
The cache, a high-speed buffer establishing a storage hierarchy in the
Model 85, is discussed in depth in this part, since it represents the
basic organizational departure from other SYSTEM/360 computers.

Discussed are organization and operation of the cache, including the
mechanisms used to locate and retrieve data needed by the processor.

The internal performance studies that led to use of the cache are de-
scribed, and simulated performance of the chosen configuration is
compared with that of a theoretical system having an entire SO-nano-
second main storage. Finally, the effects of varying cache parameters
are discussed and tabulated.

Structural aspects of the System/360 Model 85

IT The cache
by J. s. Liptay

Among the objectives of the Model 85 is that of providing a
SYSTEM/360 compatible processor with both high performance and
high throughput. One of the important ingredients of high through-
put is a large main storage capacity (see the accompanying article
in Part 1). However, it is not feasible to provide a large main stor-
age with an access time commensurate with the 80-nanosecond
processor cycle of the Model 85. A longer access time can be par-
tially compensated for by an increase in overlap, greater buffering,
deeper storage interleaving, more sophistication in the handling of
branches, and other improvements in the processor. All of these
factors only partially compensate for the slower storage, and, there-
fore, we decided to use a storage hierarchy instead.

The storage hierarchy consists of a 1.04-microsecond main stor-
age and a small, fast store called a cache,' which is integrated
into the CPU. The cache is not addressable by a program, but rather
is used to hold the contents of those portions of main storage that
are currently being used. Most processor fetches can then be
handled by referring to the cache, so that most of the time the
processor has a short access time. When the program starts operat-
ing on data in a different portion of main storage, the data in that
portion must be loaded into the cache and the data from some other
portion removed. This activity must take place without program
assistance, since the Model 85 must be compatible with the rest of
the SYSTEM/36D line.

This paper discusses organization of the cache and the studies
that led to its use in the Model 85 and to selecting of values for its
parameters.

IBM SYSTEMS JOURNAL • VOL. 7 . No.1· 1968 15



Figure 1 Assignment of cache sectors to main storage sectors

MAIN STORAGE

SECTOR

CACHE

SECTOR

assigning
cache

sectors

16

Cache organization
The main storage units that can be used on the Model 85 are the
IBM 2365-5 and the 2385. They have a 1.04-microsecond cycle time
and make available capacities from 512K bytes to 4096K bytes
(K = 1024). The cache is a 16K-byte integrated storage, which is
capable of operating every processor cycle. Optionally, it can be
expanded to 24K bytes or 32K bytes.

Both the cache and main storage are logically divided into sec-
tors, each consisting of 1K contiguous bytes starting on lIe-byte
boundaries. During operation, a correspondence is set up between
cache sectors and main storage sectors in which each cache sector
is assigned to a single different main storage sector. However, be-
cause of the limited number of cache sectors, most main storage
sectors do not have any cache sectors assigned to them (see Figure
1). Each of the cache sectors has a 14-bit sector address register,
which holds the address of the main storage sector to which it is
assigned.

The assignment of cache sectors is dynamically adjusted during
operation, so that they are assigned to the main storage sectors that
are currently being used by the program. If the program causes a
fetch from a main storage sector that does not have a cache sector
assigned to it, one of the cache sectors is then reassigned to that
main storage sector. To make a good selection of a cache sector to
reassign, enough information is maintained to order the cache sec-
tors into an activity list. The sector at the top of the list is the one
that was most recently referred to, the second one is the next most
recently referred to, and so forth. When a cache sector is referred
to, it is moved to the top of the list, and the intervening ones are
moved down one position. This is not meant to imply an actual
movement of sectors within the cache, but rather refers to a logical

J. S. LIPTAY



ordering of the sectors. When it is necessary to reassign a sector, the
one selected is the one at the bottom of the activity list. This
cache sector is the one that has gone the longest without being
referred to.

When a cache sector is assigned to a different main storage sec-
tor, the contents of all of the 1K bytes located in that main storage
sector are not loaded into the cache at once. Rather, each sector is
divided into 16 blocks of 64 bytes, and the blocks are loaded on a
demand basis. When a cache sector is reassigned, the only block
that is loaded is the one that was referred to. If they are required,
the remaining blocks are loaded later, one at a time. Each block
in the cache has a bit associated with it to record whether it has
been loaded. This "validity bit" is turned on when the block is
loaded and off when the sector is reassigned.

Store operations always cause main storage to be updated. If
the main storage sector being changed has a cache sector assigned
to it, the cache is also updated; otherwise, no activity related to the
cache takes place. Therefore, store operations cannot cause a cache
sector to be reassigned, a block to be loaded, or the activity list to
be revised. Since all of the data in the cache is also in main storage,
it is not necessary on a cache sector reassignment to move any data
from the cache to main storage. All that is required is to change the
sector address register, reset the validity bits, and initiate loading
of a block. The processor is capable of buffering one instruction
requesting the storing of information in main storage, so that it
can proceed with subsequent instructions even if execution of the
store instruction cannot be initiated immediately.

Two processor cycles are required to fetch data that is in the
cache. The first cycle is used to examine the sector address registers
and the validity bits to determine if the data is in the cache. The
second cycle is then used to read the data out of the cache. How-
ever, requests can normally be overlapped, so that one request can
be processed every cycle. If the data is not present in the cache,
additional cycles are required while the block is loaded into the
cache from main storage.

The storage word size on which the Model 85 operates internally
is 16 bytes. This is the width of the data paths to and from the
storage units, and is the amount the processor can store or fetch
with a single request. Because a single 2365-5 storage unit operates
on an 8-byte-wide interface, two units are paired together and
operated simultaneously. Except for the 512K configuration, main
storage is interleaved four ways. Since a block is 64 bytes, four
fetches to main storage are required to load one block into the
cache. With four-way interleaving, this means one request to each
basic storage module. To improve performance, the first basic
storage module referred to during each block load is the one con-
taining the 16 bytes wanted by the processor. In addition to being
loaded into the cache, the data is sent directly to the processor, so
that execution can proceed as soon as possible (see Figure 2).

On the Model 85, channels store and fetch data by way of the

MODEL 85 CACHE

store
operations

17



Figure 2 Timing for a block load

MAIN STORAGE

BSMO

8SM3

BSM2

BSMI

BLOCK
BEING
LOADED

TIME TO
DECIDE

IF BLOCK
toAD IS
NEEDED BSM2 ACCESS TIME

DATA AVAILABLE
TO PROrSSOR

I
8SMO

8SM3

BSM2

}
16·BYTE

8SMI STORAGE
1------1 WORD

BSMO

BSM3

BSM3 ACCESS TIME

BSMO ACCESS TIME

BSMI ACCESS TIME

BSM =BASIC STORAGE MODULE

cache
effectiveness

18

processor. Channel fetches are processed by getting the required
data from main storage without referring to the cache. Channel
stores are handled the same way as processor stores. In this way, if
a channel changes data that is in the cache, the cache is updated but
the channels do not have any part of the cache devoted to them.

Performance studies

Among the questions that had to be answered to determine whether
the cache approach should be taken were: (1) how effective is it,
and (2) does its effectiveness vary substantially from one program
to another? The principal tools used to answer these questions are
the tracing and timing techniques referred to in Part 1. The tracing
technique produces an instruction-by-instruction trace of a pro-
gram operating under the SYSTEM/360 Operating System. The output
is a sequence of "trace tapes," which contain every instruction
executed, whether in the problem program or the operating system,
and the necessary information to determine how long it takes to be
executed. These trace tapes contain about 250,000 instructions each
and are used as input to a timing program, which determines, cycle-
by-cycle, how the Model 85 would execute that sequence of instruc-
tions. These techniques are intended to determine internal per-
formance and do not provide any information concerning through-
put. An intensive investigation preceded selection of the programs
used in this study.

In order to measure the effectiveness of the cache, we postulated
a system identical to the Model 85 except that the storage hierarchy
is replaced by a single-level storage operating at cache speed. The
performance of such a system is that which would be achieved by
the Model 85 if it always found the data it wanted in the cache and
if it never encountered interference in main storage due to stores.
Therefore, it represents an upper limit on the performance of the
Model 85; how close the Model 85 approaches this ideal can serve
as a measure of how effective the cache is. Nineteen trace tapes

J. S. LIPTAY



Figure 3 Model 85 performance relative to single-level storage operating at cache
speed

PERCENTAGE OF IDEALPERFORMANCE

Figure 4 Probability of finding fetched data In cache

~
:J

~
~ MEAN=0.968
:I:o
~
:I: 4
t::;:
~
0-
~ 3

"'g
u,
o
ffi
'"::E=>z

0.92 0.93 0.94

PROBABILITY

were timed for both the Model 85 and the postulated system, and
the performance of the Model 85 was expressed as a percentage of
the performance of the ideal system. Figure 3 shows the distribu-
tion of performance data obtained. The average was 81 percent of
the performance of the ideal system, with a range between 66
and 94 percent.

An important statistic related to cache operation is the prob-
ability of finding the data wanted for a fetch in the cache. Figure 4
shows the distribution of this probability for the same 19 trace
tapes used for Figure 3. The average probability was 0.968. It is
worth noting that, if the addresses generated by a program were
random, the probability of finding the data wanted in the cache
would be much less than 0.01. Therefore, it can be said that what
makes the cache work is the fact that real programs are not random
in their addressing patterns.

MODEL 85 CACHE 19



Table 1 Average performance relative to an Ideal system with cache size and number
of sectors varied - Block size = 64 bytes

Number of
cache bytes

Number of sectors
8 16 32

8K
16K
32K

0.693
0.765
0.857

0.744
0.825
0.891

0.793
0.861
0.902

replacement
algorithms

20

Selection of cache parameters
Before the final cache design was established, a great deal of effort
was expended on the choice of cache parameters." The tools used to
make the choice were the trace and timing programs. From among
the trace tapes available, we picked five representative ones and
ran them for many cache configurations, varying cache size, sector
size, and block size. Tables 1 and 2 show the results obtained. In
Table 1, block size is always 64 bytes; in Table2, the number of
sectors is always sixteen. In both cases, performance is compared
with that of a single-level storage operating at cache speed. The
selection of a 16K byte cache with 16 sectors and 64 bytes per
block was made as the best balance between cost and performance.

The choice of an algorithm for the selection of a sector to re-
assign was also the object of careful study. From among the al-
gorithms proposed, two were selected as likely candidates and in-
corporated into the timing program for study.

For one algorithm, the cache sectors are partitioned with an
equal number of sectors in each partition. An activity list is main-
tained for each partition reflecting the use of the sectors within it.
Each partition has a binary address, and when a main storage sec-
tor needs to be assigned a position in the cache, the low-order bits
of its sector address are used to select one of the partitions. The
sector at the bottom of that partition's activity list is the one chosen
for reassignment.

This algorithm was studied for 1, 2, 4, 8, and 16 partitions.
When there is only one partition, the algorithm becomes the Model
85 replacement algorithm. At the opposite extreme, when there are
sixteen partitions, there is only one sector in each, and the idea of
an activity list for each partition is meaningless. In this case, the
choice of a cache sector to reassign depends only on the low-order
address bits of the main storage sector for which a place is being
found in the cache, and consequently each main storage sector has
only one possible place where it can be put in the cache.

The second algorithm involves a single usage bit for each cache
sector. When a sector is referred to, its usage bit is turned on if it is
not already on. When the last sector bit is turned on, all of the other
bits are turned off and the process continues. If a sector has to be re-
assigned, it is selected randomly from among those with their usage
bits off.

J. S. LIPTAY



Table 2 Average perfarmance relative to an ideal system with cache size and num-
ber of bytes per block varied - Number of sectors =16

Number of
cache bytes

Number of bytes per block
64 128 256

8K
16K
32K

0.744
0.825
0.891

0.810
0.885

0.781
0.870

Table 3 Comparative performance using different cache sector replacement algorithms

algorithm

1 partition*
2 partitions
4 partitions
8 partitions

16 partitions
usage bits

performance

1.000
0.990
0.987
0.979
0.933
0.931

* Replacement algorithm chosen for the Model 85

Table 3 summarizes the results obtained. The choice of the
activity list was made because it provided the best balance be-
tween cost and performance.

Summary comment
The inclusion of a storage hierarchy represents one of the major
advances in system organization present in the Model 85. Although
the concept of a storage hierarchy is not new, the successful im-
plementation of a nanosecond/microsecond level of hierarchy was
inhibited until now by the lack of a suitable technology. As im-
plemented in the Model 85, the fast monolithic storage physically
integrated with the CPU logic yields the desired machine speed,
while the large core storage yields the desired storage capacity,
the combination being transparent to the user. It is likely that
with future progress in technology this nanosecond/microsecond
hierarchy is not merely an innovation that worked out well for
the Model 85, but rather it is a fundamental step forward that
will be incorporated into most large systems of the future.

CITED REFREENCE AND FOOTNOTE

1. The term cache is synonymous with high-speed buffer, as used in other
Model 85 documentation.

2. D. H. Gibson, "Considerations in block-oriented systems design," AFIPS
Conference Proceedings, Spring Joint Computer Conference 30, Academic Press,
New York, New York, 75-80 (1967).

MODEL 85 CACHE 21


