

• We have successfully checked the applicability of our models
to several applications based on codes from the CUDA Software
Development Kit (SDK). We also show that signal processing
applications, where data are being continuously processed, can
benefit from our approach as they can recalculate the optimal
number of streams from previous calculations.
The rest of the paper is organized as follows. Section 2 reviews
the use of CUDA streams. In Section 3, we explain how the
behavior of CUDA streams has been analyzed and we propose two
performance models. Our models are checked in Section 4 using
several applications. Finally, conclusions are stated in Section 5.

2. CUDA streams

In order to overlap communication and computation, CUDA
permits division of memory copies and execution into several
stages, called streams. CUDA defines a stream as a sequence of
operations that are performed in order on the device. Typically,
such a sequence contains one memory copy from host to device,
which transfers input data; one kernel launch, which uses these
input data; and one memory copy from device to host, which
transfers results [12] (see code listing given in Box).

Given a certain application which uses D input data instances
and defines B blocks of threads for kernel execution, a program-
mer could decide to break up them into nStreams streams. Thus,
each of the streams works with D

nStreams data instances and B
nStreams

blocks. In this regard, thememory copy of one streamoverlaps ker-
nel execution of other stream, achieving a performance improve-
ment. An important requirement for ensuring the effectiveness of
the streams is that B

nStreams blocks are enough for maintaining all
hardware resources of the GPU busy. Otherwise the sequential ex-
ecution could be faster than the streamed one.

The use of streams can be very profitable in applications where
input data instances are independent, so that computation can
be divided into several stages. For instance, video processing
applications satisfy this requirement, when computation on each
frame is independent. A sequential execution should transfer a
sequence of n frames to devicememory, apply certain computation
on each of the frames, and finally copy results back to the host. If
we consider a number b of blocks used per frame, the device will
schedule n × b blocks for the whole sequence. However, a staged
execution of nStreams streams transfers chunks of n

nStreams size.
Thus, while the first chunk is being computed using n×b

nStreams blocks,
the second chunk is being transferred. An important improvement
will be obtained by hiding the frame transfers.

Estimating the performance improvement that is obtained
through streams is crucial for programmers, when an application
is to be streamed. Considering data transfer time tT and kernel
execution time tE , the overall time for a sequential execution is
tE + tT . In [11], the theoretical time for a streamed execution is
estimated in two ways:

• Assuming that tT and tE are comparable, a rough estimate for
the overall time is tE +

tT
nStreams for the staged version. Since

it is assumed that kernel execution hides data transfer, in the
following Sections, we call this estimate dominant kernel.

• If the transfer time exceeds the execution time, a rough esti-
mate is tT +

tE
nStreams . This estimate is called dominant transfers.

J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126 1119
Table 1
NVIDIA GeForce series features related to data transfers and streams.

GeForce
series

Features Considerations related to streams

8 Compute capability 1.x (x > 0) Host-to-device and device-to-host transfers cannot be overlapped (only one DMA channel)
9 PCIe × 16 (8 series)

200 PCIe × 16 2.0 (9 and 200 series) No implicit synchronization:
1 DMA channel Device-to-host data transfer of a stream just can start when that stream finishes its computation.
Overlapping of data transfer and kernel
execution

Consequently, this transfer can be overlapped with the computation of the following stream

400 Compute capability 2.x Host-to-device and device-to-host transfers cannot be overlapped (only one DMA channel)
500 PCIe × 16 2.0

1 DMA channel Implicit synchronization:
Overlapping of data transfer and kernel
execution

Device-to-host data transfer of the streams cannot start until all the streams have started
executing

Concurrent kernel execution
3. Characterizing the behavior of CUDA streams

The former expressions do not define the possible improvement
in a precise manner or give any hint about the optimal number of
streams. For this reason, in this Section, we apply a methodology
which consists of testing and observing the streams, by using
a sample code, included in the CUDA SDK. This methodology
thoroughly examines the behavior of the streams through two
different tests:

• First, the size of the input and output data is fixed, while the
computation within the kernel is variable.

• After that, the size of the data transfers is asymmetrically
changed. Along these tests, the number of bytes that are trans-
ferred from host to device is ascending, while the number of
bytes from device to host is descending.

After applying our methodology, we are able to propose two per-
formance models which fit the results of the tests.

3.1. A thorough observation of CUDA streams

The CUDA SDK includes the code simpleStreams.cu, which
makes use of CUDA streams. It compares a non-streamed execution
and a streamed execution. The kernel is a simple code in which a
scalar is repeatedly added to an array, that represents a vector. One
variable defines the number of times that the scalar is added to
each element of the array, that is, the number of iterations within
the kernel.

simpleStreams.cu declares streams that include the kernel
and the data transfer from device to host, but not the data
transfer from host to device. We have modified the code, so that
transfers from host to device are also included in the streams.
Thus, we observe the behavior of CUDA streams in the whole
process of transferring from CPU to GPU, executing on the GPU
and transferring from GPU to CPU. Testing this code gives us three
parameters which define a huge number of cases: the size of the
array, the number of iterations within the kernel and the number
of streams. In this way, in the first part of our methodology, we
use a fixed array size and change the number of iterations within
the kernel and the number of streams. This permits us to compare
dominant transfers and dominant kernel cases. Afterwards, in the
secondpart, the sizes of data transfers are changed asymmetrically,
in order to refine the performance estimates.

After observing the behavior of CUDA streams, one performance
model for stream computation will be calculated for each of the
two most recent NVIDIA architectures (compute capabilities 1.x
and 2.x). In this paper, the applied methodology is illustrated on
the Geforce GTX 280, as an example of c.c. 1.x, and on the Geforce
GTX 480, as an example of c.c. 2.x. In [3], results for others GPUs
can be found.
Details about NVIDIA devices are presented in Table 1. As
stated in [12], devices with compute capability 1.x do not support
concurrent kernel execution. In thisway, streams are not subject to
implicit synchronization. In devices with compute capability 2.x,
concurrent kernel execution entails that those operations, which
require a dependency check (such as data transfers from device
to host), cannot start executing until all thread blocks of all prior
kernel launches from any stream have started executing. These
considerations should be ratified by the execution results, after
applying our methodology.

3.1.1. First observations: Fixed array size
First tests carried out consist of adding a scalar to an array of

size 15MB, using the modified simpleStreams.cu. The number
of iterations within the kernel takes 20 different values (from 8 to
27 in steps of 1, in GTX 280; and from 20 to 115 in steps of 5, in GTX
480). Thus, these tests change the ratio between kernel execution
and data transfers times, in order to observe the behavior of the
streams in a large number of cases. The number of streams is
changed along the divisors of 15 M between 2 and 64.

Fig. 1 shows the execution results on GeForce GTX 280.
A blue line with diamond markers presents the non-streamed
execution results and an orange line with square markers stands
for the streamed execution results. The graph is divided into
several columns. Each of the columns represents one test using
a certain number of iterations within the kernel. This number of
iterations, between 8 and 27, which determines the computational
complexity of the kernel, is shown in abscissas. Together with the
execution times for non-streamed and streamed configurations,
two thick lines and two thin lines have been included. Thick lines
represent the data transfers and the kernel execution times. Thin
lines correspond to possible performance models for the streamed
execution, as stated in [11]. The thin red line considers a dominant
kernel case and estimates the execution time as tE +

tT
nStreams , where

tT is the copy time fromCPU to GPU plus the copy time fromGPU to
CPU. The thin green line represents a dominant transfers case and
the estimate is tT +

tE
nStreams .

The dominant kernel hypothesis is reasonably suitable when
the kernel execution time is clearly longer than the data transfers
time. However, the dominant transfers hypothesis does not match
the results of any test. In this way, we observe that the transfers
time tT (thick green line) is a more accurate reference when the
data transfers are dominant.

In the dominant transfers cases (results on the left of the graph)
on the GeForce GTX 280, we also observe that the best results for
the streamed execution are around the pointwhere the thick green
line and the thin red line intersect. In this intersection point, the
dominant kernel estimate equals the transfers time. In this way, a
reference for the optimal number of streams is nStreams =

tT
tT−tE

.

1120 J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126
Fig. 1. Execution time (ms) for the addition of a scalar to an array of size 15MB onGeForce GTX 280. The blue line represents the execution time for non-streamed executions
and the orange line stands for the results of the streamed execution. Each column in the graph represents a test with a changing number of iterations between 8 and 27 in
steps of 1, in abscissas. In each column, the number of streams has been changed along the divisors of 15Mbetween 2 and 64. Thick green and red lines represent respectively
the transfers time and the kernel execution time in each column. Thin green and red lines represent possible performance models (dominant transfer or dominant kernel)
as stated in [11]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Execution time (ms) for the addition of a scalar to an array of size 15 MB on GeForce GTX 480. Each column in the graph represents a test with a changing number of
iterations between 20 and 115 in steps of 5. In each column, the number of streams has been changed along the divisors of 15 M between 2 and 64. Thick green and red lines
represent respectively the data transfers time and the kernel execution time in each column. Thin green and red lines represent possible performance models (dominant
transfer or dominant kernel) as stated in [11]. The thin purple line stands for a revised dominant kernelmodel, inwhich only one of the transfers is hidden. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
On the GeForce GTX 480, the dominant transfers hypothesis
suits properly on the left of the graph. However, the dominant
kernel hypothesis does not fit in any case. Fig. 2 shows that a
revised dominant kernel hypothesis (thin purple line), inwhich the
streams hide only one of the data transfers, is a better match. The
revised estimate is tE +

tT1
nStreams + tT2, where tT1 + tT2 = tT . At

this point we are not able to assert which of the transfers, i.e. host
to device or device to host, is hidden, since both copy times are
similar.

Finally, it is remarkable that, in all tests on both GPUs, the
streamed time gets worse from a certain number of streams. One
can figure out that some overhead exists due to the generation of
a stream. Thus, the higher the number of streams the longer the
overhead time.

3.1.2. Second observations: Asymmetric transfers
Second tests use the same kernel with a variable number of

iterations, but data transfers are asymmetric. For each kernel using
a certain number of iterations, we perform 13 tests in which 24MB
are transferred from host to device or from device to host. Along
the 13 tests, the number of bytes copied from host to device
is ascending, while the number of bytes from device to host is
descending. In this way, the first test transfers 1 MB from host to
device and 23 MB from device to host, and in the last test 23 MB
are copied from host to device and 1 MB from device to host. The
number of streams has been established as 16 for every test.

Fig. 3 (top) shows the results on the GeForce GTX 280. It can
be observed that the streamed results match the transfers times,
when data transfers are dominant (tests with 1, 2 and 4 iterations).
When the kernel execution is longer (test with 16 iterations), the
dominant kernel estimate fits properly.

Moreover, one can notice that the execution time decreases
along the 13 tests in each column, despite the whole amount of
data transferred from or to the device being constant. We have
observed that on GTX 280 data transfers from device to host
take around 36% more time than transfers from host to device.
For this reason, the left part of the test with 8 iterations follows
the transfers time, while the right part fits the dominant kernel
hypothesis.

In Section 3.1.1, we observed that on the GeForce GTX 480 only
one of the data transferswas hidden by the kernel execution, when
the kernel was dominant. In these tests with asymmetric transfers,
we conclude that the transfer from host to device is the one being
hidden, as can be observed in Fig. 3 (bottom). It depicts two revised

J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126 1121
Fig. 3. Execution time (ms) on GeForce GTX 280 (top) and GTX 480 (bottom) for tests with asymmetric transfers. 24 MB are copied from host to device or from device to
host. Abscissas represent the number of iterations within the kernel. In each column, 13 tests are represented with an ascending number of bytes from host to device and
a descending number of bytes from device to host. In all cases, the number of streams is 16. In the graph on top, the thin red line stands for a dominant kernel hypothesis
and the thick green line is the transfers time. In the graph on the bottom, the thin green line stands for the dominant transfers hypothesis, and thin purple and yellow lines
represent two revisions of the dominant kernel estimate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
dominant kernel estimates, purple and yellow thin lines. The first
revised estimate assumes that the transfer from device to host is
hidden, while the second one considers the transfer from host to
device to be overlapped with execution. It is noticeable that the
latter estimate matches perfectly when kernel execution is clearly
dominant (32 and 40 iterations).

The former observation agrees with the fact that dependent
operations in GTX 480 do not start until all prior kernels have been
launched. Thus, data transfers from device to host are not able to
overlap with computation, since all kernels from any stream are
launched before data transfers fromdevice to host, as it can be seen
in the code at the beginning of Section 2.

When the data transfer from host to device takes more time
than the kernel execution, the streamed execution follows the
dominant transfers hypothesis. For this reason, the right part of the
columns with 8, 16 and 24 iterations follows the thin green line.

On the GTX 480, data transfers from device to host are slightly
faster (around 2%) than transfers from host to device. This fact
explains theweak increase of the execution time along the 13 tests
in each column.

3.2. CUDA streams performance models

Considering the observations in the previous subsections, we
are able to formulate two performance models which fit the
behavior of CUDA streams on devices with c.c. 1.x and 2.x. In
the following equations, tE represents the kernel execution time,
tThd stands for the data transfer time from host to device and
tTdh the data transfer time from device to host. Transfer times
satisfy tT = tThd + tTdh, and it depends on the number of data to
be transmitted and the characteristics of the PCIe bus. Moreover,
we define an overhead time toh derived from the creation of the
streams. We consider that this overhead time increases linearly
with the number of streams, i.e. toh = tsc × nStreams. The value
of tsc should be estimated for each GPU. In [3], we show values of
tsc for NVIDIA devices belonging to the GeForce 8, 9, 200, 400 and
500 series. In the particular case of GTX 280 and GTX 480, tsc takes
a value of 0.10 and 0.03, respectively.

3.2.1. Performance on devices with compute capability 1.x
When data transfers time is dominant, we realized that the

streamed execution time tstreamed tends to the data transfers time
tT . Since the performance of CUDA streams on these devices is
not subject to implicit synchronization, the data transfers time is
able to completely hide the execution time. Thus, we propose the
following model for nStreams streams:

If

tT > tE +

tT
nStreams

, tstreamed = tT + toh. (1)

In Section 3.1.1, we noticed that the optimal number of streams
nStreamsop, with dominant transfers times, is around:

nStreamsop =
tT

tT − tE
. (2)

In a dominant kernel scenario, the most suitable estimate
counts the kernel execution time and the data transfers time di-
vided by nStreams:

If

tT < tE +

tT
nStreams

, tstreamed = tE +

tT
nStreams

+ toh. (3)

1122 J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126
Deriving Eq. (3) permits obtaining the optimal number of
streams in a dominant kernel case:

nStreamsop =

tT
tsc

. (4)

Fig. 4 (top) shows the suitability of our performance model to
the execution time results presented in Section 3.1.1.

3.2.2. Performance on devices with compute capability 2.x
In Section 3.1.1, we observed that on GTX 480 a dominant

transfers scenario was properly defined as in [11]. Moreover, from
Section 3.1.2 we infer that on GTX 480 only the data transfer from
host to device is overlapped with kernel execution. In this way,
when data transfer is dominant, we propose:

If (tThd > tE), tstreamed = tThd +
tE

nStreams
+ tTdh + toh. (5)

The first derivative of the former equation gives an optimal
number of streams:

nStreamsop =

tE
tsc

. (6)

In a dominant kernel scenario, we propose the last revised esti-
mate presented in Section 3.1.2:

If (tThd < tE), tstreamed =
tThd

nStreams
+ tE + tTdh + toh. (7)

The optimal number of streams, when the kernel is dominant,
is obtained with:

nStreamsop =

tThd
tsc

. (8)

This performance model fits perfectly on the behavior of
CUDA streams on GeForce GTX 480, as it is shown in Fig. 4
(bottom). It also considers the limitations derived from the implicit
synchronization that exists in devices with compute capability 2.x.

4. Testing the streams with SDK-based applications

We have tested our performance models with three applica-
tions based on codes belonging to the CUDA SDK. We have com-
pared performances of non-streamed and streamed executions.
Applying a streamed execution consists of dividing kernel exe-
cution into several stages. In this way, if a number B of thread
blocks is defined in the non-streamed execution, an executionwith
nStreams streams will use B

nStreams thread blocks in each stage.
In the last subsection, we deal with dynamically recalculating

the optimal number of streams. This is applicable in those cases
where the computational complexity of the kernels is dependent
on the characteristics of the frames, as in histogram calculation.

4.1. Matrix multiplication

CUDA SDK includes a sample code ofmatrixmultiplication [13].
This code performs the product of a m × p matrix A with a p × n
matrix B. The result is an m × n matrix C . The code divides matrix
C into 16 × 16 tiles and defines 16 × 16 blocks, so that each
thread computes one element of C . The streamed configuration
splits computation into nStreams stages. Each stream consists of
copying part of matrix A to the device, computing and copying the
resulting part of matrix C to the host. Matrix B has been previously
transferred to the device. We have carried out five tests with m =

512, p = 256, n = 256;m = 1024, p = 512, n = 512;m =

2048, p = 1024, n = 1024;m = 4096, p = 2048, n = 2048; and
m = 8192, p = 4096, n = 4096. Fig. 5 shows the results on GTX
280 (left) and GTX 480 (right). The suitability of our performance
model is ratified in both GPUs.

In the optimal cases, the performance improvement thanks to
the streams ranges between 8% and 19% for the GTX 280, and
between 5% and 14% for theGTX480. Optimal values of the number
of streams can be estimated through the equations in Section 3.2.
Table 2 compares the estimated optimal number of streams with
the experimental optimal number of streams. It can be observed
that our estimations are very close to the experimental results.
There is only one anomalous estimation, which is due to the fact
that applying streams reduces excessively the number of blocks
that are used in each kernel launch. As we indicated in Section 2,
if the number of blocks B

nStreams is not high enough to make an
extensive use of the hardware resources available on the GPU, the
performance will be burdened.

4.2. 256-bins histogram

We have adapted the 256-bins histogram code in CUDA SDK
[17], so that it computes the histogram of each frame belonging
to a video sequence of n frames. In this way, a thread block votes
in the histogram of the corresponding frame.

Three tests with different frame sizes have been carried out:
176 × 144, 352 × 288 and 704 × 576. The number of frames of
the video sequence is n = 64. We proceed as it was explained in
Section 2 for video processing applications. In the non-streamed
execution, the histogram of each of the 64 frames is computed
in one kernel invocation. The 64 frames are transferred to the
GPU; then, the histograms are computed; and, finally, the 64
histograms are copied to the CPU. However, in the streamed
execution, computation is divided into a number of streams. In this
way, each kernel call computes the histograms of 64

nStreams frames.
Fig. 6 shows the execution results. The improvement due to the

streams is between 25% and 44% for the GTX 280, and between 6%
and 21% for the GTX 480. Our performance model fits the behavior
of CUDA streams almost perfectly. The comparison between the
estimated and the experimental optima is presented in Table 2. As
it can be observed, our estimations are in the order of magnitude
of the experimental optima.

Thanks to our performance models, the computation of the
histograms of a video can be carried out optimally, hiding the
latencies of frame transfers to the GPU and histogram transfers
to the CPU. Nevertheless, the execution time is dependent on the
distribution of luminance values of the pixels. In Section 4.4, we
explain how a dynamical calculation of the optimal number of
streams can be performed.

4.3. RGB to grayscale conversion

This application is also based on the 256-bins histogram code.
It consists of converting a sequence of RGB frames to grayscale
and then generating their histograms.With respect to the 256-bins
histogram code, it includes more computation that will increase
the kernel execution time. We have used sequences of 32 frames.
Execution results are presented in Fig. 7. It can be observed that
our models match the results properly. In the best cases, the
improvement obtained with streams is between 52% and 63% for
the GTX 280, and between 6% and 18% for the GTX 480. The
estimation of the optimal number of streams is clearly correct, if
we compare them to the experimental optima, as Table 2 shows.

J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126 1123
Fig. 4. Execution time (ms) for the addition of a scalar to an array of size 15MB onGeForce GTX 280 (top) and GTX 480 (bottom). Abscissas represent the number of iterations
within the kernel. The number of streams takes the divisors of 15 M between 2 and 64. The thin black line stands for our performance model. Overhead time is obtained
with tsc = 0.10 for GTX 280 and tsc = 0.03 for GTX 480.
Fig. 5. Execution time (ms) for matrix multiplication on GeForce GTX 280 (left) and GeForce GTX 480 (right). Abscissas present the number of streams and the value of p.
On GTX 280, overhead time is obtained with tsc = 0.10. On GTX 480, overhead time takes tsc = 0.03.
4.4. Adaptation to variable kernel computation time

A class of application that clearly can benefit from streams is
signal processing, since they process long or even endless input
data to generate new output data. Their computational complexity
can be dependent on the input data, as the histogram computation
of a video frame (see Section 4.2). Our method can be employed in
these circumstances to recalculate the optimal number of streams
at any moment. We have carried out an experiment in which
histograms of video frames are calculated on GeForce GTX 280 and

1124 J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126
Table 2
Estimated and experimental optimal number of streams for streamed matrix multiplication, 256-bins histogram
calculation and RGB to grayscale conversion. Two values are presentedwhen the difference between the experimental
results is less than 1%.

Application GPU Matrix (p) or frame size Estimated optimum Experimental optimum

Matrix multiplication

GTX 280

256 5.4 2a

512 4.3 4
1024 6.1 4–8
2048 12.2 8–16
4096 24.5 16–32

GTX 480

256 3.1 2–4
512 6.4 4–8
1024 12.8 8–16
2048 25.8 16–32
4096 51.7 32–64

256-bins histogram

GTX 280
176 × 144 2.6 2
352 × 288 5.1 4–8
704 × 576 9.9 8–16

GTX 480
176 × 144 2.3 2
352 × 288 4.5 4
704 × 576 9.1 8–16

RGB to grayscale

GTX 280
176 × 144 3.5 4
352 × 288 7.0 8
704 × 576 13.9 16

GTX 480
176 × 144 2.8 2–4
352 × 288 5.6 4–8
704 × 576 11.3 8–16

a Represents an anomalous result.
Fig. 6. Execution time (ms) for 256-bins histogram computation of 64 frames, on GeForce GTX 280 (left) and GeForce GTX 480 (right). Abscissas present the number of
streams and the size of the frames. On GTX 280, overhead time is obtained with tsc = 0.10. On GTX 480, overhead time takes tsc = 0.03.
Table 3
Number of frames per second for histogram calculation of a video sequence, on GTX 280
and GTX 480. Frames are size 352 × 288 or 704 × 576.

GPU Frame size Frames per second
Non-streamed execution Optimally streamed execution

GTX 280 352 × 288 5770 6502
704 × 576 1401 1656

GTX 480 352 × 288 8469 9149
704 × 576 2153 2429
GTX 480. We take advantage of the distribution of color pixels,
and consequently the computation time, is normally very similar
in consecutive frames. Only in shot transitions (cuts, dissolves and
so on) this distribution can change abruptly.
A sequence of 4096 frames is divided into chunks of 32 frames.
In the first half of the sequence, frames have uniform distribution
of the luminance values. Frames of the second half present a
degenerate distribution. In this way, histogram calculation of

J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126 1125
Fig. 7. Execution time (ms) for RGB to grayscale conversion of 32 frames, on GeForce GTX 280 (left) and GeForce GTX 480 (right). Abscissas present the number of streams
and the size of the frames. On GTX 280, overhead time is obtained with tsc = 0.10. On GTX 480, overhead time takes tsc = 0.03.
the frames of the second half presents more collisions between
threads, so that the execution time in this half is expected to be
much longer. The first chunk is processed in a non-streamed way,
in order to obtain the estimated time and the optimal number
of streams. The estimated time is continuously compared to an
on-the-fly measurement of the streamed execution time for each
upcoming chunk. If both diverge over a certain threshold, the
optimum is readily recalculated by executing again only one chunk
in a non-streamed way. Table 3 summarizes the execution results
for non-streamed and optimally streamed histogram calculation
for the whole sequence. As it can be seen, the number of frames
per second is clearly increased byusing an automatically calculated
optimal number of streams for each half of the video sequence.

5. Conclusions

Despite that GPUs are nowadays being successfully used as
massively parallel coprocessors in high performance computing
applications, the fact that data must be transferred between
two separate address spaces (memories of CPU and GPU)
constitutes a communication overhead. This can be reduced by
using asynchronous transfers, if computation is properly divided
into stages. CUDA provides streams for performing a staged
execution, which allows programmers to overlap communication
and computation. Although exploiting such a concurrency can
achieve an important performance improvement, CUDA literature
barely gives rough estimates, which do not steer towards the
optimal manner to break up computation.

In this work, we have exhaustively analyzed the behavior of
CUDA streams through a novel methodology, in order to define
precise estimates for streamed executions. In this way, we have
found twomathematicalmodelswhich accurately characterize the
performance of CUDA streams on consumer NVIDIA GPUs with
compute capabilities 1.x and 2.x. Through these models, we have
found specific equations for determining the optimal number of
streams, once kernel execution anddata transfers times are known.
Although results in this paper have been presented for GeForce
GTX 280 and GTX 480, our performance models have also been
validated on other NVIDIA GPUs from the GeForce 8, 9, 200, 400
and 500 series [3].

We have successfully tested our approaches with three appli-
cations based on codes from CUDA SDK. Our performance models
have matched the experimental results, as well as the estimated
optima have resulted in the order of magnitude of the experimen-
tal ones.

Since some applications, such as histogram calculation, are
workload-dependent, our method can be used for a dynamical cal-
culation of the optimal number of streams. An on-the-fly analy-
sis of the streamed execution time, checking if it diverges from
the estimate over a certain threshold, will permit recalculating the
optimum.

References

[1] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp,
Wen-mei W. Hwu, An adaptive performance modeling tool for GPU architec-
tures, in: Proceedings of the 15th ACM SIGPLAN Smposium on Principles and
Practice of Parallel Programming, PPoPP’10, ACM, New York, NY, USA, 2010,
pp. 105–114.

[2] Juan Gómez-Luna, José María González-Linares, José Ignacio Benavides,
Nicolás Guil, Parallelization of a video segmentation algorithm on CUDA-
enabled graphics processing units, in: Proc. of the Int’l Euro-Par Conference
on Parallel Processing, EuroPar’09, 2009, pp. 924–935.

[3] Juan Gómez-Luna, José María González-Linares, José Ignacio Benavides,
Nicolás Guil, Performance models for CUDA streams on NVIDIA GeForce
series, Technical Report, University of Málaga, 2011. http://www.ac.uma.es/
∼vip/publications/UMA-DAC-11-02.pdf.

[4] Wan Han, Gao Xiaopeng, Wang Zhiqiang, Li Yi, Using GPU to accelerate cache
simulation, in: IEEE International Symposium on Parallel and Distributed
Processing with Applications, 2009, pp. 565–570.

[5] Sunpyo Hong, Hyesoon Kim, An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness, in: Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA’09,
ACM, New York, NY, USA, 2009, pp. 152–163.

[6] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, Scott Mahlke,
Sponge: portable stream programming on graphics engines, in: Proceedings
of the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’11, ACM, New York,
NY, USA, 2011, pp. 381–392.

[7] Khronos Group, OpenCL. http://www.khronos.org/opencl/.
[8] Supada Laosooksathit, Chokchai B. Leangsuksun, Abdelkader Baggag, Clay-

ton F. Chandler, Stream experiments: toward latency hiding in GPGPU, in:
Proceedings of the 9th IASTED International Conference on Parallel and
Distributed Computing and Networks, PDCN’10, 2010, pp. 240–248.

[9] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, Mateo Valero, Over-
lapping communication and computation by using a hybrid MPI/SMPSS
approach, in: Proceedings of the 24th ACM International Conference on
Supercomputing, ICS’10, ACM, New York, NY, USA, 2010, pp. 5–16.

[10] MPI Forum, The Message Passing Interface Standard. http://www.mpi-
forum.org/.

[11] NVIDIA, CUDA C best practices guide 3.2, August 2010. http://developer.
download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_
Practices_Guide.pdf.

[12] NVIDIA, CUDA C programming guide 3.2, September 2010. http://
developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_
C_Programming_Guide.pdf.

http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.ac.uma.es/~vip/publications/UMA-DAC-11-02.pdf
http://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf

1126 J. Gómez-Luna et al. / J. Parallel Distrib. Comput. 72 (2012) 1117–1126
[13] NVIDIA, CUDA SDK code samples: matrix multiplication. http://developer.
download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul.

[14] NVIDIA, CUDA Zone. http://www.nvidia.com/object/cuda_home_new.html.
[15] Peripheral Component Interconnect Special Interest Group, PCI Express.

http://www.pcisig.com/.
[16] James C. Phillips, John E. Stone, Klaus Schulten, Adapting a message-driven

parallel application to GPU-accelerated clusters, in: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC’08, IEEE Press, Piscataway, NJ,
USA, 2008, pp. 8:1–8:9.

[17] V. Podlozhnyuk, Histogram calculation in CUDA, White Paper, 2007. http://
developer.download.nvidia.com/compute/cuda/1_1/Website/projects/
histogram256/doc/histogram.pdf.

[18] Abhishek Udupa, R. Govindarajan, Matthew J. Thazhuthaveetil, Synergistic
execution of stream programs on multicores with accelerators, in: Proceed-
ings of the 2009 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES’09, ACM, New York, NY, USA, 2009,
pp. 99–108.

[19] Ta Quoc Viet, Tsutomu Yoshinaga, Improving linpack performance on SMP
clusters with asynchronous MPI programming, IPSJ Digital Courier 2 (2006)
598–606.

[20] Yao Zhang, John D. Owens, A quantitative performance analysis model for
GPU architectures, in: Proceedings of the 17th IEEE International Symposium
on High-Performance Computer Architecture, HPCA 17, February 2011.

Juan Gómez-Luna received his B.S. degree in Telecommu-
nication Engineering from the University of Sevilla, Spain,
in 2001. He is currently pursuing his Ph.D. degree in Com-
puter Science at the University of Córdoba, Spain. Since
2005, he is assistant professor at theUniversity of Córdoba.
His research interests focus on parallelization of image and
video processing applications.
Jose María González-Linares received his B.S. degree in
Telecommunication Engineering from the University of
Málaga, Spain, in 1995, and his Ph.D. in Telecommunica-
tion Engineering from the University of Málaga, Spain, in
2000. During 1998–2002 and 2002–2010 he was assistant
and associate professor at the University of Málaga. He has
published more than 20 papers in international journals
and conferences. His research interests are in the areas of
parallel computing and video and image processing.

Jose Ignacio Benavides received his bachelor’s degree in
Physics from the University of Granada, Spain, in 1980 and
his Ph.D. degree in Physics from the University of Santiago
of Compostela, Spain, in 1990. From 1980 to 1983 he was
an assistant professor at the University of Granada. He
joined, as a full professor, the University of Córdoba in
1983. He is currently the head of Department of Computer
Architecture and Electronic of the University of Córdoba.
He has published more than 50 papers in international
journals and conferences. His research interests are in
the areas of parallel computing and video and image

processing.

Nicolás Guil received his B.S. in Physics from the
University of Sevilla, Spain, in 1986 and his Ph.D. in
Computer Science from the University of Málaga in
1995. During 1990–1997 and 1998–2006 he was assistant
and associate professor at the University of Málaga.
Currently, he is full professor with the Department of
Computer Architecture in the University of Málaga. He has
published more than 50 papers in international journals
and conferences. His research interests are in the areas of
parallel computing and video and image processing.

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#matrixMul
http://www.nvidia.com/object/cuda_home_new.html
http://www.pcisig.com/
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf

	Performance models for asynchronous data transfers on consumer Graphics Processing Units
	Introduction
	CUDA streams
	Characterizing the behavior of CUDA streams
	A thorough observation of CUDA streams
	First observations: Fixed array size
	Second observations: Asymmetric transfers

	CUDA streams performance models
	Performance on devices with compute capability 1. x
	Performance on devices with compute capability 2. x

	Testing the streams with SDK-based applications
	Matrix multiplication
	256-bins histogram
	RGB to grayscale conversion
	Adaptation to variable kernel computation time

	Conclusions
	References

