
ar
X

iv
:1

71
1.

08
77

4v
4

 [
q-

bi
o.

G
N

]
 6

 M
ar

 2
01

8

Nanopore Sequencing Technology and Tools for

Genome Assembly: Computational Analysis of the

Current State, Bottlenecks and Future Directions

Damla Senol Cali 1,∗, Jeremie S. Kim 1,3, Saugata Ghose 1, Can Alkan 2∗

and Onur Mutlu 3,1∗

1Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2Department of Computer Engineering, Bilkent University, Bilkent, Ankara,Turkey
3Department of Computer Science, Systems Group, ETH Zürich, Zürich, Switzerland

∗To whom correspondence should be addressed.

Abstract

Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to

generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating

accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance as they should

overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available

tools for nanopore sequence analysis to understand their advantages, disadvantages, and performance bottlenecks. It is

important to understand where the current tools do not perform well to develop better tools. To this end, we 1) analyze the

multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and 2) provide

guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: 1) The

choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology.

2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap

has a lower memory usage and it is faster than GraphMap. 3) There is a trade-off between accuracy and performance when

deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick

initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall

assembly. 4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a

significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose

the tradeoffs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide

researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline

using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools

or build new ones that are both accurate and fast, in order to overcome the high error rates of the nanopore sequencing

technology.

Keywords: Nanopore sequencing, genome sequencing, genome analysis, assembly, mapping

1 Introduction

Next-generation sequencing (NGS) technologies have revolutionized
and dominated the genome sequencing market since 2005, due to their
ability to generate massive amounts of data at a faster speed and lower

cost [1–3]. The existence of successful computational tools that can process
and analyze such large amounts of data quickly and accurately is critically
important to take advantage of NGS technologies in science, medicine and

technology.
Since the whole genome of most organisms cannot be sequenced all at

once, the genome is broken into smaller fragments. After each fragment

is sequenced, small pieces of DNA sequences (i.e., reads) are generated.
These reads can then be analyzed following two different approaches:
read mapping and de novo assembly. Read mapping is the process of

aligning the reads against the reference genome to detect variations in

the sequenced genome. De novo assembly is the method of combining the
reads to construct the original sequence when a reference genome does not
exist [4]. Due to the repetitive regions in the genome, the short-read length
of the most dominant NGS technologies (e.g., 100-150 bp reads) causes

errors and ambiguities for read mapping [5, 6], and poses computational
challenges and accuracy problems to de novo assembly [7]. Repetitive
sequences are usually longer than the length of a short read and an entire

repetitive sequence cannot be spanned by a single short read. Thus, short
reads lead to highly-fragmented, incomplete assemblies [7–9]. However,
a long read can span an entire repetitive sequence and enable continuous

and complete assemblies. The demand for sequencing technologies that
can produce longer reads has resulted in the emergence of even newer
alternative sequencing technologies.

1

http://arxiv.org/abs/1711.08774v4

2 Senol Cali et al.

Nanopore sequencing technology [10] is one example of such

technologies that can produce long read lengths. Nanopore sequencing
is an emerging and a promising single-molecule DNA sequencing
technology, which exhibits many attractive qualities, and in time, it could

potentially surpass current sequencing technologies. Nanopore sequencing
promises high sequencing throughput, low cost, and longer read length,
and it does not require an amplification step before the sequencing process

[11–14].
Using biological nanopores for DNA sequencing was first proposed in

the 1990s [15], but the first nanopore sequencing device, MinION [16],

was only recently (in May 2014) made commercially available by Oxford
Nanopore Technologies (ONT). MinION is an inexpensive, pocket-sized,
portable, high-throughput sequencing apparatus that produces data in

real-time. These properties enable new potential applications of genome
sequencing, such as rapid surveillance of Ebola, Zika or other epidemics
[17], near-patient testing [18], and other applications that require real-

time data analysis. In addition, the MinION technology has two major
advantages. First, it is capable of generating ultra-long reads (e.g., 882
kilobase pairs or longer [19, 20]). MinION’s long reads greatly simplify the

genome assembly process by decreasing the computational requirements
[8, 21]. Second, it is small and portable. MinION is named as the first
DNA sequencing device used in outer space to help the detection of life
elsewhere in the universe with the help of its size and portability [22]. With

the help of continuous updates to the MinION device and the nanopore
chemistry, the first nanopore human reference genome was generated by
using only MinION devices [19].

Nanopores are suitable for sequencing because they:

• Do not require any labeling of the DNA or nucleotide for detection
during sequencing,

• Rely on the electronic or chemical structure of the different nucleotides

for identification,
• Allow sequencing very long reads, and
• Provide portability, low cost, and high throughput.

Despite all these advantageous characteristics, nanopore sequencing

has one major drawback: high error rates. In May 2016, ONT released a
new version of MinION with a new nanopore chemistry called R9 [23], to
provide higher accuracy and higher speed, which replaced the previous

version R7. Although the R9 chemistry improves the data accuracy,
the improvements are not enough for cutting-edge applications. Thus,
nanopore sequence analysis tools have a critical role to overcome high

error rates and to take better advantage of the technology. Also, faster

tools are critically needed to 1) take better advantage of the real-time data
production capability of MinION and 2) enable real-time data analysis.

Our goal in this work is to comprehensively analyze current publicly-

available tools for nanopore sequence analysis1 to understand their
advantages, disadvantages, and bottlenecks. It is important to understand
where the current tools do not perform well, to develop better tools. To this

end, we analyze the tools associated with the multiple steps in the genome
assembly pipeline using nanopore sequence data in terms of accuracy,
speed, memory efficiency, and scalability.

2 Genome Assembly Pipeline Using Nanopore

Sequence Data

We evaluate the genome assembly pipeline using nanopore sequence

data. Figure 1 shows each step of the pipeline and lists the associated
existing tools for each step that we analyze.

1 We note that our manuscript presents a checkpoint of the state-of-the-art
tools at the time the manuscript was submitted. This is a fast moving field,
but we hope that our analysis is useful, and we expect that the fundamental
conclusions and recommendations we make are independent of the exact
versions of the tools.

Basecalling

Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding

Tools: GraphMap, Minimap

Assembly

Tools: Canu, Miniasm

Read Mapping

Tools: BWA-MEM, Minimap, (GraphMap)

Raw signal

data

Assembly

DNA reads

Overlaps

Draft assembly

Improved

assembly

Polishing

Tools: Nanopolish, Racon

Mappings of reads

against draft

assembly

Figure 1. The analyzed genome assembly pipeline using nanopore

sequence data, with its five steps and the associated tools for each

step.

The output of MinION is raw signal data that represents changes
in electric current when a DNA strand passes through nanopore. Thus,
the pipeline starts with the raw signal data. The first step, basecalling,

translates this raw signal output of MinION into bases (A, C, G, T)
to generate DNA reads. The second step computes all pairwise read
alignments or suffix-prefix matches between each pair of reads, called

read-to-read overlaps. Overlap-layout-consensus (OLC) algorithms are
used for the assembly of nanopore sequencing reads since OLC-algorithms
perform better with longer error-prone reads [24]. OLC-based assembly

algorithms generate an overlap graph, where each node denotes a read and
each edge represents the suffix-prefix match between the corresponding
two nodes. The third pipeline step, genome assembly, traverses this overlap

graph, producing the layout of the reads and then constructing a draft
assembly. To increase the accuracy of the assembly, further polishing, i.e.,
post-assembly error correction, may be required. The fourth step of the

pipeline is mapping the original basecalled reads to the generated draft
assembly from the previous step (i.e., read mapping). The fifth and final
step of the pipeline is polishing the assembly with the help of mappings
from the previous step.

We next introduce the state-of-the-art tools used for each step.

2.1 Basecalling

When a strand of DNA passes through the nanopore (which is called
the translocation of the strand through the nanopore), it causes drops in
the electric current passing between the walls of the pore. The amount

of change in the current depends on the type of base passing through
the pore. Basecalling, the initial step of the entire pipeline, translates the
raw signal output of the nanopore sequencer into bases (A, C, G, T) to

generate DNA reads. Most of the current basecallers divide the raw current
signal into discrete blocks, which are called events. After event-detection,
each event is decoded into a most-likely set of bases. In the ideal case,

each consecutive event should differ by one base. However, in practice,
this is not the case because of the non-stable speed of the translocation.
Also, determining the correct length of the homopolymers (i.e., repeating

stretches of one kind of base, e.g., AAAAAAA) is challenging. Both of
these problems make deletions the dominant error of nanopore sequencing
[25, 26]. Thus, basecalling is the most important step of the pipeline that

plays a critical role in decreasing the error rate.
We analyze five state-of-the-art basecalling tools in this paper (Table 1).

For a detailed comparison of these and other basecallers (including
Albacore [27], which is not freely available, and Chiron [28]), we refer

the reader to an ongoing basecaller comparison study [29]. Note that this
ongoing study does not capture the accuracy and performance of the entire
genome assembly pipeline using nanopore sequence data.

Metrichor

Metrichor [30] is ONT’s cloud-based basecaller, and its source code is
not publicly available. Before the R9 update, Metrichor was using Hidden

3

Markov Models (HMM) [31] for basecalling [23]. After the R9 update,

it started using recurrent neural networks (RNN) [32, 33] for basecalling
[23].

Nanonet

Nanonet [34] has also been developed by ONT, and it is available
on Github [35]. Since Metrichor requires an Internet connection and
its source code is not available, Nanonet is an offline and open-source

alternative for Metrichor. Nanonet is implemented in Python. It also uses
RNN for basecalling [34]. The tool supports multi-threading by sharing the
computation needed to call each single read between concurrent threads.

In other words, only one read is called at a time.

Scrappie

Scrappie [36] is the newest proprietary basecaller developed by ONT.

It is named as the first basecaller that explicitly addresses basecalling
errors in homopolymer regions. In order to determine the correct length
of homopolymers, Scrappie performs transducer-based basecalling [25].

For versions R9.4 and R9.5, Scrappie can perform basecalling with the
raw current signal, without requiring event detection. It is a C-based local
basecaller and is still under development [25].

Nanocall

Nanocall [37] uses Hidden Markov Models for basecalling, and it
is independently developed by a research group. It was released before

the R9 update when Metrichor was also using an HMM-based approach
for basecalling, to provide the first offline and open-source alternative
for Metrichor. However, after the R9 update, when Metrichor started
to perform basecalling with a more powerful RNN-based approach,

Nanocall’s accuracy fell short of Metrichor’s accuracy [38]. Thus, although
Nanocall supports R9 and upper versions of nanopore data, its usefulness
is limited [38]. Nanocall is a C++-based command-line tool. It supports

multi-threading where each thread performs basecalling for different

groups of raw reads.

DeepNano

DeepNano [39] is also independently developed by a research group
before the R9 update. It uses an RNN-based approach to perform
basecalling. Thus, it is considered to be the first RNN-based basecaller.

DeepNano is implemented in Python. It does not have multi-threading
support.

2.2 Read-to-Read Overlap Finding

Previous genome assembly methods designed for accurate and short
reads (i.e., de Bruijn graph (DBG) approach [43, 44]) are not suitable for

nanopore reads because of the high error rates of the current nanopore
sequencing devices [9, 26, 45, 46]. Instead, overlap-layout-consensus
(OLC) algorithms [47] are used for nanopore sequencing reads since

they perform better with longer, error-prone reads. OLC-based assembly
algorithms start with finding the read-to-read overlaps, which is the second
step of the pipeline. Read-to-read overlap is defined to be a common

sequence between two reads [46]. GraphMap [40] and Minimap [41] are
the commonly-used state-of-the-art tools for this step (Table 2).

GraphMap

GraphMap first partitions the entire read dataset into k-length
substrings (i.e. k-mers), and then creates a hash table. GraphMap uses
gapped k-mers, i.e., k-mers that can contain insertions or deletions (indels)

[40, 48]. In the hash table, for each k-mer entry, three pieces of information
are stored: 1) k-mer string, 2) the index of the read, and 3) the position in the
read where the corresponding k-mer comes from. GraphMap detects the

overlaps by finding the k-mer similarity between any two given reads. Due
to this design, GraphMap is a highly sensitive and accurate tool for error-
prone long reads. It is a command-line tool written in C++. GraphMap is

used for both 1) read-to-read overlap finding with the graphmap owler

command and 2) read mapping with the graphmap align command.

Minimap

Minimap also partitions the entire read dataset into k-mers, but instead

of creating a hash table for the full set of k-mers, it finds the minimum
representative set of k-mers, called minimizers, and creates a hash table
with only these minimizers. Minimap finds the overlaps between two reads

by finding minimizer similarity. The goals of using minimizers are to 1)
reduce the storage requirement of the tool by storing fewer k-mers and
2) accelerate the overlap finding process by reducing the search span.

Minimap also sorts k-mers for cache efficiency. Minimap is fast and cache-
efficient, and it does not lose any sensitivity by storing minimizers since
the chosen minimizers can represent the whole set of k-mers. Minimap

is a command-line tool written in C. Like GraphMap, it can both 1) find
overlaps between two read sets and 2) map a set of reads to a full genome.

2.3 Genome Assembly

After finding the read-to-read overlaps, OLC-based assembly
algorithms generate an overlap graph. Genome assembly is performed
by traversing this graph, producing the layout of the reads and then

constructing a draft assembly. Canu [42] and Miniasm [41] are the
commonly-used error-prone long-read assemblers (Table 3).

Canu

Canu performs error-correction as the initial step of its own pipeline. It
finds the overlaps of the raw uncorrected reads and uses them for the error-
correction. The purpose of error-correction is to improve the accuracy of

the bases in the reads [42, 49]. After the error-correction step, Canu finds
overlaps between corrected reads and constructs a draft assembly after an
additional trimming step. However, error-correction is a computationally

expensive step. In its own pipeline, Canu implements its own read-to-read
overlap finding tool such that the users do not need to perform that step
explicitly before running Canu. Most of the steps in the Canu pipeline

are multi-threaded. Canu detects the resources that are available in the
computer before starting its pipeline and automatically assigns number of
threads, number of processes and amount of memory based on the available

resources and the assembled genome’s estimated size.

Miniasm

Miniasm skips the error-correction step since it is computationally
expensive. It constructs a draft assembly from the uncorrected read
overlaps computed in the previous step. Although Miniasm lowers

computational cost and thus accelerates and simplifies assembly by doing
so, the accuracy of the draft assembly depends directly on the accuracy of

Table 1. State-of-the-art nanopore basecalling tools.

Tool Strategy Multi-threading Support Source Reference

Metrichor Recurrent Neural Network (cloud-based) https://metrichor.com/ [30]
Nanonet Recurrent Neural Network with -jobs parameter https://github.com/nanoporetech/nanonet [34]
Scrappie Recurrent Neural Network with export OMP_NUM_THREADS command https://github.com/nanoporetech/scrappie [36]
Nanocall Hidden Markov Model with –threads parameter https://github.com/mateidavid/nanocall [37]

DeepNano Recurrent Neural Network no support; split dataset and run it in parallel https://bitbucket.org/vboza/deepnano [39]

4 Senol Cali et al.

Table 2. State-of-the-art read-to-read overlap finding tools.

Tool Strategy Multi-threading Support Source Reference

GraphMap k-mer similarity with –threads parameter https://github.com/isovic/graphmap [40]

Minimap minimizer similarity with -t parameter https://github.com/lh3/minimap [41]

Note: Both GraphMap and Minimap also have read mapping functionality.

Table 3. State-of-the-art assembly tools.

Tool Strategy Multi-threading Support Source Reference

Canu OLC with error correction auto configuration https://github.com/marbl/canu [42]

Miniasm OLC without error correction no support https://github.com/lh3/miniasm [41]

the uncorrected basecalled reads. Thus, further polishing may be necessary
for these draft assemblies. Miniasm does not support multi-threading.

2.4 Read Mapping and Polishing

In order to increase the accuracy of the assembly, especially for the
rapid assembly methods like Miniasm, which do not have the error-
correction step, further polishing may be required. Polishing, i.e., post-

assembly error-correction, improves the accuracy of the draft assembly by
mapping the reads to the assembly and changing the assembly to increase
local similarity with the reads [26, 51, 52]. The first step of polishing is

mapping the basecalled reads to the generated draft assembly from the
previous step. One of the most commonly-used long read mappers for
nanopore data is BWA-MEM [50]. Read-to-read overlap finding tools,

GraphMap and Minimap (Section 2.2), can also be used for this step,
since they also have a read mapping mode (Table 4).

After aligning the basecalled reads to the draft assembly, the final

polishing of the assembly can be performed with Nanopolish [51] or Racon
[52] (Table 5).

Nanopolish

Nanopolish uses the raw signal data of reads along with the mappings
from the previous step to improve the assembly base quality by evaluating

and maximizing the probabilities for each base with a Hidden Markov
Model-based approach [51]. It can increase the accuracy of the draft
assembly by correcting the homopolymer-rich parts of the genome.

Although this approach can increase the accuracy significantly, it
is computationally expensive, and thus time consuming. Nanopolish
developers recommend BWA-MEM as the read mapper before running

Nanopolish [53].

Racon

Racon constructs partial order alignment graphs [52, 54] in order to
find a consensus sequence between the reads and the draft assembly. After
dividing the sequence into segments, Racon tries to find the best alignment
to increase the accuracy of the draft assembly. Racon is a fast polishing

tool, but it does not promise a high increase in accuracy as Nanopolish
promises. However, multiple iterations of Racon runs or a combination
of Racon and Nanopolish runs can improve accuracy significantly. Racon

developers recommend Minimap as the read mapper to use before running
Racon, since Minimap is both fast and sensitive [52].

3 Experimental Methodology

3.1 Dataset

In this work, we use Escherichia coli genome data as the test case,
sequenced using the MinION with an R9 flowcell [55].

MinION sequencing has two types of workflows. In the 1D workflow,
only the template strand of the double-stranded DNA is sequenced. In
contrast, in the 2D workflow, with the help of a hairpin ligation, both the

template and complement strands pass through the pore and are sequenced.
After the release of R9 chemistry, 1D data became very usable in contrast
to previous chemistries. Thus, we perform the analysis of the tools on 1D

data.
MinION outputs one file in the fast5 format for each read. The fast5 file

format is a hierarchical data format, capable of storing both raw signal data

and basecalled data returned by Metrichor. This dataset includes 164,472
reads, i.e., fast5 files. Since all these files include both raw signal data
and basecalled reads, we can use this dataset for both 1) using the local

basecallers to convert raw signal data into the basecalled reads and 2) using
the already basecalled reads by Metrichor.

3.2 Evaluation Systems

In this work, for accuracy and performance evaluations of different
tools, we use three separate systems with different specifications. We use
the first computer in the first part of the analysis, accuracy analysis. We

use the second and third computers in the second part of the analysis,
performance analysis, to compare the scalability of the analyzed tools in
the two machines with different specifications (Table 6).

We choose the first system for evaluation since it has a larger memory
capacity than a usual server and, with the help of a large number of
cores, the tasks can be parallelized easily in order to get the output data
quickly. We choose the second system, called desktop, since it represents

a commonly-used desktop server. We choose the third system, called big-

mem, because of its large memory capacity. This big-mem system can be
useful for those who would like to get results more quickly.

Table 4. State-of-the-art read mapping tools.

Tool Strategy Multi-threading Support Source Reference

BWA-MEM Burrows-Wheeler Transform (BWT) with -t parameter http://bio-bwa.sourceforge.net [50]
GraphMap k-mer similarity with –threads parameter https://github.com/isovic/graphmap [40]
Minimap minimizer similarity with -t parameter https://github.com/lh3/minimap [41]

Table 5. State-of-the-art polishing tools.

Tool Strategy Multi-threading Support Source Reference

Nanopolish Hidden Markov Model with –threads and -P parameters https://github.com/jts/nanopolish [51]

Racon Partial order alignment graph with –threads parameter https://github.com/isovic/racon [52]

5

Table 6. Specifications of evaluation systems.

Name Model CPU Specifications Main Memory Specifications NUMA* Specifications

System 1 40-core Intel®Xeon®

E5-2630 v4 CPU

@ 2.20GHz

20 physical cores
2 threads per core

40 logical cores with hyper-threading**

128GB DDR4
2 channels, 2 ranks/channel

Speed: 2400MHz

2 NUMA nodes, each with 10 physical
cores, 64GB of memory and an 25MB

of last level cache (LLC)

System 2

(desktop)

8-core Intel®Core

i7-2600 CPU
@ 3.40GHz

4 physical cores

2 threads per core
8 logical cores with hyper-threading**

16GB DDR3

2 channels, 2 ranks/channel
Speed: 1333MHz

1 NUMA node, with 4 physical cores,

16GB of memory and an 8MB of LLC

System 3
(big-mem)

80-core Intel®Xeon®

E7-4850 CPU
@ 2.00GHz

40 physical cores
2 threads per core
80 logical cores with hyper-threading**

1TB DDR3
8 channels, 4 ranks/channel
Speed: 1066MHz

4 NUMA nodes, each with 10 physical
cores, 256GB of memory and an
24MB of LLC

* NUMA (Non-Uniform Memory Access) is a computer memory design, where a processor accesses its local memory faster (i.e., with lower latency)
than a non-local memory (i.e., memory local to another processor in another NUMA node). A NUMA node is composed of the local memory and the

CPU cores (See Observation 6 in Section 4.1 for detail).
** Hyper-threading is Intel’s simultaneous multithreading (SMT) implementation (See Observation 5 in Section 4.1 for detail).

3.3 Accuracy Metrics

We compare each draft assembly generated after the assembly step
and each improved assembly generated after the polishing step with the

reference genome, by using the dnadiff command under the MUMmer
package [56]. We use six metrics to measure accuracy, as defined in Table 7:
1) number of bases in the assembly, 2) number of contigs, 3) average

identity, 4) coverage, 5) number of mismatches, and 6) number of indels.

3.4 Performance Metrics

We analyze the performance of each tool by running the associated
command-line of each tool with the /usr/bin/time -v command.
We use four metrics to quantify performance as defined in Table 8: 1) wall

clock time, 2) CPU time, 3) peak memory usage, and 4) parallel speedup.

4 Results and Analysis

In this section, we present our results obtained by analyzing the
performance of different tools for each step in the genome assembly

pipeline using nanopore sequence data in terms of accuracy and
performance, using all the metrics we provide in Table 7 and Table 8.
Additionally, Table 9 shows the tool version, the executed command, and

the output of each analyzed tool. We divide our analysis into three main
parts.

In the first part of our analysis, we examine the first three steps of
the pipeline (cf. Figure 1). To this end, we first execute each basecalling
tool (i.e., one of Nanonet, Scrappie, Nanocall or DeepNano). Since
Metrichor is a cloud-based tool and its source code is not available, we

cannot execute Metrichor and get the performance metrics for it. After
recording the performance metrics for each basecaller run, we execute
either GraphMap or Minimap followed by Miniasm, or Canu itself, and

record the performance metrics for each run. We obtain a draft assembly
for each combination of these basecalling, read-to-read overlap finding
and assembly tools. For each draft assembly, we assess its accuracy by

comparing the resulting draft assembly with the existing reference genome.
We show the accuracy results in Table 10. We show the performance results
in Table 11. We will refer to these tables in Sections 4.1 – 4.3.

In the second part of our analysis, we examine the last two steps of the
pipeline (cf. Figure 1). To this end, for each obtained draft assembly, we
execute each possible combination of different read mappers (i.e., BWA-

MEM or Minimap) and different polishers (i.e., Nanopolish or Racon),
and record the performance metrics for each step (i.e., read mapping and
polishing). We obtain a polished assembly after each run, and assess its

accuracy by comparing it with the existing reference genome. For these
two analyses, we use the first system, which has 40 logical cores, and
execute each tool using 40 threads, which is the possible maximum number

Table 7. Accuracy metrics.

Metric Name Definition Preferred Values

Number of bases Total number of bases in the assembly ≃ Length of reference genome
Number of contigs Total number of segments in the assembly Lower (≃ 1)

Average identity Percentage similarity between the assembly and the reference genome Higher (≃ 100%)
Coverage Ratio of the number of aligned bases in the reference genome to the length of reference

genome
Higher (≃ 100%)

Number of mismatches Total number of single-base differences between the assembly and the reference genome Lower (≃ 0)

Number of indels Total number of insertions and deletions between the assembly and the reference genome Lower (≃ 0)

Table 8. Performance metrics.

Metric Name Definition Preferred Values

Wall clock time Elapsed time from the start of a program to the end Lower
CPU time Total amount of time the CPU spends in user mode (i.e., to run the program’s code) and

kernel mode (i.e., to execute system calls made by the program)*
Lower

Peak memory usage Maximum amount of memory used by a program during its whole lifetime Lower
Parallel speedup Ratio of the time to run a program with 1 thread to the time to run it with N threads Higher

* If wall clock time < CPU time for a specific program, it means that the program runs in parallel.

6 Senol Cali et al.

Table 9. Versions, commands to execute, and outputs for each analyzed tool.

Command* Output

Basecalling Tools

Nanonet–v2.0 nanonetcall fast5_dir/ --jobs N --chemistry r9 reads.fasta

Scrappie–v1.0.1 (1)export OMP_NUM_THREADS=N

(2)scrappie events --segmentation Segment_Linear:split_hairpin

(2)fast5_dir/ ... reads.fasta

Nanocall–v0.7.4 nanocall -t N fast5_dir/ reads.fasta

DeepNano–e8a621e python basecall.py –directory fast5_dir/ --chemistry r9 reads.fasta

Read-to-Read Overlap Finding Tools

GraphMap–v0.5.2 graphmap owler -L paf -t N -r reads.fasta -d reads.fasta overlaps.paf

Minimap–v0.2 minimap -Sw5 -L100 -m0 -tN reads.fasta reads.fasta overlaps.paf

Assembly Finding Tools

Canu–v1.6 canu -p ecoli -d canu-ecoli genomeSize=4.6m -nanopore-raw

reads.fasta draftAssembly.fasta

Miniasm–v0.2 miniasm -f reads.fasta overlaps.paf draftAssembly.gfa –>

draftAssembly.fasta

Read Mapping Tools

BWA-MEM–0.7.15 (1)bwa index draftAssembly.fasta

(2)bwa mem -x ont2d -t N draftAssembly.fasta reads.fasta mappings.sam –>

–> mappings.bam

Minimap–v0.2 minimap -tN draftAssembly.fasta reads.fasta mappings.paf

Polishing Tools

Nanopolish–v0.7.1 (1)python nanopolish_makerange.py draftAssembly.fasta | parallel -P M

(2)nanopolish variants --consensus polished.{1}.fa -w {1}

(2)-r reads.fasta -b mappings.bam -g draftAssembly.fasta -t N

(3)python nanopolish_merge.py polished.*.fa polished.fasta

Racon–v0.5.0 racon (–sam) –bq -1 -t N reads.fastq mappings.paf/(mappings.sam)

draftAssembly.fasta polished.fasta

* N corresponds to the number of threads and M corresponds to the number of parallel jobs.

of threads for that particular machine. We show the accuracy results in
Table 12. We show the performance results in Table 13. We will refer to

these tables in Section 4.4.
In the third part of our analysis, we assess the scalability of all of

the tools that have multi-threading support. For this purpose, we use the

second and third systems to compare the scalability of these tools on two
different system configurations. For each tool, we change the number of
threads and observe the corresponding change in speed, memory usage,

and parallel speedup. These results are depicted in Figures 2 – 6, and we
will refer to them throughout Sections 4.1 – 4.4.

Sections 4.1 – 4.4 describe the major observations we make for each of

the five steps of the pipeline (cf. Figure 1) based on our extensive evaluation
results.

4.1 Basecalling Tools

As we discuss in Section 2.1, ONT’s basecallers Metrichor, Nanonet

and Scrappie, and another basecaller developed by Boza et al. (2017),
DeepNano, use Recurrent Neural Networks (RNNs) for basecalling
whereas Nanocall developed by David et al. (2016) uses Hidden Markov

Models (HMM) for basecalling.

Accuracy

Using RNNs is a more powerful basecalling approach than using
HMMs since an RNN 1) does not make any assumptions about sequence
length [57] and 2) is not affected by the repeats in the sequence [37, 39, 57].

However, it is still challenging to determine the correct length of the
homopolymers even with an RNN.

In order to compare the accuracy of the analyzed basecallers, we group

the accuracy results by each basecalling tool and compare them according
to the defined accuracy metrics.

According to this analysis and the accuracy results shown in Table 10,
we make the following key observation.

Observation 1: The pipelines that start with Metrichor, Nanonet,

or Scrappie as the basecaller have similar identity and coverage trends

among all of the evaluated scenarios (i.e., tool combinations for the first

three steps), but Scrappie has a lower number of mismatches and indels.

However, Nanocall and DeepNano cannot reach these three basecallers’

accuracies: they have lower identity and lower coverage.

Since Nanonet is the local version of Metrichor, Nanonet and
Metrichor’s similar accuracy trends are expected. In addition to the power
of the RNN-based approach, Scrappie tries to solve the homopolymer

basecalling problem. Although Scrappie is in an early stage of
development, it leads to a smaller number of indels than Metrichor or
Nanonet. Nanocall’s poor accuracy results are due to the simple HMM-

based approach it uses. Although DeepNano performs better than Nanocall
with the help of its RNN-based approach, it results in a higher number of
indels and a lower coverage of the reference genome.

Performance

RNN and HMM are computationally-intensive algorithms. In HMM-

based basecalling, the Viterbi algorithm [58] is used for decoding. The
Viterbi algorithm is a sequential technique and its computation cannot
currently be parallelized with multithreading. However, in RNN-based
basecalling, multiple threads can work on different sections of the

neural network and thus RNN computation can be parallelized with
multithreading.

In order to measure and compare the performance of the selected

basecallers, we first compare the recorded wall clock time, CPU time and
memory usage metrics of each scenario for the first step of the pipeline.

7

Table 10. Accuracy analysis results using different tools for the first three steps of the pipeline.

Number of

Bases

Number of

Contigs

Identity

(%)

Coverage

(%)

Number of

Mismatches

Number of

Indels

1 Metrichor + — + Canu 4,609,499 1 98.05 99.92 12,378 76,990

2 Metrichor + Minimap + Miniasm 4,402,675 1 87.71 94.85 249,096 372,704

3 Metrichor + GraphMap + Miniasm 4,500,155 2 86.22 96.95 237,747 360,199

4 Nanonet + — + Canu 4,581,728 1 97.92 99.97 11,971 83,248

5 Nanonet + Minimap + Miniasm 4,350,175 1 85.50 92.76 237,518 394,852

6 Nanonet + GraphMap + Miniasm 4,272,545 1 85.36 91.16 232,748 389,968

7 Scrappie + — + Canu 4,614,149 1 98.46 99.90 6,777 63,597

8 Scrappie + Minimap + Miniasm 4,877,399 8 86.94 90.04 184,669 363,025

9 Scrappie + GraphMap + Miniasm 4,368,417 1 86.78 89.86 189,192 372,245

10 Nanocall + — + Canu 1,299,808 86 93.33 28.93 21,985 61,217

11 Nanocall + Minimap + Miniasm 4,492,964 5 80.52 42.92 177,589 221,092

12 Nanocall + GraphMap + Miniasm 4,429,390 3 80.51 41.32 171,455 213,435

13 DeepNano + — + Canu 7,151,596 106 92.75 99.16 38,803 211,551

14 DeepNano + Minimap + Miniasm 4,252,525 1 82.38 65.00 199,122 335,761

15 DeepNano + GraphMap + Miniasm 4,251,548 1 82.39 64.92 197,914 335,064

Table 11. Performance analysis results for the first three steps of the pipeline.

Step 1:

Basecaller

Step 2:

Read-to-Read Overlap Finder

Step 3:

Assembly
Wall

Clock

Time
(h:m:s)

CPU Time

(h:m:s)

Memory
Usage
(GB)

Wall
Clock

Time
(h:m:s)

CPU Time

(h:m:s)

Memory
Usage
(GB)

Wall
Clock

Time
(h:m:s)

CPU Time

(h:m:s)

Memory
Usage
(GB)

1 Metrichor + — + Canu
—* —* —*

— — — 44:12:31 502:18:56 5.76

2 Metrichor + Minimap + Miniasm 2:15 41:37 12.30 1:09 1:09 1.96

3 Metrichor + GraphMap + Miniasm 6:14 1:52:57 56.58 1:05 1:05 1.82

4 Nanonet + — + Canu
17:52:42 714:21:45 1.89

— — — 11:32:40 129:07:16 5.27

5 Nanonet + Minimap + Miniasm 1:13 18:55 9.45 33 33 0.69

6 Nanonet + GraphMap + Miniasm 3:18 48:27 29.16 32 32 0.65

7 Scrappie + — + Canu
3:11:41 126:19:06 13.36

— — — 33:47:41 385:51:23 5.75

8 Scrappie + Minimap + Miniasm 2:52 1:10:26 12.40 1:29 1:29 1.98

9 Scrappie + GraphMap + Miniasm 7:26 2:16:02 38.31 1:23 1:23 1.87

10 Nanocall + — + Canu
47:04:53 1857:37:56 37.73

— — — 1:35:23 27:58:29 3.77

11 Nanocall + Minimap + Miniasm 1:15 16:08 12.19 20 20 0.47

12 Nanocall + GraphMap + Miniasm 5:14 1:09:04 56.78 16 16 0.30

13 DeepNano + — + Canu
23:54:34 811:14:29 8.38

— — — 1:15:48 17:31:07 3.61

14 DeepNano + Minimap + Miniasm 1:50 24:30 11.71 1:03 1:03 1.31

15 DeepNano + GraphMap + Miniasm 5:18 1:17:06 54.64 58 58 1.10

* We cannot get the performance metrics for Metrichor since its source code is not available for us to run the tool by ourselves.

Based on the results provided in Table 11, we make the following key
observation.

Observation 2: RNN-based Nanonet and DeepNano are 2.6x and

2.3x faster than HMM-based Nanocall, respectively. Although Scrappie

is also an RNN-based tool, it is 5.7x faster than Nanonet due to its C

implementation as opposed to Nanonet’s Python implementation.

For a deeper understanding of these tools’ advantages, disadvantages
and bottlenecks, we also perform a scalability analysis for each basecaller

by running it on the desktop server and the big-mem server separately,
with 1, 2, 4, 8 (maximum for the desktop server), 16, 32, 40, 64
and 80 (maximum for the big-mem server) threads, and measuring the

performance metrics for each configuration. Metrichor and DeepNano are
not included in this analysis because Metrichor is a cloud-based tool and
its source code is not available for us to change its number of threads, and

DeepNano does not support multi-threading. Figure 2 shows the speed,
memory usage and parallel speedup results of our evaluations. We make
four observations.

Observation 3: When we compare desktop’s and big-mem’s single

thread performance, we observe that desktop is approximately 2x faster

than big-mem (cf. Figure 2a and 2b).

This is mainly because of desktop’s higher CPU frequency (see Table
6). It is an indication that all of these three tools are computationally

expensive. Larger memory capacity or larger Last-Level Cache (LLC)
capacity of big-mem cannot make up for the higher CPU speed in desktop

when there is only one thread.

Observation 4: Scrappie and Nanocall have a linear increase in

memory usage when number of threads increases. In contrast, Nanonet

has a constant memory usage for all evaluated thread units (cf. Figure 2c

and 2d).
In Scrappie and Nanocall, each thread performs the basecalling for

different groups of raw reads. Thus, each thread allocates its own memory

space for the corresponding data. This causes the linear increase in memory
usage when the level of parallelism increases. In Nanonet, all of the threads

8 Senol Cali et al.

!"#

!

"

#

$

%

&

! # % ' (

)
*
+*
,,
-
,./

0
-
-
1
2
0

3245-+.67.89+-*1:

3*;6<*,,.=:>.3*;6;-?.=:>./<+*00@-.A1-:B?60

;*;6<*,, ;*;6;-? :<+*00@-

!$#

!%#

!

"

#!

#"

$!

$"

%!

%"

&!

&"

! $! &! '! (!

)
*
+*
,,
-
,./

0
-
-
1
2
0

3245-+.67.89+-*1:

3*;6<*,,.=:>.3*;6;-?.@5AB 4-4.

;*;6<*,, ;*;6;-? :<+*00A-

!&#

!'#

!(#
!"#$%&'()*)!+#,(-.&/).0$%(!"#$%&'()1)!+#,(-.&/).0$%(!"#$%&'()1)!+#,(-.&/).0$%(!"#$%&'()*)!+#,(-.&/).0$%(

2)3456)

70'%

1)2)3456)

70'%

!

"!!!

#!!!!

#"!!!

$!!!!

$"!!!

%!!!!

%"!!!

! $ & ' (

)
*
++
,-
+.
/0

,1
23

4
,5
64

/7

893:4;,.<,1=;4*>6

8*?./*++,@6A,8*?.?4B,@6A,C/;*DD24,E>460B.D

?*?./*++ ?*?.?4B 6/;*DD24

!

"

#

$

%

&!

&"

&#

&$

! " # $ %

'
(
)
*
+,

(
-
.
/0
+1

2)
3
(
+45

6
7

89-:(/+.;+<=/()>2

8)?.@)AA+B2C+8)?.?(D+B2C+E@/)FFG(+H>(2*D.F

?)?.@)AA ?)?.?(D 2@/)FFG(

!

"!!!!

#!!!!

$!!!!

%!!!!

&!!!!

'!!!!

(!!!!

! #! %! '!)!

*
+
,,
-.
,/
01

-2
34

5
-6
75

08

9:4;5<-/=-2><5+?7

9+@/0+,,-A7B-9+@/@5C-A7B-D0<+EE35-F;3GH454

@+@/0+,, @+@/@5C 70<+EE35

!

"!

#!

$!

%!

&!!

&"!

&#!

&$!

! "! #! $! %!

'
(
)
*
+,

(
-
.
/0
+1

2)
3
(
+45

6
7

89-:(/+.;+<=/()>2

8)?.@)AA+B2C+8)?.?(D+E:F3 -(-+

?)?.@)AA ?)?.?(D 2@/)HHF(

"!!!

#!!!!

#"!!!

$!!!!

$"!!!

%!!!!

%"!!!

)
*
++
,-
+.
/0

,1
23

4
,5
64

/7

893:4;,.<,1=;4*>6

8*?./*++,@6A,8*?.?4B,@6A,C/;*DD24,E>460B.D

8*?./*++ 8*?.?4B C/;*DD24

Figure 2. Scalability results of Nanocall, Nanonet and Scrappie.

Wall clock time (a, b), peak memory usage (c, d), and parallel speedup (e, f) results obtained on the desktop and big-mem systems. The left column (a, c,
e) shows the results from the desktop system and the right column (b, d, f) shows the results from the big-mem system.

share the computation of each read, and thus memory usage is not affected
by the amount of thread parallelism.

Observation 5: When the number of threads exceeds the number

of physical cores, the simultaneous multithreading overhead prevents

continued linear speedup of Nanonet, Scrappie and Nanocall (cf. Figure 2e

and 2f).

Simultaneous multithreading (SMT) (i.e., running more than one
thread per physical core [59–66]), or more specifically Intel’s hyper-
threading (i.e., since we use Intel’s hyper-threading enabled machines

(see Table 6)) helps to decrease the total runtime but it does not provide a
linear speedup with the number of threads because of the CPU-intensive
workload of Scrappie, Nanocall and Nanonet. If the threads executed

are CPU-bound and do not wait for the memory or I/O requests, hyper-
threading does not provide linear speedup due to the contention it causes
in the shared resources for the computation. This phenomenon has been

analyzed extensively in other application domains [59–61].
Observation 6: Data sharing between threads degrades the parallel

speedup of Nanonet when cores from multiple NUMA nodes take role in

the computation (cf. Figure 2f).

In Nanonet, data is shared between threads and each thread performs
different computations on the same data. There are 4 NUMA nodes in

big-mem (cf. Table 6), and when data is shared between multiple NUMA
nodes, this negatively affects the speedup of Nanonet because accessing
the data located in another node (i.e., non-local memory) requires longer

latency than accessing the data located in local memory. When multiple
NUMA nodes start taking role in the computation, Nanocall performs
better in terms of scalability since it does not require data sharing between

different threads.

Summary. Based on the observations we make about the analyzed
basecalling tools, we conclude that the choice of the tool for this step
plays an important role to overcome the high error rates of nanopore

sequencing technology. Basecalling with Recurrent Neural Networks (e.g.,
Metrichor, Nanonet, Scrappie) provides higher accuracy and higher speed
than basecalling with Hidden Markov Models, and the newest basecaller

of ONT, Scrappie, also has the potential to overcome the homopolymer
basecalling problem.

4.2 Read-to-Read Overlap Finding Tools

As we discuss in Section 2.2, GraphMap and Minimap are the

commonly-used tools for this step. GraphMap finds the overlaps using k-
mer similarity, whereas Minimap finds them by using minimizers instead
of the full set of k-mers.
Accuracy

As done in GraphMap, finding the overlaps with the help of full set
of k-mers is a highly-sensitive and accurate approach. However, it is

also resource-intensive. For this reason, instead of the full set of k-mers,
Minimap uses a minimum representative set of k-mers, minimizers, as an
alternative approach for finding the overlaps.

In order to compare the accuracy of these two approaches, we
categorize the results in Table 10 based on read-to-read overlap finding
tools. In other words, we look at the rows with the same basecaller
(i.e., red-labeled tools) and same assembler (i.e., green-labeled tools) but

different read-to-read overlap finder (i.e., blue-labeled tools). After that,
we compare them according to the defined accuracy metrics. We make the
following major observation.

Observation 7: Pipelines with GraphMap or Minimap end up with

similar values for identity, coverage, number of indels and mismatches.

9

Thus, either of these read-to-read overlap finding tools can be used in

the second step of the nanopore sequencing assembly pipeline to achieve

similar accuracy.

Minimap and GraphMap do not have a significantly different effect on

the accuracy of the generated draft assemblies. This is because Minimap
does not lose any sensitivity by storing minimizers instead of the full set
of k-mers.

Performance

In order to compare the performance of GraphMap and Minimap, we

categorize the results in Table 11 based on read-to-read overlap finding
tools, in a similar way we describe the results in Table 10 for the accuracy
analysis. We also perform a scalability analysis for each of these tools by

running them on the big-mem server with 1, 2, 4, 8, 16, 32, 40, 64 and
80 threads, and measuring the performance metrics. Because of the high
memory usage of GraphMap, data necessary for the tool does not fit in the

memory of the desktop server and the GraphMap job exits due to a bad
memory allocation exception. Thus, we could not perform the scalability
analysis of GraphMap in the desktop server.

Figure 3 depicts the speed, memory usage and parallel speedup results
of the scalability analysis for GraphMap and Minimap. We make the
following three observations according to the results from Table 11 and

Figure 3.
Observation 8: The memory usage of both GraphMap and Minimap

is dependent on the hash table size but independent of number of threads.

Minimap requires 4.6x less memory than GraphMap, on average.

!"#

!$#

!

"!

#!

$!

%!

&!

'!

! #! %! '! (!

)
*
+
,
-.

*
/
0
12
-3

4+
5
*
-67

8
9

:;/<*1-0=->?1*+@4

.ABA/+C-D4E-71+C?.+CF<A5 /*/-

/ABA/+C 51+C?/+C

!

"

#

$

%

&!

&"

&#

! "! #! $! %!

'
(
)(
**
+
*,-

.
+
+
/
0
.

1023+),45,67)+(/8

9:;:2(.,<8=,>)(.79(.,?3:@ 2+2,

2:;:2(. @)(.72(.

!%#

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

! #! %! '! (!

)
*
++
,-
+.
/0

,1
23

4
,5
64

/7

893:4;,.<,1=;4*>6

?2@23*A,B6C,D;*A=?*A,E:2FG343

32@23*A F;*A=3*A

!"#$

%"&$

&!

&"

&#

"! #! $! %!

'
()
(*
*+
*,-

.
++

/
0
.

1023+),45,67)+(/8

9:;:2(.,<8=,>)(.79(.,?3:@ 2+2,

9:;:2(. >)(.79(.

Figure 3. Scalability results of Minimap and GraphMap.

Wall clock time (a), peak memory usage (b), and parallel speedup (c)

results obtained on the big-mem system.

This is mainly because Minimap stores only minimizers instead of all

k-mers. Storing the full set of k-mers in GraphMap requires a larger hash
table, and thus higher memory usage than Minimap. The high amount of
memory requirement causes GraphMap to not run on our desktop system

for none of the selected number of thread units.
Observation 9: Minimap is 2.5x faster than GraphMap, on average,

across different scenarios in Table 11.

Since GraphMap stores all k-mers, GraphMap needs to scan its very
large dataset while finding the overlaps between two reads. However, in
Minimap, the size of dataset that needs to be scanned is greatly shrunk

by storing minimizers, as we describe in Observation 8. Thus, Minimap
performs much less computation, leading to its 2.5x speedup. Another
indication of the different memory usage and its effect on the speed

of computation is the Last-Level Cache (LLC) miss rates of these two
tools. The LLC miss rate of Minimap is 36% whereas the LLC miss
rate of GraphMap is 55%. Since the size of data needed by GraphMap

is much larger than the LLC size, GraphMap experiences LLC misses
more frequently. As a result, GraphMap stalls for longer, waiting for data
accesses from main memory, which negatively affects the speed of the

tool.
Observation 10: Minimap is more scalable than GraphMap. However,

after 32 threads, there is a decrease in the parallel speedup of Minimap

(cf. Figure 3c).

Because of its lower computational workload and lower memory usage,
we find that Minimap is more scalable than GraphMap. However, in
Minimap, threads that finish their work wait for the other active threads

to finish their workloads, before starting new work, in order to prevent
higher memory usage. Because of this, when the number of threads
reaches a high number (i.e., 32 in Figure 3c), synchronization overhead

greatly increases, causing the parallel speedup to reduce. GraphMap
does not suffer from such a synchronization bottleneck and hence does
not experience a decrease in speedup. However, GraphMap’s speedup

saturates when the number of threads reaches a high number due to data
sharing between threads.

Summary. According to the observations we make about GraphMap

and Minimap, we conclude that storing minimizers instead of all k-mers, as
done by Minimap, does not affect the overall accuracy of the first three steps
of the pipeline. Moreover, by storing minimizers, Minimap has a much

lower memory usage and thus much higher performance than GraphMap.

4.3 Assembly Tools

As we discuss in Section 2.3, Canu and Miniasm are the commonly-
used tools for this step.2

Accuracy

In order to compare the accuracy of these two tools, we categorize

the results in Table 10 based on assembly tools. We make the following
observation.

Observation 11: Canu provides higher accuracy than Miniasm, with

the help of the error-correction step that is present in its own pipeline.

Performance

In order to compare the performance of Canu and Miniasm, we
categorize the results in Table 11 based on assembly tools, in a way similar

to what we did in Table 10 for the accuracy analysis. We could not perform
a scalability analysis for these tools since Canu has an auto-configuration
mechanism for each sub-step of its own pipeline, which does not allow

us to change the number of threads, and Miniasm does not support multi-
threading. We make the following observation according to the results in
Table 11.

2 In addition, we attempted to evaluate MECAT [67], another assembler.
We were unable to draw any meaningful conclusions from MECAT, as its
memory usage exceeds the 1TB available in our big-mem system.

10 Senol Cali et al.

Observation 12: Canu is much more computationally intensive and

greatly (i.e., by 1096.3x) slower than Miniasm, because of its very

expensive error-correction step.

Summary. According to the observations we make about Canu and

Miniasm, there is a tradeoff between accuracy and performance when
deciding on the appropriate tool for this step. Canu produces highly
accurate assemblies but it is resource intensive and slow. In contrast,

Miniasm is a very fast assembler but it cannot produce as accurate draft
assemblies as Canu. We suggest that Miniasm can potentially be used for
fast initial analysis and then further polishing can be applied in the next

step in order to produce higher-quality assemblies.

4.4 Read Mapping and Polishing Tools

As we discuss in Section 2.4, further polishing may be required for

improving the accuracy of the low-quality draft assemblies. For this
purpose, after aligning the reads to the generated draft assembly with
BWA-MEM or Minimap,3 ,4 one can use Nanopolish or Racon to perform
polishing and obtain improved assemblies (i.e., consensus sequences).

3 We do not discuss these tools in great detail here since they perform
read mapping, which is commonly analyzed and relatively well understood
(e.g., see [68–86]).
4 Minimap2 [87] is a recently-released successor to Minimap. We compare
Minimap2 to BWA-MEM and to Minimap, and make two observations.
First, Minimap2 significantly outperforms BWA-MEM. Since Minimap2
can produce SAM alignments (which BWA-MEM produces), we can
replace BWA-MEM with Minimap2 in future genome assembly pipelines.
Second, Minimap2 has similar accuracy and performance compared
to Minimap. This is because Minimap2 and Minimap employ similar
indexing and seeding algorithms [87], and the new features of Minimap2
(more accurate chaining, base-level alignment, support for spliced
alignment) are not used in the pipeline we analyze. As a result, our findings
for Minimap generally remain the same for Minimap2.

Nanopolish accepts mappings only in Sequence Alignment/Map (SAM)

format [88] and it works only with draft assemblies generated with
the Metrichor-basecalled reads. On the other hand, Racon accepts
both Pairwise Mapping format (PAF) mappings [41] and SAM-format

mappings, but it requires the input reads and draft assembly files to be
in fastq format [89], which includes quality scores. However, by using the
-bq -1 parameter, it is possible to disable the filtering used in Racon,

which requires quality scores. Since our basecalled reads are in fasta format
[90], in our experiments, we convert these fasta files into fastq files and
disable the filtering with the corresponding parameter.

BWA-MEM generates mappings in SAM format whereas Minimap
generates mappings in PAF format. Since Nanopolish requires SAM format
input, we generate the mappings only with BWA-MEM and use them for

Nanopolish polishing, in our analysis. On the other hand, since Racon
accepts both formats, we generate the mappings and the overlaps with
both BWA-MEM and Minimap, respectively, and use them for Racon

polishing, in our analysis.
Accuracy

Table 12 presents the accuracy metrics results for Nanopolish (i.e.,
Rows 1-3) and Racon (i.e., Rows 4-23) pipelines. Based on these results,

we make two observations.
Observation 13: Both Nanopolish and Racon significantly increase

the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage of the
draft assembly generated with the Metrichor+Minimap+Miniasm pipeline
from 87.71% and 94.85% (Row 2 of Table 10), respectively, to 92.33% and

96.31% (Row 2 of Table 12). Similarly, Racon increases them to 97.70%
and 99.91% (Rows 6–7 of Table 12), respectively.

Observation 14: For Racon, the choice of read mapper does not affect

the accuracy of the polishing step.

We observe that using BWA-MEM or Minimap to generate the
mappings for Racon results in almost identical accuracy metric results. For

example, when we use BWA-MEM before Racon for the draft assembly

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps.

Number of
Bases

Number of
Contigs

Identity
(%)

Coverage
(%)

Number of
Mismatches

Number of
Indels

1 Metrichor + — + Canu + BWA-MEM + Nanopolish 4,683,072 1 99.48 99.93 8,198 15,581

2 Metrichor + Minimap + Miniasm+ BWA-MEM + Nanopolish 4,540,352 1 92.33 96.31 162,884 182,965

3 Metrichor + GraphMap + Miniasm+ BWA-MEM + Nanopolish 4,637,916 2 92.38 95.80 159,206 180,603

4 Metrichor + — + Canu + BWA-MEM + Racon 4,650,502 1 98.46 100.00 18,036 51,842

5 Metrichor + — + Canu + Minimap + Racon 4,648,710 1 98.45 100.00 17,906 52,168

6 Metrichor + Minimap + Miniasm+ BWA-MEM + Racon 4,598,267 1 97.70 99.91 24,014 82,906

7 Metrichor + Minimap + Miniasm+ Minimap + Racon 4,600,109 1 97.78 100.00 23,339 79,721

8 Nanonet + — + Canu + BWA-MEM + Racon 4,622,285 1 98.48 100.00 16,872 52,509

9 Nanonet + — + Canu + Minimap + Racon 4,620,597 1 98.49 100.00 16,874 52,232

10 Nanonet + Minimap + Miniasm+ BWA-MEM + Racon 4,593,402 1 98.01 99.97 20,322 72,284

11 Nanonet + Minimap + Miniasm+ Minimap + Racon 4,592,907 1 98.04 100.00 20,170 70,705

12 Scrappie + — + Canu + BWA-MEM + Racon 4,673,871 1 98.40 99.98 13,583 60,612

13 Scrappie + — + Canu + Minimap + Racon 4,673,606 1 98.40 99.98 13,798 60,423

14 Scrappie + Minimap + Miniasm+ BWA-MEM + Racon 5,157,041 8 97.87 99.80 18,085 78,492

15 Scrappie + Minimap + Miniasm+ Minimap + Racon 5,156,375 8 97.87 99.94 17,922 77,807

16 Nanocall + — + Canu + BWA-MEM + Racon 1,383,851 86 93.49 28.82 19,057 65,244

17 Nanocall + — + Canu + Minimap + Racon 1,367,834 86 94.43 28.74 15,610 55,275

18 Nanocall + Minimap + Miniasm+ BWA-MEM + Racon 4,707,961 5 90.75 97.11 91,502 347,005

19 Nanocall + Minimap + Miniasm+ Minimap + Racon 4,673,069 5 92.23 97.10 72,646 291,918

20 DeepNano + — + Canu + BWA-MEM + Racon 7,429,290 106 96.46 99.24 27,811 102,682

21 DeepNano + — + Canu + Minimap + Racon 7,404,454 106 96.03 99.21 34,023 110,640

22 DeepNano + Minimap + Miniasm+ BWA-MEM + Racon 4,566,253 1 96.76 99.86 25,791 125,386

23 DeepNano + Minimap + Miniasm+ Minimap + Racon 4,571,810 1 96.90 99.97 24,994 119,519

11

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps.

Step 4: Read Mapper Step 5: Polisher
Wall

Clock

Time
(h:m:s)

CPU Time

(h:m:s)

Memory
Usage
(GB)

Wall
Clock

Time
(h:m:s)

CPU Time

(h:m:s)

Memory
Usage
(GB)

1 Metrichor + — + Canu + BWA-MEM + Nanopolish 24:43 15:47:21 5.26 5:51:00 191:18:52 13.38

2 Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 12:33 7:50:54 3.75 122:52:00 4458:36:10 31.36

3 Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 12:47 7:57:58 3.60 129:46:00 4799:03:51 31.31

4 Metrichor + — + Canu + BWA-MEM + Racon 24:20 15:43:40 6.60 14:44 9:09:22 8.11

5 Metrichor + — + Canu + Minimap + Racon 3 1:35 0.26 15:12 9:45:33 14.55

6 Metrichor + Minimap + Miniasm + BWA-MEM + Racon 12:10 7:48:10 5.19 15:43 9:33:39 9.98

7 Metrichor + Minimap + Miniasm + Minimap + Racon 3 1:24 0.26 20:28 8:57:40 18.24

8 Nanonet + — + Canu + BWA-MEM + Racon 9:08 5:53:18 4.84 6:33 4:02:10 4.47

9 Nanonet + — + Canu + Minimap + Racon 2 54 0.26 6:45 4:17:26 7.93

10 Nanonet + Minimap + Miniasm + BWA-MEM + Racon 4:40 2:58:02 3.88 7:08 4:19:30 5.35

11 Nanonet + Minimap + Miniasm + Minimap + Racon 2 46 0.26 7:01 4:18:48 9.53

12 Scrappie + — + Canu + BWA-MEM + Racon 33:41 21:11:06 8.66 13:32 8:24:44 7.58

13 Scrappie + — + Canu + Minimap + Racon 3 1:39 0.27 18:45 7:43:17 13.20

14 Scrappie + Minimap + Miniasm + BWA-MEM + Racon 22:41 14:31:00 6.08 14:37 8:53:59 9.50

15 Scrappie + Minimap + Miniasm + Minimap + Racon 3 1:27 0.27 15:10 9:02:45 12.72

16 Nanocall + — + Canu + BWA-MEM + Racon 4:52 3:01:15 3.80 11:07 3:26:52 5.63

17 Nanocall + — + Canu + Minimap + Racon 3 1:16 0.22 7:28 2:50:35 3.62

18 Nanocall + Minimap + Miniasm + BWA-MEM + Racon 16:06 10:27:20 5.06 18:56 11:32:45 11.47

19 Nanocall + Minimap + Miniasm + Minimap + Racon 4 1:18 0.26 11:49 7:08:59 10.98

20 DeepNano + — + Canu + BWA-MEM + Racon 17:36 11:30:20 4.43 12:48 7:13:04 8.88

21 DeepNano + — + Canu + Minimap + Racon 3 1:24 0.28 11:39 6:55:01 3.73

22 DeepNano + Minimap + Miniasm + BWA-MEM + Racon 8:15 5:22:29 4.11 14:16 8:34:32 10.30

23 DeepNano + Minimap + Miniasm + Minimap + Racon 3 1:10 0.26 xxx:12:29 xxx7:55:32 17.11

!

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

&$!!!

! " # $ %

'
()
)*+

),
-.

*/
01

2*
34
2-

5

671829*,:*/;92(<4

='>?@A@*B4C*@0D01(E*F<24.G,E

8H(121 10D01(E

!

!"#

$

$"#

%

! % & ' (

)
*+

,-
.
*/

0
12
-3

4+
5
*-
67

8
9

:;/<*1-0=->?1*+@4

8AB .D.-E4"-.FGF/+H-I@*4,J0H

<K+ /*/ /FGF/+H

!

"

#

$

%

&

'

! # % ' (

)
*+
*,
,-
,./

0
--

1
2
0

3245-+.67.89+-*1:

;<= ?@?.A:B.?CDC4*0.E1-:FG60

5H* 4-4 4CDC4*0

!"#

!$#

!%#

!

"!!!

#!!!!

#"!!!

$!!!!

$"!!!

%!!!!

%"!!!

! $! &! '! (!

)
*+
+,-

+.
/0

,1
23

4,
56
4/

7

893:4;,.<,1=;4*>6

?)@ABCB,D6E,B2F23*G,H:2IA343

:J* 343 32F23*G

!

"

#

$

%

&!

&"

! "! #! $! %!

'
()

*+
,
(-

.
/0
+1

2)
3
(+
45

6
7

89-:(/+.;+<=/()>2

6?@ ,B,+C2D+,EFE-)G+H:E3 -(-+

:I) -(- -EFE-)G

!&#

!

"

#!

#"

$!

$"

%!

%"

! $! &! '! (!

)
*+
*,
,-
,./

0
--

1
2
0

3245-+.67.89+-*1:

;<= ?@?.A:B.?CDC4*0.E5CF 4-4.

5G* 4-4 4CDC4*0

!'#

!(#
!"#$%&'()*)!+#,(-.&/).0$%(!"#$%&'()1)!+#,(-.&/).0$%(

234567 893567::25;7

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

&$!!!

'
()
)*+

),
-.

*/
01

2*
34
2-

5

671829*,:*/;92(<4

='> @A@*B4C*@0D01(E*F<24.G,E

='>?@A@ @0D01(E

Figure 4. Scalability results of BWA-MEM and Minimap.

Wall clock time (a, b), peak memory usage (c, d), and parallel speedup (e, f) results obtained on the desktop and big-mem systems. The left column (a, c,
e) shows the results from the desktop system and the right column (b, d, f) shows the results from the big-mem system.

12 Senol Cali et al.

generated with the Metrichor + Canu pipeline (Row 4 of Table 12), Racon

results with 98.46% identity, 100.00% coverage, 18,036 mismatches and
51,842 indels. When we use Minimap, instead (Row 5 of Table 12), Racon
results with 98.45% identity, 100.00% coverage, 17,096 mismatches and

52,168 indels, which is almost identical to the BWA-MEM results.

Performance

In the first part of the performance analysis for Nanopolish, we divide
the draft assemblies into 50kb-segments and polish 4 of these segments in
parallel with 10 threads for each segment. For Racon, each draft assembly

is polished using 40 threads, but the tool, by default, divides the input
sequence into windows of 20kb length. Table 13 presents the performance
results for Nanopolish (i.e., Rows 1-3) and Racon (i.e., Rows 4-23)

pipelines. Based on these results, we make the following two observations.
Observation 15: Nanopolish is computationally much more intensive

and thus greatly slower than Racon.

Nanopolish runs take days to complete whereas Racon runs take
minutes. This is mainly because Nanopolish works on each base
individually, whereas Racon works on the windows. Since each window

is much longer (i.e., 20kb) than a single base, the computational workload
is greatly smaller in Racon. Also, Racon only uses the mappings/overlaps
for polishing, whereas Nanopolish uses raw signal data and an HMM-
based approach in order to generate the consensus sequence, which is

computationally more expensive.
Observation 16: BWA-MEM is computationally more expensive than

Minimap.

Although the choice of BWA-MEM and Minimap for the read mapping
step does not affect the accuracy of the polishing step, these two tools have
a significant difference in performance.

For a deeper performance analysis of these read mapping and polishing
tools, we perform a scalability analysis for each read mapper and each
polisher by running them on the desktop system and the big-mem system

separately, with 1, 2, 4, 8 (maximum for desktop server), 16, 32, 40, 64 and
80 (maximum for big-mem server) threads, and measuring the performance
metrics. Figure 4 shows the the speed, memory usage and parallel speedup

of BWA-MEM and Minimap. We make two observations.
Observation 17: On both systems, Minimap is greatly faster than

BWA-MEM (cf. Figure 4a and 4b). However, when the number of

threads reaches high value, Minimap’s performance degrades due to the

synchronization overhead between its threads (cf. Figure 4f).

On the desktop system, Minimap is 332.0x faster than BWA-MEM, on

average (see Figure 4a). On the big-mem system, Minimap is 294.6x and
179.6x faster than BWA-MEM, on average, when the number of threads is
smaller and greater than 32, respectively. This is due to the synchronization

overhead that increases with the number of threads used in Minimap (see
Observation 10). As we also show in Figure 4f, Minimap’s speedup reduces
when the number of threads exceeds 32, which is another indication of the

synchronization overhead that causes Minimap to slow down.
Observation 18: Minimap’s memory usage is independent of the

number of threads and stays constant. In contrast, BWA-MEM’s memory

usage increases linearly with the number of threads (cf. Figure 4c and 4d).

In Minimap, memory usage is dependent on the hash table size and is
independent of number of threads (see Observation 8). In contrast, in BWA-

MEM, each thread separately performs computation for different groups
of reads (as in Scrappie and Nanocall, see Observation 4). This causes
the linear increase in memory usage of BWA-MEM when the number of
threads increases.

Figure 5 shows the scalability results for Racon on the big-mem system.
We obtain the results on both of the systems. However, we only show the
results for the big-mem system since the results for both of the systems

are similar. We separately test the tool by using PAF mappings and SAM

mappings. Based on the results, we make the following observation.

!

"!!!

#!!!!

#"!!!

$!!!!

! $! %! &! '!

(
)*
*+,

*-
./

+0
12

3+
45
3.

6

78293:+-;+0<:3)=5

>).-?+@91AB232

C1D< E); C1D< 5)2

!

"

#!

#"

$!

! $! %! &! '!

(
)*

+,
-
).

/
01
,2

3*
4
),
56

7
8

9:.;)0,/<,=>0)*?3

@*A/BC;D4 .).,

FDG> H*< FDG> 3*.

!

"

#!

#"

$!

$"

! $! %! &! '!

(
)*
)+
+,
+-.

/
,,

0
1
/

2134,*-56-78*,)09

:);5<=4>? 3,3-

A>B8 /)6 A>B8 9)3

#!

#"

$!

$"

$! %! &! '!

(
)*
)+
+,
+.

/
,,

0
1
/

2134,* 5678*,)09

:);5<=4>? 3,3-

A>B8-/)6 A>B8-9)3

!"#

!$#

!%#

!"#$%

Figure 5. Scalability results of Racon.

Wall clock time (a), peak memory usage (b), and parallel speedup (c)
results obtained on the big-mem system.

Observation 19: Racon’s memory usage is independent of the number

of threads for both PAF mode and SAM mode. However, the memory

usage of PAF mode is 1.86x higher than the memory usage of SAM mode,

on average (cf. Figure 5b).

The memory usage of Racon depends on the number of mappings
received from the fourth step since Racon performs polishing by using
these mappings. Racon’s memory usage is higher for the PAF mode

because the number of mappings stored in the PAF files is greater than
the number of mappings stored in the SAM files (i.e., 1.4x). However,
using PAF mappings or SAM mappings do not significantly affect the

speed (see Figure 5a) and the parallel speedup (see Figure 5c) of Racon.
Figure 6 shows the scalability results for Nanopolish. We test the

tool by separately using a 25kb and a 50kb segment length to assess the

scalability of the tool with respect to the segment length, in addition to
the scalability with respect to the number of threads. We measure the
performance metrics. We only show the results for the big-mem system

since the results for both of the systems are similar. Based on the results,
we make the following observation.

Observation 20: Nanopolish’s memory usage is independent of the

number of threads. However, its memory usage in dependent on the segment

length (cf. Figure 6b).

The memory usage of Nanopolish is not affected by the number of
threads. However, it is dependent on the segment length. Nanopolish uses

more memory for longer segments. When the segment length is doubled
from 25kb to 50kb, the increase in the memory usage (i.e., 2.7x) is greater

13

!

!"#

$

$"#

%

%"#

! %! &! '! (!

)
*+

,-
.
*/

0
12
-3

4+
5
*-
67

8
9

:;/<*1-0=->?1*+@4

:+A0B0CD4?E<D5 /*/

%#,< #!,<

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

(!!!

! #! %! '!)!

*
+,
,-.

,/
01

-2
34

5-
67
50

8

9:4;5<-/=-2><5+?7

9+@/A/,37>B;3CD454

#&1; &!1;

&!

&"

"! #! $! %!

'
()
(*
*+
*,-

.
++

/
0
.

1023+),45,67)+(/8

1(94.4*:87;3:< 2+2

">?3 >!?3

!

"

#

$

%

&!

&"

! "! #! $! %!

'
()
(*
*+
*,-

.
++

/
0
.

1023+),45,67)+(/8

1(94.4*:87;3:< 2+2

">?3 >!?3

!"#$%&'()*)!+#,(-.&/).0$%(!"#$%&'()1)!+#,(-.&/).0$%(

!"#$%&'()*)!+#,(-.&/).0$%(!"#$%&'()1)!+#,(-.&/).0$%(

2345

2345

!"#

!$#

!%#

Figure 6. Scalability results of Nanopolish.

Wall clock time (a), peak memory usage (b), and parallel speedup (c)
results obtained on the big-mem system.

than 2.0x. This is because the memory usage of Nanopolish depends both
on the length of the segment and the number of read mappings that map

to this segment. For both of the segments, the memory usage also affects
the speed. The Nanopolish run for the 25kb-segment is 2.7x faster than the
run for the 50kb-segment (see Figure 6a).

Observation 21: Nanopolish’s performance greatly degrades when

the number of threads exceeds the number of physical cores (cf. Figure 6c).

Hyper-threading causes a slowdown for Nanopolish because of the

CPU-intensive workload of Nanopolish and the resulting high contention
in the shared resources between the threads executing on the same core,
as we discuss in Observation 5.

Summary. Based on the observations we make about tools for the
optional last two steps of the pipeline, we conclude that further polishing
can significantly increase the accuracy of the assemblies. Since BWA-

MEM and Nanopolish are more resource-intensive than Minimap and
Racon, pipelines with Minimap and Racon can provide a significant
speedup compared to the pipelines with BWA-MEM and Nanopolish,

while resulting with high-quality consensus sequences.

5 Recommendations

Recommendations for Tool Users

Based on the results we have collected and observations we have
made for each step of the genome assembly pipeline using nanopore

sequence data and the associated tools, we make the following major
recommendations for the current and future tool users.

• ONT’s basecalling tools, Metrichor, Nanonet, and Scrappie, are the

best choices for the basecalling step in terms of both accuracy and
performance. Among these tools, Scrappie is the newest, fastest and
most accurate basecaller. Thus, we recommend using Scrappie for the

basecalling step (See analysis in Section 4.1).
• For the read-to-read overlap finding step, Minimap is faster than

GraphMap, and it requires low memory. Also, it has similar accuracy

to GraphMap. Thus, we recommend Minimap for the read-to-read
overlap finding step (See analysis in Section 4.2).

• For the assembly step, if execution time is not an important concern,

we recommend using Canu since it produces much more accurate
assemblies. However, for a fast initial analysis, we recommend using
Miniasm since it is fast and its accuracy can be increased with

an additional polishing step. If Miniasm is used for assembly, we
definitely recommend further polishing to increase the accuracy of the
final assembly (See analysis in Section 4.3). Even though polishing

takes a similar amount of time if we use Miniasm or Canu, the accuracy
improvements are much smaller for a genome assembled using Canu.
We hope that future work can improve the performance of polishing

when the assembled genome already has high accuracy, to reduce the
execution time of the overall assembly pipeline.

• For the polishing step, we recommend using Racon since it is
much faster than Nanopolish. Racon also produces highly-accurate

assemblies (See analysis in Section 4.4).
• In the future, laptops may become a popular platform for running

genome assembly tools, as the portability of a laptop makes it a

good fit for in-field analysis. Compared to the desktop and server
platforms that we use to test our pipelines, a laptop has even greater
memory constraints and lower computational power, and we must

factor in limited battery life when evaluating the tools. Based on the
scalability studies we perform using our desktop and server platforms,
we would likely recommend using Minimap followed by Miniasm for

the assembly step, and Minimap followed by Racon for the polishing
step, when performing assembly on a laptop. These three tools use
relatively low amounts of memory, and execute quickly, which we

expect would make the tools a good fit for the various constraints
of a laptop. Despite their low memory usage and fast execution, our
recommended pipeline can produce high-quality assemblies that are

suitable for fast initial in-field analyses. We leave it to future work
to quantitatively study the genome assembly pipeline using nanopore
sequence data on laptops and other mobile devices.

Recommendations for Tool Developers

Based on our analyses, we make the following recommendations for
the tool developers.

• The choice of language to implement the tool plays a crucial role

regarding the overall performance of the tool. For example, although
the basecallers Scrappie and Nanonet belong to the same family (i.e.,
they both use the more accurate RNNs for basecalling), Scrappie

is significantly faster than Nanonet since Scrappie is implemented
in C whereas Nanonet is implemented in Python (See analysis in
Section 4.1).

• Memory usage is an important factor that greatly affects the
performance and the usability of the tool. While developing new tools
or improving the current ones, the developers should be aware of
the memory hierarchy. Data structure choices that can minimize the

memory requirements and cache-efficient algorithms have a positive
impact on the overall performance of the tools. Keeping memory usage
in check with the number of threads can enable not only a usable (i.e.,

runnable on machines with relatively small memories) tool but also a
fast one. For example, we find that GraphMap cannot even run with a

14 Senol Cali et al.

single-thread in our desktop machine due to excessively high memory

usage (See analyses in Sections 4.1– 4.4).
• Scalability of the tool with the number of cores/threads is an important

requirement. It is important to make the tool efficiently parallelized to

decrease the overall runtime. Design choices should be made wisely
while considering the possible overheads that parallelization can add.
For example, we find that the parallel speedup of Minimap reduces

when the number of threads reaches a high number due to a large
increase in the overhead of synchronization between threads (See
analyses in Sections 4.1– 4.4).

• Since parallelizing the tool can increase the memory usage, dividing
the input data into batches, or limiting the memory usage of each
thread, or dividing the computation instead of dividing the dataset

between simultaneous threads can prevent large increases in memory
usage, while providing performance benefits from parallelization. For
example, in Nanonet, all of the threads share the computation of each

read, and thus memory usage is not affected by the amount of thread
parallelism. As a result, Nanonet’s usability is not limited to machines
with relatively larger memories (See analyses in Sections 4.1– 4.4).

6 Conclusion

We analyze the multiple steps and the associated state-of-the-art tools

in the genome assembly pipeline using nanopore sequence data5 in terms of
accuracy, speed, memory efficiency and scalability. We make four major
conclusions based on our experimental analyses of the whole pipeline.

First, the basecalling tools with higher accuracy and performance, like
Scrappie, can overcome the major drawback of nanopore sequencing
technology, i.e., high error rates. Second, the read-to-read overlap finding

tools, Minimap and GraphMap, perform similarly in terms of accuracy.
However, Minimap performs better than GraphMap in terms of speed
and memory usage by storing only minimizers instead of all k-mers, and

GraphMap is not scalable when running on machines with relatively small
memories. Third, the fast but less accurate assembler Miniasm can be used
for a very fast initial assembly, and further polishing can be applied on top

of it to increase the accuracy of the final assembly. Fourth, a state-of-the-art
polishing tool, Racon, generates high-quality consensus sequences while
providing a significant speedup over another polishing tool, Nanopolish.

We hope and believe that our observations and analyses will guide

researchers and practitioners to make conscious and effective choices while
deciding between different tools for each step of the genome assembly
pipeline using nanopore sequence data. We also hope that the bottlenecks

or the effects of design choices we have found and exposed can help
developers in building new tools or improving the current ones.

Key Points

To our knowledge, this is the first work that analyzes state-of-the-art
tools associated with each step of the genome assembly pipeline using

sequence data generated with nanopore sequencing, a promising new
sequencing technology.

The key contributions are:

1. We analyze the tools in multiple dimensions that are important for
both developers and users/practitioners: accuracy, performance, memory
usage and scalability.

2. We reveal new bottlenecks and tradeoffs that different combinations
of tools lead to, based on our extensive experimental analyses.

3. We provide guidelines for both practitioners, such that they can

determine the appropriate tools and tool combinations that can satisfy

5 We leave it to future work to quantitatively study tools for different
applications of nanopore sequencing, such as variant calling, detection of
base modifications (i.e., methylation studies [91]), and pathogen detection.

their goals, and tool developers, such that they can make design choices

to improve current and future tools.
4. We show that tools that are aware of the memory hierarchy have a

better overall performance and scalability, and they are more usable than

the tools that do not keep memory usage in check with the number of
threads.

5. We show that basecalling is the most important step of the pipeline

to overcome the high error rates of nanopore sequencing technology.
6. We show that there is a tradeoff between accuracy and performance

when choosing the tool for the assembly step. Miniasm, coupled with an

additional polishing step can lead to faster overall assembly than using
Canu itself, while producing high-quality assemblies.

Acknowledgments

We thank Jared Simpson and David Matei for their feedback and help
with the questions about the tools. Posters describing earlier stages of the
work in this paper were presented at PSB 2017 and ISMB-ECCB 2017.

We thank the poster session attendees for their feedback on the works.
We especially thank Adam M. Phillippy and Mile Šikić for their feedback
during the poster sessions. We also thank developers of Nanonet and Racon

for answering our questions on GitHub.

Funding

This work was supported by a grant from the National Institutes of
Health to O.M. and C.A. (HG006004); an installation grant from the
European Molecular Biology Organization to C.A. (EMBO-IG 2521); and
gifts from Google, Intel, Samsung, and VMware.

Author Details

Damla Senol Cali is a PhD student in the Department of Electrical
and Computer Engineering at Carnegie Mellon University. Her research
interests are in computational methods for the analysis of NGS and
nanopore sequencing data, and computer architecture.

Jeremie S. Kim is a PhD student in the Department of Electrical
and Computer Engineering at Carnegie Mellon University and in the
Department of Computer Science at ETH Zürich. His research interests
are in computer architecture and hardware accelerators for bioinformatics
applications.

Saugata Ghose, PhD, is a Systems Scientist in the Department of
Electrical and Computer Engineering at Carnegie Mellon University. His
research interests are in several aspects of computer architecture, with
a significant focus on designing architecture-aware and systems-aware
memory and storage.

Can Alkan, PhD, is an Assistant Professor in the Department of
Computer Engineering at Bilkent University. His research interests are in
combinatorial algorithms for bioinformatics and computational biology.

Onur Mutlu, PhD, is a Professor in the Department of Computer
Science at ETH Zürich. He is also an Adjunct Professor in the Department
of Electrical and Computer Engineering at Carnegie Mellon University.

His research interests are in computer architecture, systems, security and
bioinformatics.

References

[1] Erwin L Van Dijk, Hélène Auger, Yan Jaszczyszyn, et al. Ten
years of next-generation sequencing technology. Trends in Genetics,
30(9):418–426, 2014.

[2] Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, et al. Accelerating
read mapping with FastHASH. BMC Genomics, 14(1), 2013.

[3] Jay Shendure, Shankar Balasubramanian, George M Church,
et al. DNA sequencing at 40: past, present and future. Nature,
550(7676):345–353, 2017.

15

[4] Karyn Meltz Steinberg, Valerie A Schneider, Can Alkan, et al.
Building and improving reference genome assemblies. Proceedings

of the IEEE, 105(3):422–435, 2017.
[5] Todd J Treangen and Steven L Salzberg. Repetitive DNA and

next-generation sequencing: computational challenges and solutions.
Nature Reviews Genetics, 13(1), 2011.

[6] Can Firtina and Can Alkan. On genomic repeats and reproducibility.
Bioinformatics, 32(15):2243–2247, 2016.

[7] Can Alkan, Saba Sajjadian, and Evan E Eichler. Limitations of next-
generation genome sequence assembly. Nature Methods, 8(1):61–65,
2011.

[8] Hengyun Lu, Francesca Giordano, and Zemin Ning. Oxford
Nanopore MinION sequencing and genome assembly. Genomics,

Proteomics & Bioinformatics, 14(5):265–279, 2016.
[9] Alberto Magi, Roberto Semeraro, Alessandra Mingrino, et al.

Nanopore sequencing data analysis: state of the art, applications and
challenges. Briefings in Bioinformatics, 2017.

[10] James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, et al. Continuous
base identification for single-molecule nanopore DNA sequencing.
Nature Nanotechnology, 4(4):265–270, 2009.

[11] Vivien Marx. Nanopores: a sequencer in your backpack. Nature

Methods, 12(11), 2015.
[12] Daniel Branton, David W Deamer, Andre Marziali, et al.

The potential and challenges of nanopore sequencing. Nature

Biotechnology, 26(10):1146–1153, 2008.
[13] Thomas Laver, J Harrison, PA O’neill, et al. Assessing

the performance of the Oxford Nanopore Technologies MinION.
Biomolecular Detection and Quantification, 3:1–8, 2015.

[14] Camilla LC Ip, Matthew Loose, John R Tyson, et al. MinION
Analysis and Reference Consortium: Phase 1 data release and
analysis. F1000Research, 4, 2015.

[15] John J Kasianowicz, Eric Brandin, Daniel Branton, et al.
Characterization of individual polynucleotide molecules using a
membrane channel. Proceedings of the National Academy of

Sciences, 93(24):13770–13773, 1996.
[16] MinION, Oxford Nanopore Technologies. https://

nanoporetech.com/products/minion, 2017.
[17] Joshua Quick, Nicholas J Loman, Sophie Duraffour, et al. Real-

time, portable genome sequencing for Ebola surveillance. Nature,
530(7589), 2016.

[18] Joshua Quick, Aaron R Quinlan, and Nicholas J Loman. A reference
bacterial genome dataset generated on the MinION portable single-
molecule nanopore sequencer. Gigascience, 3(1), 2014.

[19] Miten Jain, Sergey Koren, Josh Quick, et al. Nanopore sequencing
and assembly of a human genome with ultra-long reads. bioRxiv,
2017.

[20] Nicholas J Loman. Thar she blows! Ultra long read method
for nanopore sequencing. http://lab.loman.net/2017/03/
09/ultrareads-for-nanopore/, 2017.

[21] Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, et al.
Genome assembly using Nanopore-guided long and error-free DNA
reads. BMC Genomics, 16(1), 2015.

[22] First DNA Sequencing in Space a Game Changer. https:

//www.nasa.gov/mission_pages/station/research/

news/dna_sequencing, 2017.
[23] Update: New R9 nanopore for faster, more accurate sequencing, and

new ten minute preparation kit. https://nanoporetech.com/
about-us/news/update-new-r9-nanopore-faster-

more-accurate-sequencing-and-new-ten-minute-

preparation, 2017.
[24] Mihai Pop. Genome assembly reborn: recent computational

challenges. Briefings in Bioinformatics, 10(4):354–366, 2009.
[25] Clive Brown Technical Update: GridION X5 - The Sequel.

https://nanoporetech.com/resource-centre/

videos/gridion-x5-sequel, 2017.
[26] Carlos Victor de Lannoy, Dick de Ridder, and Judith Risse. A

sequencer coming of age: de novo genome assembly using MinION
reads. bioRxiv, 2017.

[27] New basecaller now performs ’raw basecalling’, for improved
sequencing accuracy. https://nanoporetech.com/about-
us/news/new-basecaller-now-performs-raw-

basecalling-improved-sequencing-accuracy, 2017.
[28] Haotien Teng, Michael B Hall, Tania Duarte, et al. Chiron:

Translating nanopore raw signal directly into nucleotide sequence
using deep learning. bioRxiv, page 179531, 2017.

[29] Ryan R Wick, Louise M Judd, and Kathryn E Holt. Comparison
of Oxford Nanopore basecalling tools. https://github.com/

rrwick/Basecalling-comparison, 2017.
[30] Metrichor, Oxford Nanopore Technologies. https:

//nanoporetech.com/products/metrichor, 2017.
[31] Sean R Eddy. Hidden markov models. Current Opinion in Structural

Biology, 6(3):361–365, 1996.
[32] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing, 45(11):2673–
2681, 1997.

[33] Barak A Pearlmutter. Learning state space trajectories in recurrent
neural networks. Neural Computation, 1(2):263–269, 2008.

[34] Nanonet, Oxford Nanopore Technologies. https://

github.com/nanoporetech/nanonet, 2017.
[35] Nanonet: First Generation RNN Basecaller. https://

github.com/nanoporetech/nanonet.
[36] Scrappie, Oxford Nanopore Technologies. https://

github.com/nanoporetech/scrappie, 2017.
[37] Matei David, Lewis Jonathan Dursi, Delia Yao, et al. Nanocall:

an open source basecaller for Oxford Nanopore sequencing data.
Bioinformatics, 33(1):49–55, 2016.

[38] Nanocall: An Oxford Nanopore Basecaller. https://

github.com/mateidavid/nanocall, 2017.
[39] Vladimír Boža, Broňa Brejová, and Tomáš Vinař. DeepNano: Deep

recurrent neural networks for base calling in MinION nanopore reads.
PloS One, 12(6), 2017.

[40] Ivan Sović, Mile Šikić, Andreas Wilm, et al. Fast and sensitive
mapping of nanopore sequencing reads with GraphMap. Nature

Communications, 7, 2016.
[41] Heng Li. Minimap and Miniasm: fast mapping and de novo assembly

for noisy long sequences. Bioinformatics, 32(14):2103–2110, 2016.
[42] Sergey Koren, Brian P Walenz, Konstantin Berlin, et al. Canu:

scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome Research, 27(5):722–736,
2017.

[43] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian
path approach to DNA fragment assembly. Proceedings of the

National Academy of Sciences, 98(17):9748–9753, 2001.
[44] Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to

apply de Bruijn graphs to genome assembly. Nature Biotechnology,
29(11):987–991, 2011.

[45] Sergey Koren, Gregory P Harhay, Timothy PL Smith, et al. Reducing
assembly complexity of microbial genomes with single-molecule
sequencing. Genome Biology, 14(9), 2013.

[46] Justin Chu, Hamid Mohamadi, René L Warren, et al. Innovations
and challenges in detecting long read overlaps: an evaluation of the
state-of-the-art. Bioinformatics, 33(8):1261–1270, 2016.

[47] Zhenyu Li, Yanxiang Chen, Desheng Mu, et al. Comparison of the
two major classes of assembly algorithms: overlap–layout–consensus
and de-bruijn-graph. Briefings in Functional Genomics, 11(1):25–37,
2012.

[48] Stefan Burkhardt and Juha Kärkkäinen. Better filtering with gapped
q-grams. Fundamenta Informaticae, 56(1-2):51–70, 2003.

[49] Canu Tutorial. http://canu.readthedocs.io/en/

latest/tutorial.html, 2017.
[50] Heng Li. Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.
[51] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete

bacterial genome assembled de novo using only nanopore sequencing
data. Nature Methods, 12(8):733–735, 2015.

16 Senol Cali et al.

[52] Robert Vaser, Ivan Sović, Niranjan Nagarajan, et al. Fast and accurate
de novo genome assembly from long uncorrected reads. Genome

Research, 27(5):737–746, 2017.
[53] Nanopolish. https://github.com/jts/nanopolish.
[54] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple

sequence alignment using partial order graphs. Bioinformatics,
18(3):452–464, 2002.

[55] Nicholas J Loman. Nanopore R9 rapid run data release.
http://lab.loman.net/2016/07/30/nanopore-r9-

data-release/, 2017.
[56] MUMmer 3.x. https://github.com/garviz/MUMmer,

2017.
[57] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence

learning with neural networks. In Proceedings of the Advances in

Neural Information Processing Systems, pages 3104–3112. Neural
Information Processing Systems Foundation, 2014.

[58] G David Forney. The Viterbi algorithm. Proceedings of the IEEE,
61(3):268–278, 1973.

[59] Debbie Marr, Frank Binns, D Hill, et al. Hyper-threading technology
in the NetBurst® microarchitecture. 14th Hot Chips, 2002.

[60] William Magro, Paul Petersen, and Sanjiv Shah. Hyper-
threading technology: impact on compute-intensive workloads. Intel

Technology Journal, 6(1), 2002.
[61] Nathan Tuck and Dean M. Tullsen. Initial observations of the

simultaneous multithreading Pentium 4 processor. In Proceedings

of the 12th International Conference on Parallel Architectures and

Compilation Techniques, PACT, Washington, DC, USA, 2003. IEEE
Computer Society.

[62] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of

the 22nd Annual International Symposium on Computer Architecture,
ISCA, New York, NY, USA, 1995. ACM.

[63] Susan J Eggers, Joel S Emer, Henry M Levy, et al. Simultaneous
multithreading: A platform for next-generation processors. IEEE

Micro, 17(5):12–19, 1997.
[64] Dean M Tullsen, Susan J Eggers, Joel S Emer, et al. Exploiting

choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor. In Proceedings of the 23rd Annual

International Symposium on Computer Architecture, ISCA, pages
191–202, New York, NY, USA, 1996. ACM.

[65] Wayne Yamamoto and Mario Nemirovsky. Increasing superscalar
performance through multistreaming. In Proceedings of the Working

Conference on Parallel Architectures and Compilation Techniques,
PACT, pages 49–58, Manchester, UK, 1995. IFIP Working Group on
Algol.

[66] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, et al. An
elementary processor architecture with simultaneous instruction
issuing from multiple threads. In Proceedings of the 19th Annual

International Symposium on Computer Architecture, ISCA, pages
136–145, New York, NY, USA, 1992. ACM.

[67] Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, et al. MECAT: fast
mapping, error correction, and de novo assembly for single-molecule
sequencing reads. Nature Methods, 14(11):1072, 2017.

[68] Heng Li and Richard Durbin. Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25(14):1754–
1760, 2009.

[69] Ben Langmead, Cole Trapnell, Mihai Pop, et al. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biology, 10(3), 2009.

[70] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, et al.
Personalized copy number and segmental duplication maps using
next-generation sequencing. Nature Genetics, 41(10):1061–1067,
2009.

[71] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, et al. mrsFAST: a
cache-oblivious algorithm for short-read mapping. Nature Methods,

7(8):576–577, 2010.
[72] Michael C Schatz. CloudBurst: highly sensitive read mapping with

MapReduce. Bioinformatics, 25(11):1363–1369, 2009.
[73] Heng Li, Jue Ruan, and Richard Durbin. Mapping short DNA

sequencing reads and calling variants using mapping quality scores.
Genome Research, 18(11):1851–1858, 2008.

[74] Jeremie S Kim, Damla Senol Cali, Hongyi Xin, et al. GRIM-Filter:
Fast seed location filtering in DNA read mapping using Processing-
in-Memory technologies. BMC Genomics, 2018, in press.

[75] Hongyi Xin, John Greth, John Emmons, et al. Shifted
Hamming distance: a fast and accurate SIMD-friendly filter to
accelerate alignment verification in read mapping. Bioinformatics,
31(10):1553–1560, 2015.

[76] Mohammed Alser, Hasan Hassan, Hongyi Xin, et al. GateKeeper:
a new hardware architecture for accelerating pre-alignment in DNA
short read mapping. Bioinformatics, 33(21):3355–3363, 2017.

[77] Mohammed Alser, Onur Mutlu, and Can Alkan. MAGNET:
understanding and improving the accuracy of genome pre-alignment
filtering. IPSI Transactions on Internet Research, 13(2), 2017.

[78] David Weese, Anne-Katrin Emde, Tobias Rausch, et al. RazerS-
fast read mapping with sensitivity control. Genome Research,
19(9):1646–1654, 2009.

[79] Wan-Ping Lee, Michael P Stromberg, Alistair Ward, et al. MOSAIK:
a hash-based algorithm for accurate next-generation sequencing
short-read mapping. PloS One, 9(3), 2014.

[80] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, et al. SHRiMP:
accurate mapping of short color-space reads. PLoS Computational

Biology, 5(5), 2009.
[81] Matei David, Misko Dzamba, Dan Lister, et al. SHRiMP2: sensitive

yet practical short read mapping. Bioinformatics, 27(7):1011–1012,
2011.

[82] Ayat Hatem, Doruk Bozdağ, Amanda E Toland, et al. Benchmarking
short sequence mapping tools. BMC Bioinformatics, 14(1), 2013.

[83] Corey B Olson, Maria Kim, Cooper Clauson, et al. Hardware
acceleration of short read mapping. In Proceedings of the 20th

Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 161–168. IEEE Computer
Society, 2012.

[84] Nuno A Fonseca, Johan Rung, Alvis Brazma, et al. Tools for mapping
high-throughput sequencing data. Bioinformatics, 28(24):3169–
3177, 2012.

[85] Heng Li and Richard Durbin. Fast and accurate long-read alignment
with Burrows–Wheeler transform. Bioinformatics, 26(5):589–595,
2010.

[86] Enrico Siragusa, David Weese, and Knut Reinert. Fast and accurate
read mapping with approximate seeds and multiple backtracking.
Nucleic Acids Research, 41(7), 2013.

[87] Heng Li. Minimap2: fast pairwise alignment for long DNA sequences.
arXiv Preprint arXiv 1708.01492, 2017.

[88] Heng Li, Bob Handsaker, Alec Wysoker, et al. The sequence
alignment/map format and SAMtools. Bioinformatics, 25(16):2078–
2079, 2009.

[89] Peter JA Cock, Christopher J Fields, Naohisa Goto, et al. The
Sanger FASTQ file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants. Nucleic Acids Research,
38(6):1767–1771, 2009.

[90] William R Pearson and David J Lipman. Improved tools for biological
sequence comparison. Proceedings of the National Academy of

Sciences, 85(8):2444–2448, 1988.
[91] Jared T Simpson, Rachael E Workman, PC Zuzarte, et al. Detecting

DNA cytosine methylation using nanopore sequencing. Nature

Methods, 14(4):407, 2017.

