
Name: Student ID:

Final Examination

Design of Digital Circuits (252-0028-00L)

ETH Zürich, Spring 2017
Professors Onur Mutlu and Srdjan Capkun

Problem 1 (70 Points):

Problem 2 (50 Points):

Problem 3 (40 Points):

Problem 4 (40 Points):

Problem 5 (60 Points):

Problem 6 (60 Points):

Total (320 Points):

Examination Rules:

1. Written exam, 90 minutes in total.

2. No books, no calculators, no computers or communication devices. Six pages of hand-
written notes are allowed.

3. Write all your answers on this document, space is reserved for your answers after each
question. Blank pages are available at the end of the exam.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if
they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green or red color).

8. Show all your work. For some questions, you may get partial credit even if the end result
is wrong due to a calculation mistake.

9. Please write your initials at the top of every page.

Tips:
• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discreti-

on.
• Write legibly. Show your final answer.

Initials: Design of Digital Circuits August 25th, 2017

This page intentionally left blank

Final Exam Page 1 of 16

Initials: Design of Digital Circuits August 25th, 2017

1 Potpourri

1.1 Processor Design [20 points]

Circle the lines including terms that are compatible with each other and it makes sense
for a processor design to include both.
• superscalar execution — in-order execution
• superscalar execution — out-of-order execution
• single-cycle machine — branch prediction
• reservation station — microprogramming
• fine-grained multithreading — single-core processor
• Tomasulo’s algorithm — in-order execution
• precise exceptions — out-of-order instruction retirement
• branch prediction — fine-grained multithreading
• direct-mapped cache — LRU replacement policy
• fine-grained multithreading — pipelining

1.2 Pipelining [6 points]

What are the three major causes of pipeline stalls?

1.3 Caches I [5 points]

Please reason about the following statements about a possible processor cache one can
design.

Can a cache be 5-way set associative?

YES NO

Explain your reasoning. Be concise. Show your work.

Final Exam Page 2 of 16

Initials: Design of Digital Circuits August 25th, 2017

1.4 Caches II [10 points]

Assume a processor where instructions operate on 8-byte operands. An instruction is also
encoded using 8 bytes. Assume that the designed processor implements a 16 kilo-byte,
4-way set associative cache that contains 1024 sets.

How effective is this cache? Explain your reasoning. Be concise. Show your work.

1.5 Performance Analysis [15 points]

A multi-cycle processor executes arithmetic instructions in 5 cycles, branch instructions
in 4 cycles and memory instructions in 10 cycles. You have a program where 30% of all
instructions are arithmetic instructions, 35% of all instructions are memory instructions,
and the rest are branch instructions. You figured out that the processor cannot execute the
program fast enough to meet your performance goals. Your goal is to reduce the execution
time of this program by at least 10%. Hence, you decide to change the processor design
to improve the performance of arithmetic instructions.

In the new processor design, at most how many cycles should the execution of a
single arithmetic instruction take to reduce the execution time of the entire program
by at least 10%? Show your work.

Final Exam Page 3 of 16

Initials: Design of Digital Circuits August 25th, 2017

1.6 Microprogrammed Design [4 points]

In lecture, we discussed a design principle for microprogrammed processors. We said that
it is a good design principle to generate the control signals for cycle N + 1 in cycle N .

Why is this a good design principle? Be concise in your answer.

1.7 Processor Performance [10 points]

Assume that we test the performance of two processors, A and B, on a benchmark pro-
gram. We find the following about each:

• Processor A has a CPI of 2 and executes 4 Billion Instructions per Second.

• Processor B has a CPI of 1 and executes 8 Billion Instructions per Second.

Which processor has higher performance on this program? Circle one.
Recall that CPI stands for Cycles Per Instruction.

A. Processor A
B. Processor B
C. They have equal performance
D. Not enough information to tell

Explain concisely your answer in the box provided below. Show your work.

Final Exam Page 4 of 16

Initials: Design of Digital Circuits August 25th, 2017

2 Finite State Machines
This question has three parts.

(a) [20 points] An engineer has designed a deterministic finite state machine with a one-
bit input (A) and a two-bit output (Z). He started the design by drawing the following
state transition diagram:

Z=01 Z=01

Z=00

Z=00

A=1,Z=11
A=0,Z=10

A=0

A=0 A=1

S0 S1

S2S3

S4

A=1

A=1

Z=00

Although the exact functionality of the FSM is not known to you, there are at least
three mistakes in this diagram. Please list all the mistakes.

Final Exam Page 5 of 16

Initials: Design of Digital Circuits August 25th, 2017

(b) [25 points] After learning from his mistakes, your colleague has proceeded to write
the following Verilog code for a much better (and different) FSM. The code has
been verified for syntax errors and found to be OK.

1 module fsm (input CLK, RST, A, output [1:0] Z);
2

3 reg [2:0] nextState, presentState;
4

5 parameter start = 3’b000;
6 parameter flash1 = 3’b010;
7 parameter flash2 = 3’b011;
8 parameter prepare = 3’b100;
9 parameter recovery = 3’b110;

10 parameter error = 3’b111;
11

12 always @ (posedge CLK, posedge RST)
13 if (RST) presentState <= start;
14 else presentState <= nextState;
15

16 assign Z = (presentState == recovery) ? 2’b11 :
17 (presentState == error) ? 2’b11 :
18 (presentState == flash1) ? 2’b01 :
19 (presentState == flash2) ? 2’b10 : 2’b00;
20

21 always @ (presentState, A)
22 case (presentState)
23 start : nextState <= prepare;
24 prepare : if (A) nextState <= flash1;
25 flash1 : if (A) nextState <= flash2;
26 else nextState <= recovery;
27 flash2 : if (A) nextState <= flash1;
28 else nextState <= recovery;
29 recovery : if (A) nextState <= prepare;
30 else nextState <= error;
31 error : if (~A) nextState <=start;
32 default : nextState <= presentState;
33 endcase
34

35 endmodule

Final Exam Page 6 of 16

Initials: Design of Digital Circuits August 25th, 2017

Draw a proper state transition diagram that corresponds to the FSM described in
this Verilog code.

(c) [5 points] Is the FSM described by the previous Verilog code a Moore or a Mealy
FSM? Why?

Final Exam Page 7 of 16

Initials: Design of Digital Circuits August 25th, 2017

3 Verilog
Please answer the following four questions about Verilog.

(a) [10 points] Does the following code result in a sequential circuit or a combinational
circuit? Please explain why.

1 module one (input clk, input a, input b, output reg [1:0] q);
2 always @ (*)
3 if (b)
4 q <= 2’b01;
5 else if (a)
6 q <= 2’b10;
7 endmodule

Answer and concise explanation:

(b) [10 points] What is the value of the output z if the input c is 10101111 and d is
01010101?

1 module two (input [7:0] c, input [7:0] d, output reg [7:0] z);
2 always @ (c,d)
3 begin
4 z = 8’b00000001;
5 z[7:5] = c[5:3];
6 z[4] = d[7];
7 z[3] = d[7];
8 end
9 endmodule

Please answer below. Show your work.

Final Exam Page 8 of 16

Initials: Design of Digital Circuits August 25th, 2017

(c) [10 points] Is the following code correct? If not, please explain the mistake and how
to fix it.

1 module mux2 (input [1:0] i, input sel, output z);
2 assign z= (sel) ? i[1]:i[0];
3 endmodule
4

5 module three (input [3:0] data, input sel1, input sel2, output z);
6

7 wire m;
8

9 mux2 i0 (.i(data[1:0]), .sel(sel1), .z(m[0]));
10 mux2 i1 (.i(data[3:2]), .sel(sel1), .z(m[1]));
11 mux2 i2 (.i(m), .sel(sel2), .z(z));
12

13 endmodule

Answer and concise explanation:

(d) [10 points] Does the following code correctly implement a multiplexer?

1 module four (input sel, input [1:0] data, output reg z);
2 always@(sel)
3 begin
4 if(sel == 1’b0)
5 z = data[0];
6 else
7 z = data[1];
8 end
9 endmodule

Answer and concise explanation:

Final Exam Page 9 of 16

Initials: Design of Digital Circuits August 25th, 2017

4 Boolean Logic and Truth Tables
You will be asked to derive the Boolean Equations for two 4-input logic functions, X and
Y. Please use the Truth Table below for the following three questions.

Inputs Outputs

A3 A2 A1 A0 X Y

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Final Exam Page 10 of 16

Initials: Design of Digital Circuits August 25th, 2017

(a) [15 points] The output X is one when the input does not contain 3 consecutive 1’s
in the word A3, A2, A1, A0. The output X is zero, otherwise. Fill in the truth table
on the previous page and write the Boolean equation in the box below for
X using the Sum of Products form. (No simplification needed.)

(b) [15 points] The output Y is one when no two adjacent bits in the word A3, A2, A1, A0

are the same (e.g., if A2 is 0 then A3 and A1 cannot be 0). The output Y is zero,
otherwise (for example 0000). Fill in the truth table on the previous page and
write the Boolean equation in the box below for Y using the Sum of Products
form. (No simplification needed.)

(c) [10 points] Please represent the circuit of Y using only 2-input XOR and AND gates.

Final Exam Page 11 of 16

Initials: Design of Digital Circuits August 25th, 2017

5 Tomasulo’s Algorithm
In this problem, we consider an in-order fetch, out-of-order dispatch, and in-order re-
tirement execution engine that employs Tomasulo’s algorithm. This engine behaves as
follows:

• The engine has four main pipeline stages: Fetch (F), Decode (D), Execute (E), and
Write-back (W).

• The engine can fetch one instruction per cycle, decode one instruction per cycle,
and write back the result of one instruction per cycle.

• The engine has two execution units: 1) an adder for executing ADD instructions
and 2) a multiplier for executing MUL instructions.

• The execution units are fully pipelined. The adder has two stages (E1-E2) and the
multiplier has four stages (E1-E2-E3-E4). Execution of each stage takes one cycle.

• The adder has a two-entry reservation station and the multiplier has a four-entry
reservation station.

• An instruction always allocates the first available entry of the reservation station
(in top-to-bottom order) of the corresponding execution unit.

• Full data forwarding is available, i.e., during the last cycle of the E stage, the tags
and data are broadcast to the reservation station and the Register Alias Table
(RAT). For example, an ADD instruction updates the reservation station entries of
the dependent instructions in E2 stage. So, the updated value can be read from the
reservation station entry in the next cycle. Therefore, a dependent instruction can
potentially begin its execution in the next cycle (after E2).

• The multiplier and adder have separate output data buses, which allow both the
adder and the multiplier to update the reservation station and the RAT in the same
cycle.

• An instruction continues to occupy a reservation station slot until it finishes the
Write-back (W) stage. The reservation station entry is deallocated after the Write-
back (W) stage.

5.1 Problem Definition

The processor is about to fetch and execute six instructions. Assume the reservation
stations (RS) are all initially empty and the initial state of the register alias table (RAT)
is given below in Figure (a). Instructions are fetched, decoded and executed as discussed
in class. At some point during the execution of the six instructions, a snapshot of the
state of the RS and the RAT is taken. Figures (b) and (c) show the state of the RS and
the RAT at the snapshot time. A dash (–) indicates that a value has been cleared. A
question mark (?) indicates that a value is unknown.

Final Exam Page 12 of 16

Initials: Design of Digital Circuits August 25th, 2017

Reg Valid Tag Value
R0 1 – 1900
R1 1 – 82
R2 1 – 1
R3 1 – 3
R4 1 – 10
R5 1 – 5
R6 1 – 23
R7 1 – 35
R8 1 – 61
R9 1 – 4

(a) Initial state of the RAT

Reg Valid Tag Value
R0 1 ? 1900
R1 0 Z ?
R2 1 ? 12
R3 1 ? 3
R4 1 ? 10
R5 0 B ?
R6 1 ? 23
R7 0 H ?
R8 1 ? 350
R9 0 A ?

(b) State of the RAT at the
snapshot time

ID V Tag Value V Tag Value
A 1 ? 350 1 ? 12
B 0 A ? 0 Z ?

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

ID V Tag Value V Tag Value
– – – – – – –
T 1 ? 10 1 ? 35
H 1 ? 35 0 A ?
Z 1 ? 82 0 H ?

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

(c) State of the RS at the snapshot time

5.2 Questions

5.2.1 Data Flow Graph [40 points]

Based on the information provided above, identify the instructions and complete the
dataflow graph below for the six instructions that have been fetched. Please appropriately
connect the nodes using edges and specify the direction of each edge. Label each edge
with the destination architectural register and the corresponding Tag. Note that you may
not need to use all registers and/or nodes provided below.

×

+

× × ×

+

Register IDs:

Output

+ ++

×

Final Exam Page 13 of 16

Initials: Design of Digital Circuits August 25th, 2017

5.2.2 Program Instructions [20 points]

Fill in the blanks below with the six-instruction sequence in program order. When refer-
ring to registers, please use their architectural names (R0 through R9). Place the register
with the smaller architectural name on the left source register box.
For example, ADD R8 ⇐ R1, R5.

⇐ ,

⇐ ,

⇐ ,

⇐ ,

⇐ ,

⇐ ,

Final Exam Page 14 of 16

Initials: Design of Digital Circuits August 25th, 2017

6 GPUs and SIMD
We define the SIMD utilization of a program run on a GPU as the fraction of SIMD
lanes that are kept busy with active threads during the run of a program. As we saw in
lecture and practice exercises, the SIMD utilization of a program is computed across the
complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration
of the shown loop. Assume that the data values of the arrays A, B, and C are already in
vector registers so there are no loads and stores in this program. (Hint: Notice that there
are 6 instructions in each thread.) A warp in the GPU consists of 64 threads, and there
are 64 SIMD lanes in the GPU. Please assume that all values in array B have magnitudes
less than 10 (i.e., |B[i]| < 10, for all i).

for (i = 0; i < 1024; i++) {
A[i] = B[i] * B[i];
if (A[i] > 0) {

C[i] = A[i] * B[i];
if (C[i] < 0) {

A[i] = A[i] + 1;
}
A[i] = A[i] - 2;

}
}

Please answer the following five questions.

(a) [5 points] How many warps does it take to execute this program?

(b) [5 points] What is the maximum possible SIMD utilization of this program?

Final Exam Page 15 of 16

Initials: Design of Digital Circuits August 25th, 2017

(c) [20 points] Please describe what needs to be true about array B to reach the maximum
possible SIMD utilization asked in part (b). (Please cover all cases in your answer)

B:

(d) [10 points] What is the minimum possible SIMD utilization of this program?

(e) [20 points] Please describe what needs to be true about array B to reach the minimum
possible SIMD utilization asked in part (d). (Please cover all cases in your answer)

B:

Final Exam Page 16 of 16

