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Abstract—GPU application implementations using scatter approaches will fall into write contention due to atomic updates of output

elements, if these result from more than one input element. Colliding threads will be serialized, seriously harming performance.

Dealing with these issues requires a proper understanding of the behavior of the scratchpad or shared memory under conflicting

accesses caused by concurrent threads. Thus, this paper presents an exhaustive microbenchmark-based analysis of atomic

additions in shared memory that quantifies the impact of access conflicts on latency and throughput. This analysis has led us to

discover the lock mechanism that enables atomic updates to shared memory and to propose a performance model to estimate the

latency penalties due to collisions by position or bank conflicts. Then, we have derived experiments from this model that show us

the way to optimize applications using atomic operations. Position and bank conflicts can be diminished by replication and padding,

respectively. The benefits of such techniques are illustrated with the optimization of two widely used voting processes: the centroid

updating step in k-means clustering, and histogram calculation.

Index Terms—Performance model, atomic operations, shared memory, K-means, histogram, CUDA, GPU
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1 INTRODUCTION

GENERAL-PURPOSE computation on Graphics Processing
Units (GPGPU) has become a successful trend in high-

performance computing thanks to programming environ-
ments such as CUDA [1] and OpenCL [2]. They offer a vast
number of threads running logically in parallel and
executing on hardware resources in a multithreaded
manner. Massively parallel applications are benefiting
from them and obtaining striking speedups. Such impress-
ive improvements are easily attainable in regular and
workload-independent computations, where an output data
instance is generated from an input data instance. In these
cases, one thread is assigned to one input element in a
scatter approach. In other cases, where output elements are
affected by more than one input instance, a gather approach
(i.e., one thread per output element) is more profitable,
since write contention can be avoided [3].

Nevertheless, in applications with a limited number of
output elements a gather approach would be inappropriate,
because the reduced number of threads would be insuffi-
cient to exploit the vast GPU resources. Thus, a scatter
approach will suffer write contention, since memory
locations accessed by threads should be updated without
interference from other threads. This typically entails a need
to serialize memory updates that is generally resolved by

using atomic operations. These consist of a memory read,
an arithmetic operation, and a memory write. Roughly
speaking, serialization will entail a latency penalty that is
proportional to the number of colliding threads.

As serialization leads to immense performance bottle-
necks on GPUs, its impact on scatter approaches should be
alleviated by effective optimization techniques. To use
these, a deep understanding of the underlying hardware is
necessary. Although the literature on CUDA [4], [5]
provides pertinent programming recommendations on code
efficiency, hardware details are scarce. Thus, several
research studies have focused on modeling GPU perfor-
mance from a theoretical point of view [6], [7], [8]. Some
other studies have conducted quantitative analyzes through
microbenchmarking [9], [10], [11]. A more recent study has
specifically developed a stochastic model of the memory
hierarchy [12]. However, none of these studies have tackled
write contention due to the execution of atomic operations.

This study presents a detailed microbenchmark-based
analysis of atomic additions in shared memory (scratchpad
memory in CUDA) as an example of atomic operations on
GPUs. The target is fast on-chip shared memory because it
is specially devised for data reuse, which is typical in write
contention scenarios where several threads collide while
updating a single memory location. Such a collision is called
position conflict. Our analysis measures latency and through-
put in a variety of scenarios. Latency measurements permit
us to characterize the atomic addition execution by a warp
(i.e., basic Single-instruction Multiple-data unit in CUDA),
that is subject to intrawarp position conflicts. Moreover,
because the shared memory is divided into memory banks,
bank conflicts appear when two or more threads in a warp
access the same bank, causing serialization in memory read
or write instructions. Thus, we propose an intrawarp
performance model that accurately estimates the latency
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of atomic additions. The impact of collisions between
threads belonging to different warps (interwarp conflicts)
on throughput is also measured.

This performance model can be used to guide the design
of optimized implementations, where atomic additions are
needed. In this context, voting processes are paradigmatic:
thousands of threads voting in a limited number of memory
locations, where each vote is carried out by an atomic
addition. For example, histogram calculation and the
centroid updating step in k-means clustering.

Thus, the main contributions are as follows:

. We present a microbenchmark-based analysis of
atomic additions on shared memory of a NVIDIA
GPU with Fermi architecture.

. This analysis has led us to discern the lock
mechanism that enables atomic updates in shared
memory. Thus, we are able to propose an intrawarp
performance model for atomic additions.

. We have quantified the impact of interwarp conflicts
on throughput. We note that latency hiding con-
ducted by the multithreaded architecture alleviates
the penalties due to interwarp conflicts.

. The model is used to derive some implications that
help us to optimize voting processes, such as the
centroid updating step in k-means clustering, and
histogram calculation.

The rest of the paper is organized as follows: Section 2
presents the microbenchmarking of atomic additions in
shared memory. Section 3 deals with an experimental
analysis of the intrawarp performance model that leads us
to optimize voting processes. Section 4 shows how both the
centroid updating step in k-means clustering, and histo-
gram calculation can be optimized. Finally, the main
conclusions are stated.

2 MICROBENCHMARK-BASED STUDY OF ATOMIC

ADDITIONS IN SHARED MEMORY

Although some valuable studies have used microbe-
nchmarking for studying the GPU architecture [9], [10],
[11], the shared memory and specifically the atomic
operations have not been analyzed in detail. Thus, we have
quantified the impact of atomic additions on performance
by measuring their latency and throughput in the presence
of position and bank conflicts.

The shared memory is a scratchpad memory divided
into equally sized modules, called banks, which can be
accessed simultaneously. Successive 32-bit words are
assigned to successive banks. If the number of banks is N
and A is the address of a word, A resides in bank A%N ,
where % stands for modulo operation. This permits a high
bandwidth if threads access addresses that fall in distinct
memory banks. However, if two addresses of a memory
request fall in the same bank, there is a bank conflict and the
access has to be serialized. In Fermi devices [13], the shared
memory has 32 banks, which is the warp size too. Thus, the
granularity of memory requests is 32. Shared memory size
is 48 KB in Fermi.

CUDA offers atomic functions in shared memory for
devices of compute capability (c.c.) 1.2 and above. For

example, atomicAdd() reads a word at some address,
adds a number to it, and writes the result back to the same
address. It is atomic in the sense that no other threads can
access this address until the operation is complete. The code
of an atomic addition for c.c. 2.0 is in Fig. 1. We note that
load and store instructions are augmented with lock acquire
(LK) and lock release (UL) suffixes. In this way, the load
instruction locks shared memory locations until they are
unlocked by the store instruction.

The lock mechanism that enables atomic updates to
shared memory is implemented by a memory lock unit
described in [14]. Memory read and write requests are input
to the memory lock unit. A set of lock bits are provided that
store the lock status for locations. A lock bit may be shared
among several addressable locations. Thus, multiple ad-
dresses are aliased to the same lock bit. A hash function
may be implemented to map request memory addresses to
lock bit addresses. The hash function may simply use the
low bits of the address.

Read instructions return both the data stored at the
indicated address and a flag determining if the lock was
successfully acquired. Such a flag is related to a predicate
register (P0 in Fig. 1). The lock bits are accessed in parallel
with memory read and write accesses.

If the lock was successfully acquired, the program may
then modify the data, store the new value, and release the
lock to allow other threads to access the location whose
address aliases to the same lock address as the released lock
address. If the lock is not successfully acquired, the
program should attempt to acquire the lock again. This is
why the branch instruction is included. The program is also
responsible for honoring the lock bits through the predicate
register, since the memory lock unit is not configured to
track lock ownership.

It can be seen that threads compete for locking access to
those addresses which are to be atomically updated. This
fact reveals the serialization that threads of a warp suffer
when they try to update the same address, i.e., a position
conflict occurs. Moreover, because the thread scheduler of
the GPU will be alternatively launching instructions for
different warps, interwarp position conflicts might appear:
one warp will have to wait until other warp finishes the
atomic operation if threads of both warps access the same
locations. Thus, we distinguish between intrawarp and
interwarp conflicts. In the following sections, they are
studied separately. We analyze how they impact on latency
and throughput on a NVIDIA GeForce GTX 580 with Fermi
architecture. Moreover, we present a procedure to estimate
the latency of an atomic addition executed by one warp,
which accesses a set of addresses called warp access pattern.
The microbenchmark methodology we have followed is
explained in detail in the supplemental material file,
which can be found on the Computer Society Digital Library
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Fig. 1. Assembly code for an atomic addition on Fermi instruction set
(c.c. 2.0).



at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2012.319, as well as the warp access patterns used in the
experiments. Each pattern contains a certain conflict degree,
which is the number of conflicting threads in the intrawarp
assessment or the number of conflicting warps in the
interwarp assessment.

2.1 Intrawarp Conflicts Assessment

While executing an atomic addition, threads belonging to a
warp may suffer a position conflict if they try to access the
same address. On the other hand, they may suffer a bank
conflict if different accessed addresses belong to the same
memory bank. First, we will quantify the impact of position
conflicts on latency and throughput, and then we will study
how bank conflicts are resolved.

2.1.1 Position Conflicts Microbenchmarking

The impact of intrawarp position conflicts on latency is
measured with warp access patterns that result in n-way
position conflicts with no bank conflicts. n is given by the
number of threads accessing the same address. Fig. 2
presents the latency results. Access without position
conflicts (n ¼ 1) results in 108 clock cycles. This value is
the base latency (tbase) for atomic additions. Moreover, it can
be observed the gap between two consecutive marks is
around 120 clock cycles (tposition). Thus, the penalty due to
an n-way position conflict is ðn� 1Þ � tposition clock cycles.

Consistently, the throughput measurement reveals a
drastic reduction by 50 percent, when the conflict degree
doubles. See the supplemental file, available online, for
further details.

We have checked that the former results are independent
of the address where conflicts occur. We have also tested
many patterns with position conflicts (and no other bank
conflicts) in more than one address. Our conclusion is that
the exposed latency and throughput are always determined
by the address with the highest conflict degree (n).

2.1.2 Bank Conflicts Microbenchmarking

As atomic additions include one shared memory read and
one write, we first measure latency penalties on nonatomic
read or write accesses due to bank conflicts. We used the
access patterns presented in the supplemental file, available
online. In both cases, we obtain the penalty increases in
steps of tbank (typically 32 clock cycles). This is independent
of the stride, which is the distance between addresses
accessed by colliding threads.

We then use the same access patterns to estimate the
influence of intrawarp bank conflicts on atomic additions.
The stride is a multiple of the number of banks between 32
and 1,024. We note that there are two types of bank conflicts:

. If addresses in conflict are at a distance multiple of
1,024 words, the penalty is tbank-long (typically,
152 clock cycles). We call this long-latency bank
conflict. For example, if the warp access pattern is
[0; 1;024; 2; 3; . . . ; 31], the penalty tbank-long is added
to the base latency.

. If addresses in conflict are at a different distance, the
latency is increased in tbank-short (typically, 68 clock
cycles). We call it short-latency bank conflict.
An example is a warp access pattern equal to
[0; 32; 2; 3; . . . ; 31]: tbank-short is added to the base
latency. This value approximately matches the bank
conflict penalty measured in nonatomic read or
write: tbank-short ¼ 2� tbank.

Moreover, both penalties are increased in steps of textra
(32 clock cycles), whenever a new colliding thread
accesses an address at a distance multiple of 1,024
with respect to the addresses being accessed in the two
former cases. For instance, a warp access pattern [0; 1;024;
2;048; 3; . . . ; 31] entails a penalty of tbank-long þ tbank-long þ
textra, because thread 2 is accessing an address at distance
multiple of 1,024 with respect to addresses 0 and 1,024. If
the warp access pattern is [0; 1;024; 2;048; 32; 4; . . . ; 31], the
penalty is tbank-long þ tbank-long þ textra þ tbank-short. The extra
penalty appears again with a new colliding thread
at distance 1,024 with respect to 32: the warp access
pattern [0; 1;024; 2;048; 32; 1;056; 4; . . . ; 31] entails a penalty
tbank-long þ tbank-long þ textra þ tbank-short þ tbank-short þ textra.

This behavior is shown in Fig. 3 for two particular cases
where the stride takes the values of 32 and 256, respectively.

In the case of a stride equal to 32, the entire range of
addresses accessed by the threads of the warp is between
address 0 and 1,024 of the shared memory. Therefore, there
are no addresses in conflict at distances that are a multiple
of 1,024. In this way, the penalty due to an m-way bank
conflict is ðm� 1Þ � tbank-short ¼ ðm� 1Þ � 2� tbank clock
cycles. These results are shown in Fig. 3(top).

When the stride is 256, the latency function can be
approximated by a piecewise linear function whose inter-
vals change at addresses at distances that are a multiple of
1,024 within the same bank. The arrows in Fig. 3(bottom)
point to the endpoints of these pieces. Thus, arrow 1 points
to the limit between the first and the second pieces and
coincides with a new conflict due to two accesses to the
same bank with a distance that is a multiple of 1,024. The
gap in arrow 2 shows that there is another new conflict in
the same bank with a distance that is a multiple of 1,024.

2.1.3 Discussion

As we observe that bank conflicts at distances that are a
multiple of 1,024 words are more costly than others on the
GeForce GTX 580, we suspect that the lock mechanism in
Fermi architecture probably uses 1,024 independent locks.
This way, the lock address will be bits 11:2 (see Fig. 2 in
supplemental material, available online). Thus, long-latency
bank conflicts are due to the limited number of independent
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Fig. 2. Latency in clock cycles of an atomic addition with n-way intrawarp
position conflicts in GeForce GTX 580. In each test, n threads update
the same location.



locks, so that addresses at distances that are a multiple of
1,024 are aliased. Therefore, the program must treat them as
if they were position conflicts. In fact, long-latency bank
conflicts and position conflicts can be renamed as lock
address conflicts in different aliased addresses or in the same
address, respectively.

Furthermore, since lock bits are accessed in parallel with
memory accesses, latency penalties due to bank conflicts
will always occur in read access, although the lock is not
acquired. For instance, a warp access pattern containing
addresses 0 and 1,024 incurs a bank conflict when data is
read. As the locks are accessed in parallel and these memory
addresses share lock address, only one of the two addresses
will finally acquire the lock, but a bank conflict penalty has
already been added due to read access. This issue would
explain why long-latency bank conflicts are even longer
than position conflicts, i.e., tbank-long ¼ tposition þ tbank (typi-
cally, 152 ¼ 120þ 32 clock cycles).

The additional penalty textra can be explained in a similar
way. Let us consider a warp access pattern with addresses
0, 1,024, and 2,048. As they are aliased, the code in Fig. 1
will be executed three times. For instance, if the order in

which these addresses acquire the shared lock is 0-1,024-
2,048, address 1,024 will be read twice and address 2,048
will be read three times. Thus, the penalty tbank-long due to
address 2,048 is increased in tbank. Consequently,
textra ¼ tbank. The former issues are summarized in Table 1.

2.1.4 Intrawarp Performance Model

In this section, we present a procedure to determine the
latency estimate of atomic additions in shared memory
with an arbitrary access pattern. By generalizing the rules
detected in the previous sections, we propose Algorithm 1.
In each iteration, it calculates the bank conflict degree in
the read access, and determines which addresses acquire
the locks. Then, it calculates the bank conflict degree in the
write access. Finally, it removes those addresses that have
been updated from the original set of addresses. A
complete example can be seen in the supplemental file,
available online.

Algorithm 1. Procedure for determining a latency estimate

for a warp access pattern Aw. Algorithm_bank calculates the

bank conflict degree of a set of addresses. Algorithm_lock

determines the addresses that acquire locks and the
maximum number of addresses that share one lock. They

are included in the supplemental file, available online.

lock conflict degree ¼ Algorithm lockðAwÞ
Address½� ¼ Aw
for iteration ¼ 1 to lock conflict degree do

if iteration ¼ 1 then

Latency ¼ tbase
else

Latency þ ¼ tposition
end if

bank conflict degree ¼
Algorithm bankðAddress½�Þ
if bank conflict degree > 0 then

Latencyþ ¼ ðbank conflict degree� 1Þ � tbank
end if

Address to update½� ¼ Algorithm lockðAddress½�Þ
bank conflict degree ¼
Algorithm bankðAddress to update½�Þ
if bank conflict degree > 0 then

Latency þ ¼ ðbank conflict degree� 1Þ � tbank
end if

Remove Address to update½� from Address½�
end for

Return Latency

In addition, we have evaluated the reliability of the
intrawarp performance model with 5,184 different warp
access patterns. These tests have successfully shown that
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TABLE 1
Summary of Observed Conflicts, Associated Penalties, and Explanation According to the Memory Lock Unit [14]

Fig. 3. Latency in clock cycles of an atomic addition with m-way
intrawarp bank conflicts in GeForce GTX 580. m is given by the number
of threads accessing different addresses in the same bank. The upper
part presents results with a stride ¼ 32. The gap between two
consecutive marks is tbank-short. The lower part shows the results with
a stride ¼ 256. Gaps are approximately equal between the first four
marks (tbank-short). Arrow 1 shows where the gap is significantly higher
(tbank-long). Gaps between the second four marks are again approxi-
mately equal, but higher than gaps between the first four marks in
32 clock cycles (textra). Similarly, the gap pointed to by arrow 2 is
32 clock cycles longer than the gap in arrow 1 (tbank-long þ textra).



latency estimates match the measured latencies. The
median relative error of latency estimates is 1.9 percent.

2.2 Interwarp Conflicts Assessment

Within a Streaming Multiprocessor (SM) the warp schedu-
ler alternates instructions from different warps. While
executing atomic operations, one warp may be stalled
because of a conflict with another warp. This is what we call
an interwarp conflict.

We have carried out two different experiments to
measure the throughput in the presence of interwarp
conflicts (and the absence of intrawarp conflicts). The first
one measures the effect on throughput, if any, of the
number of threads in one warp that are colliding with
threads in other warps. In the second one, the number of
colliding threads in each warp is fixed, and the number of
warps with colliding threads is variable. Both experiments
reveal that the throughput is independent of the number of
colliding threads in each warp (because conflicts in different
locations are resolved concurrently), but depends on the
number of colliding warps. Moreover, comparing the effect
of interwarp and intrawarp conflicts on throughput, we
observed that intrawarp conflicts burden much more than
inter-warp conflicts. The alternate warp scheduling hides
the effect of interwarp conflicts. Extended results can be
found in the supplemental file, available online.

3 EXPERIMENTAL ANALYSIS OF THE MODEL

The model presented in Section 2.1.4 describes how a warp
of threads executes atomic operations on an address set Aw
in shared memory by acquiring lock bits associated with
memory positions. The number of lock bits is lower than the
number of shared memory addresses; thus, a lock bit is
shared by several aliased addresses and a conflict may arise
by accessing the same or an aliased memory position. A
conflict may also occur by accessing addresses in the same
bank of the shared memory.

These three types of conflicts can be summarized as
follows: When two or more threads in the same warp access
the same bank, a bank conflict occurs. When two or more
threads access the same address, a position conflict occurs.
Finally, when two or more threads access different aliased
addresses, a lock conflict occurs. A position conflict is
indeed a particular case of lock conflict that saves some clock
cycles thanks to broadcasting in shared memory [4]. As seen
in Section 2.2, position and lock conflicts are also possible
among threads belonging to different warps. Nevertheless,
we focus hereinafter on intra-warp conflicts, which are

accurately described by the model and cause significantly
more impact on throughput than interwarp conflicts.

The number of conflicting threads in a warp is the degree
of the conflict. Thus, conflict degree equal to 1 means no
conflict. A warp access pattern may have several different
conflicts, each with its own conflict degree. Algorithm 1
shows how they occur and the latency penalty they
provoke; basically, the highest conflict degree limits the
resolution of all the conflicts imposing a latency penalty on
the execution time.

In this section, we present three experiments that reveal
implications derived from the model that will help us to
optimize applications using atomic operations, for example,
voting processes such as histogram calculation. In these
experiments, one warp of threads carries out atomic
additions on a shared memory space of variable size. This
shared memory space is composed by consecutive memory
positions, corresponding to a vote space in voting processes.
Consequently, we refer to this shared memory space as vote
space. A general code for a voting process is in Fig. 4.

The first experiment uses random access patterns Aw to
obtain an estimate of the latency penalties caused by bank
and lock conflicts. Real access patterns depend on the
application using atomic operations, and the real data used,
but in a general case we can assume a uniform data
distribution over different Aw. Fig. 5 shows the latency and
the proportion due to each type of conflict using 1,000,000
warp access patterns. Each column corresponds to a
different size of the vote space varying between 32 and
4,096 32-bit words, and the numbers on each column are the
averages of the maximum conflict degree. The figure also
presents the measured latency, to show the accuracy of the
model estimates.

As it can be observed, most of the latency is due to lock
(and position) conflicts, even if the bank conflict degree is
higher. This is caused by the fact that position and lock
conflicts are significantly more costly than bank conflicts.
The lock conflict degree between 32 and 1,024 words is
entirely due to position conflicts, since there are 1,024 lock
bits. Since the probability of position conflict in each Aw
diminishes as the vote space grows, the lock conflict degree
decreases. Thus, the latency decreases as well. However, the
lock conflict degree is maintained between 1,024 and 4,096,
because addresses at distance multiple of 1,024 words
(i.e., aliased addresses) appear in Aw.
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Fig. 4. Code segment of a voting process. Input data data are
located in global memory. The vote space in shared memory is
vote_in_shared. Fig. 5. Average measured latency and estimated latency penalties due

to lock and bank conflicts. 1,000,000 random warp access patterns
have been used on GeForce GTX 580. The numbers on each column
stand for the average of the maximum lock (bottom) and bank (top)
conflict degree.



Hence, a general strategy for reducing the penalty
should eliminate or at least reduce the position conflicts.
A classic approach is replication, which consists of placing R
adjoining copies of the vote space, to spread the accesses
over more memory addresses. R is called replication factor.
A final step reduces the copies to calculate the results. Thus,
replication is only applicable to associative operations such
as addition.

While applying replication, a mapping function is
needed to assign to each thread a replicated copy of the
vote space, where the thread will perform its atomic
operations. Typical mapping functions are cyclic and
block. On the one hand, cyclic mapping makes consecutive
threads access consecutive copies: thread ThId will access
copy ThId%R. Each thread will use the offset in (1). On the
other hand, block mapping assigns several consecutive
threads to the same replicated copy: if N is the thread block
size and R is the replication factor, each N

R consecutive
threads will access the same copy. The offset is given by (2).
As indicated above, the experiments in this section use a
thread block size N ¼ 32, that is, the warp size:

Offset cyclicðThIdÞ ¼ V ote space size� ðThId%RÞ; ð1Þ

Offset blockðThIdÞ ¼ V ote space size� ThId

bNRc

$ %
%R

 !
:

ð2Þ

When the vote space size is a multiple of the number
of shared memory banks, replication makes position
conflicts turn into bank conflicts. Anyway, a latency
reduction can be expected as position conflicts are more
costly than bank conflicts.

The second experiment uses the previous random warp
access patterns to study the impact of replication in the
reduction of the latency penalty. For the sake of simplicity,
we use the maximum possible replication factor for each
size of the vote space, because the probability of position
conflict is lower in a larger space. The maximum replication
factor is limited by the shared memory size. In these tests,
we use a replication factor up to 32, which is the number of
threads in a warp.

Fig. 6 shows an important decrease in the lock conflict
degree in vote spaces under 1,024. In fact, a reduction of the
latency is observed in these cases with respect to the results
in Fig. 5. Such a reduction is thanks to turning position

conflicts into bank conflicts. However, replication has no
effect on lock conflict degree in vote spaces equal to or
longer than 1,024. This is due to the fact that position
conflicts turn into lock conflicts in aliased addresses,
because the vote space size is a multiple of the number of
locks. Hence, no performance improvement can be expected
from replicating beyond a memory space of 1,024 words.

The former results are identical for both block and cyclic
mapping, because of the huge number of random access
patterns. Differences in performance of both mapping
functions may be noticed with input data that have some
type of spatial correlation. To illustrate the impact of spatial
correlation, we introduce in the third experiment a sorting
stage that sorts every warp access pattern in ascending
order before the atomic operation. In this way, possible
position conflicts will appear among adjacent threads. The
same 1,000,000 random warp access patterns as in previous
experiments are used.

Fig. 7 shows the latency for vote spaces between 32 and
4,096 and replication factors between 1 and the correspond-
ing maximum. We test block and cyclic mapping functions
with and without the sorting stage. Moreover, we introduce
padding between consecutive replicated copies of the vote
space. Thus, the start address of each copy is shifted. This
may strengthen replication by avoiding bank and lock
conflicts: if two adjacent threads are to update the same
memory position, replication will turn the position conflict
into a bank (or a lock) conflict; after introducing padding,
the two threads will access different banks (and lock bits).
In these tests the pad size is 1, because it is enough to avoid
those bank and lock conflicts (derived from replication)
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Fig. 6. Average measured latency and estimated latency penalties due
to lock and bank conflicts when using the maximum replication factor.
1,000,000 random warp access patterns have been used on GeForce
GTX 580. The numbers on each column stand for the average of the
maximum lock (bottom) and bank (top) conflict degree.

Fig. 7. Average measured latency for 1,000,000 random warp access patterns on GeForce GTX 580. Cyclic and block mapping functions are used.
Additionally, a sorting stage and padding may be included. The sorting stage is not included in the latency measurement.



between adjacent threads. Although some new conflicts
may arise because of shifted accesses after padding, the
probability of conflict is generally much lower, as we have
checked using the model.

It can be observed that plain cyclic and block mapping
have an identical performance, even if padding is used,
because of the random nature of input data. As expected,
the lowest latency in these cases is achieved with the
highest replication factor that maintains the replicated
copies space under 1,024 words.

Cyclic mapping with sorting improves significantly the
performance for vote space sizes under 1,024, because
replication will turn many position conflicts into bank
conflicts. Such an improvement disappears for vote space
sizes larger than or equal to 1,024, as lock conflicts appear.
The use of padding ensures further improvement, thanks
to the avoidance of those bank and lock conflicts caused
by replication.

In the case of block mapping with sorting, a low
replication factor is not profitable, because neighboring
threads will likely access the same replicated copy. Thus,
most position conflicts are not avoided. The impact of
padding is negligible too, because bank and lock conflicts
caused by replication are scarce. Position conflicts between
two consecutive threads will only be removed when using a
replication factor 32, that is, one copy per thread.

4 OPTIMIZING VOTING PROCESSES

Model implications described in the previous section can
help us to optimize applications using atomic operations.
As the microbenchmarking and the performance model in
Section 2 deal with atomic additions, we focus in this
section on applications using them and particularly on their
voting processes. Representative case studies are the
centroid updating step in k-means clustering, and histo-
gram calculation, which are tackled below. Replication
approaches with cyclic and block mappings will be applied
to both cases. In addition, padding will be used in
histogram calculation, to take advantage of the spatial
correlation of image pixels.

4.1 K-Means Clustering

K-means clustering [15] is a widely known partition method
that classifies a number of input data objects into k clusters.
Each cluster is represented by a centroid, i.e., the mean
value of all the objects contained in it. The standard
algorithm uses an iterative refinement. In each iteration,
objects are assigned their nearest centroids based on a
similarity function. Once the assignments have been
completed, the centroids are recalculated by averaging the
object components.

The updating step of the centroids can be considered a
voting process. On the one hand, the number of objects
assigned to each cluster is counted. On the other hand, each
object component is accumulated for the corresponding
centroid. Then, the components of the centroid are obtained
dividing each accumulated value by the total number of
objects within the cluster. Thus, there will be one vote space
to count the objects per cluster and as many vote spaces as

object components. All these vote spaces will have the same
size equal to k.

4.1.1 GPU Implementation and Evaluation

Since the number of input objects will be usually very large,
GPU acceleration will be very desirable for this algorithm.
The second step in each iteration, that is, the updating of the
centroids, is in the scope of this work, because it needs
atomic additions. In this way, we have implemented a
scatter approach applying replication in shared memory to
the vote spaces (cluster counter and centroid components)
and have tested cyclic and block mappings. The replication
scheme places the several copies of each vote space
consecutively. Thus, the shared memory allocates all copies
of the cluster counter, then all copies of the first component,
and so on. This scheme is possible thanks to the availability
of integer and floating-point atomic additions on Fermi
devices [4].

The maximum replication factor R is dependent on the
number of object components in input data set and the
number of clusters. For instance, as the shared memory size
is 48 KB, the maximum replication factor for 128 clusters
and 2-component objects is 32, i.e., 32 copies per vote space.
This is indeed the maximum possible replication factor in
the following tests.

We have tested cyclic and block mappings with
three input data sets of 2-component, 4-component, and
5-component objects, respectively. These data sets are
similar to those used in [16], but have been extended with
more objects, to leverage fully the enormous computing
resources of the GPU. Each data set contains 212,340
objects. The execution configuration is 16 blocks of 1,024
threads, which ensures a minimum of active threads per
SM as recommended in CUDA literature [5].

Fig. 8 shows the execution time of the cyclic mapping for
128, 256, and 512 clusters. The best performance is always
attained with the replication factor that maintains the
memory space used by the copies of each vote space under
1,024 words. In this way, the best replication factor for 128,
256, and 512 clusters is, respectively, 8, 4, and 2. In addition,
we have also verified that padding does not improve the
performance as input data show a low spatial correlation.
These observations entirely agree the implications derived
from the model in Section 3.
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Fig. 8. K-means clustering execution results for three data sets of 2-, 4-,
and 5-component objects. The number of clusters is 128, 256 or 512.
Abscissas represent the replication factor applied to cluster counter and
each centroid component.



In the case of block mapping, the number of threads N
in (2) is the block size. As we use blocks of 32 warps and
the maximum possible replication factor in these tests is
32, each replicated copy is shared by one or more warps.
Thus, intrawarp position conflicts are never removed.
According to our analysis (see Section 2.2), intrawarp
conflicts burden the performance more than interwarp
conflicts. Consequently, the performance of the block
mapping is lower than the cyclic mapping in all cases
(see supplemental material file, available online), as it is
derived from our analysis.

4.1.2 The Updating of the Centroids in GPU k-Means

To the best of our knowledge, ours is the first implementa-

tion of the centroid updating step on GPU that takes

advantage of floating-point atomic additions in shared
memory. Most previous works update the centroids on

CPU [17], [18], [19], [20], because of the lack of floating-
point atomic additions on pre-Fermi devices. The main

drawback of these approaches is the overhead dedicated to
data transfers from GPU to CPU (after finding the nearest

cluster for each object) and from CPU to GPU (after

computing the new centroids) in each iteration. In [21],
the centroid updating step is also performed on the CPU

side, but some acceleration is achieved using asynchronous
transfers and CUDA streams.

Other works propose gather approaches on GPU, where
one centroid is assigned to one block or one thread, to skip
the need for atomic additions. The approach in [22] assigns
one centroid to one thread that computes all its new
components. Such implementation underutilizes the GPU
resources, when the number of centroids can fit in one
block. In [23], each block calculates a partial centroid from a
subset input objects, and each thread calculates one
dimension of the partial centroid. This approach may be
burdened by an excessive number of idle threads, if the
number of components is low.

The former two works are overcome by the approach in
[24]. Although the authors give scarce details about the

implementation, they assign input objects to threads.
Objects are divided into groups that are distributed to

SMs. This way, write conflicts when updating the centroids

decrease. Taking into account that this work employs a
scatter approach, its design can be seen as a special case of

our general proposal.
In the supplemental file, available online, we have

compared our GPU implementation with an OpenMP

implementation [16]. Our replication scheme attains a
minimum speedup 60 compared to the 4-thread OpenMP

implementation.

4.2 Histogram Calculation

Histograms are functions that count the number of

observations that fall into disjoint categories, known as
bins. They permit to estimate the probability distribution of

a variable and, in this manner, they are frequently used to
obtain the probability density function of the analyzed

variable by normalizing the histogram area to 1. Histograms
are actively used in many applications, notably in the image

processing and pattern recognition fields.

4.2.1 GPU Implementation and Evaluation

GPU implementation of histogram calculation consists of a
huge number of threads voting in a limited number of
histogram bins, where each vote requires atomicity. Thus,
access conflicts will be very frequent. Additionally, in a
typical image or video application on GPU, threads
belonging to the same warp will read contiguous pixels of
an image stored in global memory because such an access
pattern fulfills coalescing requirements, which permit faster
access to global memory [4]. Real images usually present a
high spatial correlation of pixels, so that color values of
neighboring pixels will be generally assigned to the same
histogram bin. Therefore, threads of the same warp will
vote in a reduced range of the histogram due to the spatial
similarity of the input distribution and position conflicts
will be very frequent.

To reduce position conflicts between neighboring pixels,
we have applied replication. As previously explained, a
number R of replicated copies per block, called subhisto-
grams, is consecutively allocated in shared memory. Block
and cyclic mapping are tested. Moreover, padding is
introduced, since it can be very profitable for spatially
correlated input data as seen in Section 3. Tests in this
section use the Van Hateren’s natural image database [25],
which contains more than 4,000 monochrome images. Pixels
of Van Hateren’s images have a resolution of 12 bits. This
way, histograms of up to 4,096 bins can be generated.

We have used several execution configurations that
follow CUDA literature recommendations to achieve a
minimum of active threads [5]. The number of blocks has
been changed between 16 and 128, and the number of
threads between 128 and 1,024. All of them have demon-
strated a similar performance, that is shown in Fig. 9 for
16 blocks of 1,024 threads. It shows the average results
for histogram calculation of all Van Hateren’s images.

It can be noticed that this figure presents similar trends
to Fig. 7, despite that sorting is not applied, but the spatial
correlation has a similar effect. In both cyclic and block
mappings, the performance is conditioned by the memory
space used. These mappings without padding loose their
effectiveness when the memory space occupied by the per-
block subhistograms is larger than 1,024 32-bit words. As it
can be seen for histograms up to 256 bins, this fact is even
more harmful for the cyclic mapping, where position
conflicts among adjacent threads turn into lock conflicts,
which are more costly.

The use of padding is effective in both mappings,
particularly in the cyclic mapping under 256 bins. When
using low-pixel resolution (5, 6 or 7 bits), the probability of
position conflict between consecutive threads will be
higher. Most of these conflicts will be intrawarp conflicts.
Therefore, the cyclic mapping would turn them to bank or
lock conflicts, but padding eliminates them. Intrawarp
conflicts are not removed when using block mapping unless
the replication factor is more than 32, because thread blocks
of 32 warps are used. Moreover, padding in block mapping
is only useful when the memory space is longer than 1,024,
when some lock conflicts will be removed.

When the pixel resolution is higher, the probability of
position conflict between adjoining threads decreases
notably. Thus, padding is less effective in cyclic mapping.
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Hence, the performance of both mappings is very similar
for histograms longer than 256 bins.

4.2.2 GPU Approaches to Histogram Calculation

Several research works have developed implementations of
histogram calculation on GPU. Most of these works are
based on replication. They assign one replicated copy to one
thread or to one warp.

On the one hand, the per-thread approach by Shams and
Kennedy [26] declares one subhistogram per thread, which
avoids the need for atomic operations, but requires placing
a vast number of subhistograms in the high-latency off-chip
global memory. Position conflicts are eliminated at the
expense of a costly final reduction step. Nugteren et al. [27]
propose a per-thread approach using the limited on-chip
shared memory, which presents the drawback that the
histogram size is limited to 256 bins.

On the other hand, the per-warp approach in [28], [26]
places one subhistogram per warp in shared memory. Such
approach is indeed a particular case of our replication
scheme with block mapping and without padding, using a
replication factor equal to the number of warps in each
thread block. Our intrawarp performance model predicts
threads of a warp might incur many position conflicts
due to the typical data distributions in real images. An
attempt to overcome this drawback is presented in
Nugteren’s per-warp approach [27], but it is based on
uncoalesced global memory accesses that are one of the most
undesirable bottlenecks for GPU performance.

Our histogram calculation approach clearly outperforms
the former state-of-the-art approaches, as it can be seen in
the supplemental material file, available online.

5 CONCLUSIONS

This study has presented a microbenchmark-based analysis
of atomic additions in GPU shared memory that has
permitted us to discern how atomic operations work. There
is a lock mechanism that uses a limited number of lock bits,
for example, 1,024 in Fermi architecture. This way, lock
conflicts occur between addresses at distance multiple of
1,024 words. These are handled as position conflicts with an
additional penalty due to the bank conflict.

Therefore, we model the execution of atomic additions in
shared memory with a procedure that estimates latency by

calculating the number of times that the program repeats
the atomic addition code and the bank conflict degree in
memory reads and writes. Finally, our analysis shows that
interwarp conflicts are less harmful to performance than
intrawarp conflicts thanks to the latency hiding in multi-
threaded architectures.

The performance model leads us to derive experiments
that reveal the way to optimize applications using atomic
operations. Particularly, we focus on voting processes such
as histogram calculation and the updating of centroids in
k-means clustering. Replication schemes with cyclic and
block mappings are tested. We find that they are profit-
able when the memory space occupied by the replicated
copies is under 1,024 32-bit words. Padding can be
successfully used when input data exhibit a spatial
correlation, such as in histogram calculation of real
images. Moreover, the block mapping performs worse
than the cyclic mapping in scenarios with a replication
factor under the number of warps, because of the more
negative impact of intrawarp conflicts.
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versity of Córdoba. His research interests focus
on parallelization of image and video proces-
sing applications.
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