Digital Design & Computer Arch.

Lecture 10a: Instruction Set
Architectures 11

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
26 March 2021

Assignment: Required Lecture Video

= Why study computer architecture? Why is it important?
= Future Computing Platforms: Challenges & Opportunities

= Required Assignment
o Watch one of Prof. Mutlu’s lectures and analyze either (or both)
o https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
o https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

= Optional Assignment — for 1% extra credit
o Write a 1-page summary of one of the lectures and email us
= What are your key takeaways?
= What did you learn?
= What did you like or dislike?
= Submit your summary to Moodle — Deadline: April 5

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558

Extra Assignment 2: Moore’s Law (I)

= Paper review

= G.E. Moore. "Cramming more components onto integrated
circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: April 5

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (11

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
o Video: https://www.youtube.com/watch?v=tOL6FANAISC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

= The von Neumann model
= LC-3: An example of von Neumann machine

= LC-3 and MIPS Instruction Set Architectures
= LC-3 and MIPS assembly and programming

= Introduction to microarchitecture and single-cycle
microarchitecture

= Multi-cycle microarchitecture

Required Readings

This week
o Von Neumann Model, ISA, LC-3, and MIPS
P&P, Chapters 4, 5
H&H, Chapter 6 (until 6.5)
P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)
o Programming
P&P, Chapter 6
o Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

Next week
o Introduction to microarchitecture and single-cycle microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

What Will We Learn Today?

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

. : Problem
o Data movement instructions -
_ _ Algorithm
a Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes

Recall: The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

Recall: von Neumann Model: Two Key Properties

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data
The interpretation of a stored value depends on the control signals

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions

Recall: Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform

the values of programmer visible state
10

Recall: LLC-3: A von Neumann Machine

Program
Counter

PROCESSOR

BUS

GatePC

Control signals mjm |) //;\\ 8 General Purpose
\ 3 REG Registers (GPR)
Data PCMUX \ o FILE
—— 'Y 7 LD.REG
O} L o\ SRz SRty]
. . \OUT OUT
Finite State Machine Clock — g
or Generating Control Signals A 6
(for G ting Control Signals)
CLK
Instruction FINTE i L
Register IR LD, MACHINE: ALU: 2 InputS, 1 Output
/16 f'\
& N
— ALU operation
CONTROL UNIT PROCESSING
UNIT
GateALU \J GateA L U
Memory Data Ga"’MD?S 6 - Keyboard
Register =% MEMEN,RW / KBDR (data), KBSR (status)
LD.MDR -:@ y MAR ’
Memory Address B 16-bit - _I\D/llgr;iztc()c;ata) DSR (status)
Register addressabl ’
MEMORY INPUT OUTPUT 1 1

Figure 4.3

The LC-3 as an example of the von Neumann model

Recall: The Instruction (Processing) Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O o O

12

L.C-3 and MIPS

Instruction Set Architectures

The Instruction Set

= It defines opcodes, data types, and addressing modes
= ADD and LDR have been our first examples

ADD
OP DR SR1 SR2
1 0 1 0| 00 2
Register mode
LDR
OP DR BaseR offset6
6 3 0 4

Base+offset mode

14

The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 32 bits)
Word- or Byte-addressable

o The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes
Data types
Addressing modes

Problem

Algorithm

Program

ISA

15

Opcodes

Large or small sets of opcodes could be defined

o E.g, HP Precision Architecture: an instruction for A*B+C
o E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

o E.g, VAX ISA: opcode to save all information of one program
prior to switching to another program

Tradeoffs are involved
o Hardware complexity vs. software complexity

In LC-3 and in MIPS there are three types of opcodes
o Operate

o Data movement

a Control

16

Opcodes in L.C-3

1514 1312 11 109 8 7 6 5 4 3 2 1 0

T T T T T T
SR1 0| 00 SR2
1 1 1 1 1 1
T T T T T T T
SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T
SR1 0| 00 SR2
1 1 1 1 1 1
T T T T T T T
SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T T T
p PCoffset9
1 1 1 1 1 1 1 1
T T T T T T T T
000 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
PCoffset11
1 1 1 1 1 1 1 1 1 1
T T T T T T T T
00 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T
PCoffset9
1 1 1 | 1 1 1 1 1
T T T T T T T T T
I PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
PCoffset9
1 1 1 | 1 1 1 1 1
T T T T T T T T
SR 111111
1 1 1 1 1 L 1 1
T T T T T T T T
000 111 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
000000000000
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
PCoffset9
| | 1 1 1 1 1 1 1
T T T T T T T T
SR PCoffset9
1 1 1 | 1 1 1 1 1
T T T T T T T
SR BaseR offseté
1 1 1 1 1 1 1 1
T T T T T T T T T
0000 trapvect8
1 | 1 | 1 1 1 1 1

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: * indicates instructions
that modify condition codes

Opcodes 1n L.C-3b

ADD'
AND’
BR
JMP
JSR(R)
LDB”
Low*
LEA"
RTI
SHF
STB
STW
TRAP

+

XOR

not used

1 14 13 12 11 1 9 7 [-] 5 4 3 2 a
I I I I I I I I T I I
0001 DR SR1 A op.spec
| | | | | | | |] | |
T T T T T T T T T T T
0101 DR SR1 A op.spec
| | | | | | | | | | |
T T T T T 1 1 T 1 T T

0000 njz|p PCoffsel?
| | | | | | | | | | |
I I I T I I I T I T T T
1100 000 BaseR 000000

0100 A operand.specifier
0010 DR BaseR bofiseté
T
0110 DR BaseR offseté
—_—Y————————
1110 DR PCoffset?
1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T
1000 000000000000
| | | 1 | | | | | | | | |
| | | | | | | T | |
1101 DR SR A |D| amounid
1 1 1 l 1 1 1 1 1 1
T T T T T T T T T T T T
0011 SR BaseR bofiseté
| |

T
0111 SR BaseR offseté
| | | | | I | | | | | |
T T T T T T T T T T T T
1111 0000 frapvecta

T T T T T T

18

MIPS Instruction Types

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit
opcode | rs rt immediate

6-bit 5-bit 5-bit 16-bit

opcode |immediate

6-bit 26-bit

R-type

I-type

J-type

19

Funct in M.

PS R-Type Instructions (I)

Opcodeis 0
in MIPS R-
Type
instructions.
Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Description Operation
000000 (0) s11 rd, rt, shamt shift left logical [rd]=[rt] << shamt
000010 (2) srl rd, rt, shamt shift right logical [rd]l=1[rtl>> shamt
000011 (3) sra rd, rt, shamt shift right arithmetic [rd]=10[rt]>> shamt
000100 (4) s1lv rd, rt, rs shift left logical variable [rdl=1[rt]<<[rsly.o
000110 (6) srlvrd, rt, rs shift right logical variable [rdl=1[rt]>> [rsls.g
000111 (7) srav rd, rt, rs shift right arithmetic variable [rd]=10[rtl>> [rsls.o
001000 (8) jrrs jump register PC=1[rs]
001001 (9) jalr rs jump and link register $ra=PC+4, PC=[rs]
001100 (12) syscall system call systemcall exception
001101 (13) break break break exception
010000 (16) mfhi rd move from hi [rd]l="[hi]
010001 (17) mthi rs move to hi Chil=T[rs]
010010 (18) mflo rd move from lo [rdl=1[To]
010011 (19) mtlo rs move to lo [1Tol=1[rs]
011000 (24) | mult rs, rt multiply {(Chil, [10]} =[rs]x[rt]

011001 (25)

multurs, rt

multiply unsigned

{Chid, [Tol} =[rs]Xx[rt]

011010 (26) divrs, rt divide [Tol=1[rs]/[rtl,
[hil=1C[rs]%lrt]
011011 (27) divurs, rt divide unsigned [Tol=T[rsl/[rt],

[hil=T[rs]%lrt]

(continued)

Harris and Harris, Appendix B: MIPS Instructions

20

Funct in MIPS R-Type Instructions (II)

Table B.2 R-type instructions, sorted by funct field—Cont’d

Description Operation

100000 (32) add rd, rs, rt add [rdl=1[rsl+([rt]

100001 (33) addu rd, rs, rt add unsigned [rdl=1[rs]+[rt]

100010 (34) sub rd, rs, rt subtract [rdl=1[rs]-I[rt]

100011 (35) subu rd, rs, rt subtract unsigned [rdl=1L[rs]-[rt]

100100 (36) and rd, rs, rt and [rdl=1[rsl&[rt]

100101 (37) or rd, rs, rt or [rdl=10[rs] | [rt]

100110 (38) xor rd, rs, rt xor [rdl=1[rs]~[rt]

100111 (39) nor rd, rs, rt nor [rd]l=~(Lrs] | [rt])

101010 (42) sltrd, rs, rt set less than [rs]1<[rt]?[rdl=1:1[rd]l=0
101011 (43) slturd, rs, rt set less than unsigned [rs]<[rt]?[rdl=1:[rdl=0

= Find the complete list of instructions in the H&H Appendix B

Harris and Harris, Appendix B: MIPS Instructions 21

Data Types

An ISA supports one or several data types

LC-3 only supports 2's complement integers
o Negative of a 2's complement binary value X = NOT(X) + 1

MIPS supports

o 2's complement integers
o Unsigned integers

o Floating point

Again, tradeoffs are involved
o What data types should be supported and what should not be?

22

Data Type Tradeotts

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions = how close are instrs. to high-level languages

Example: Early RISC architectures vs. Intel 432

o Early RISC machines: Only integer data type

o Intel 432: Object data type, capability based machine
o VAX: Complex types, e.g., doubly-linked list

23

Addressing Modes

An addressing mode is a mechanism for specifying where
an operand is located

There are five addressing modes in LC-3
o Immediate or literal (constant)
The operand is in some bits of the instruction
o Register
The operand is in one of RO to R7 registers
o Three memory addressing modes
PC-relative
Indirect
Base+offset

MIPS has pseudo-direct addressing (for j and jal),
additionally, but does not have indirect addressing

Why Have Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level programming constructs to
hardware: some accesses are better expressed with a different
mode - reduced number of instructions and code size

Array indexing
Pointer-based accesses (indirection)
Sparse matrix accesses

Disadvantages:
o More work for the compiler
a More work for the microarchitect

25

ISA-level Tradeotts: Addressing Modes

Addressing mode specifies how to obtain an operand of an
iInstruction

o Register
o Immediate

o Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design

Wulf, “Compilers and Computer Architecture, ” IEEE Computer 1981
26

Many Tradeoffs in ISA Design

Execution model — sequencing model and processing style
Instruction length

Instruction format

Instruction types

Instruction complexity vs. simplicity

Data types

Number of registers

Addressing mode types and count

Memory organization (address space, addressability, endianness, ...)
Memory access restrictions and permissions

Support for multiple instructions to execute in parallel?

27

Operate Instructions

28

Operate Instructions

In LC-3, there are three operate instructions

o NOT is a unary operation (one source operand)
It executes bitwise NOT

o ADD and AND are binary operations (two source operands)
ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more
o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

o I-type versions (i.e., with one immediate operand) of the R-
type operate instructions

o F-type operations, i.e., floating-point operations

29

NOT 1in LC-3

= NOT assembly and machine code

Register file
LC-3 assembly N
NOT R3, R5 i
R2
. R3 0101000011110000
Field Values R4
OoP DR SR R5 1010111100001111
9 3 5 111111 e
R7
Machine Code Twe 6
OoP DR SR NG N7
NOT ALU
1001 011 001 111111 IE;?VIm

15 12 11 9 8 6 5 0

There is no NOT in MIPS. How is it implemented?

Operate Instructions

We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

Now let us see the versions with one literal (i.e., immediate)
operand

Subtraction is another necessary operation
o How is it implemented in LC-3 and MIPS?

31

Operate Instr. with one Literal in 1.C-3

= ADD and AND

OP DR SR1 |1 Imm5
4 bits 3 bits 3 bits 5 bits

o OP = operation
= E.g., ADD = 0001 (same OP as the register-mode ADD)
o DR « SR1 + sign-extend(immb5)

= E.g., AND = 0101 (same OP as the register-mode AND)
o DR < SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)

ADD wit

ADD assem

bly and machine code

LC-3 assembly

ADD R1, R4, #-2
Field Values
OP DR SR imm5
1 1 4 -2
Machine Code
OoP DR SR Imm5
0001 001 100 11110
15 12 11 9 8 6 4 0

h one Literal in 1.C-3

Register file

Instruction register
ADD R1 R4

-2

0001

001

100|1

1111111111111110
I

RO
R1
R2
R3
R4
R5

0000000000000100

0000000000000110

Bit[5]

DR

SR

33

Instructions with one Literal in MIPS

I-type MIPS Instructions
o 2 register operands and immediate

Some operate and data movement instructions

opcode rs rt imm

6 bits 5 bits 5 bits 16 bits

o opcode = operation
0 'S = source register

o rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.qg., sw)

o imm = Literal or immediate

Add with one Literal in MIPS

Add immediate

MIPS assembly
addi $s0, S$sl, 5
Field Values
op rs rt Imm
0 17 16 5
rt < rs + sign-extend(imm)
Machine Code
op rs rt Imm
001000 | 10001 | 10010 0000 0000 0000 0101

0x22300005

35

Subtract in LC-3

= MIPS assembly

High-level code

MIPS assembly

a=>b + c - d;

= LC-3 assembly

High-level code

add $t0, S$s0, Ssl
sub $s3, $t0, $s2

LC-3 assembly

a=>b + c - d;

= Tradeoff in LC-3
a More instructions
o But, simpler control logic

R1

ADD R2, RO,

NOT R4, R3 2’s
complement
ADD R5, R4, #1]ofR3

ADD R6, R2, RD

Subtract Immediate

= MIPS assembly

High-level code MIPS asse

a =>b - 3; subi S$sli,

Is subi necessary in MIPS?

MIPS assembly

addi S$sl1, S$s0, -3

= LC-3
High-level code LC-3 assembly

a =b - 3; ADD R1, RO, #-3

Data Movement Instructions

and Addressing Modes

38

Data Movement Instructions

In LC-3, there are seven data movement instructions
o LD, LDR, LDI, LEA, ST, STR, STI

Format of load and store instructions
o Opcode (bits [15:12])

o DR or SR (bits [11:9])

o Address generation bits (bits [8:0])

Q

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

= Base+Offset Mode

= Immediate Mode

In MIPS, there are only Base+offset and immediate modes
for load and store instructions

39

PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0

OP DR/SR

PCoffset9

4 bits 3 bits

o OP = opcode
= E.g., LD = 0010
= E.g., ST = 0011

o DR = destination register in LD
o SR = source register in ST

a LD: DR «— Memory[PC" + sign-extend(PCoffset9)]

9 hits

a ST: Memory[PCT + sign-extend(PCoffset9)] « SR

TThis is the incremented PC

40

LD in LLC-3

= LD assembly and machine code

- - Register file
Instruction register
LC-3 assembly 15 - -
IR [0010[010| 110101111 R1
LD RZ ’ Ox1AF D R2 x1AF R2| 0000000000000101 (DR
Incremented PC IR:0] M
] PC |0100 0000 0001 1001 SEXT g)?trgn g R4
Field Values o s
R6
OoP DR PCoffset9 1111111010111
2 2 OX1AF ° \ |
3.DRis
ADD / loaded

®
. 1. Add e #16
Machine Code caicuaton | ©
MAR

OP DR PCoffset9

MEMORY

0010|010 110101111

(2)2. Memory
15 12 11 9 8 0 read
Limitation: The PC-relative addressing mode
The memory address is only +255 to -256 cannot address far away from the
locations away of the LD or ST instruction instruction

41

Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 hits

o OP = opcode
= E.g., LDI = 1010
= E.g., STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR — Memory[Memory[PCT + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PC' + sign-extend(PCoffset9)]] — SR

TThis is the incremented PC

LLDI in LLC-3

LDI assembly and machine code

LC-3 assembly Instruction register ReR%ister lle
IR|1010111001100| R ——
LDI R3, OxI1CC LDI R3 xICC o [—
Incremented PC IR8:0] A3 DR
. PC[0100 1010 0001 1100] @ESQ”' R4
Field Values exteng
R6
OoP DR PCoffset9 xFFCC a7
16
A 3 Ox1CC
ADD
. 1.Addr_ess 18
Machine Code calculation
[MAR_]
OoP DR PCoffset9
3. Load% o
addres X
1010|011 111001100 trom MDR oY e
to MAR 2. Memory 4. Memory
15 12 11 9 8 0 read read

Now the address of the operand can be anywhere in the memory

43

Base+Offset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR | BaseR offset6

4 bits 3 bits 3 bits 6 bits

o OP = opcode
« E.g.,LDR = 0110
= E.g.,, STR = 0111

o DR = destination register in LDR
o SR = source register in STR

o LDR: DR «— Memory[BaseR + sign-extend(offset6)]

a STR: Memory[BaseR + sign-extend(offset6)] < SR

LLDR in LLC-3

= LDR assembly and machine code

Instruction register Register filg
LC-3 assembly 1o 0 RO |
IR | 0110 001 | 010) 011101 R1 | 0000111100001111 | DR
LDR R1, R2? , Ox1D LOR R1 Rz x1D R2 | 0010001101000101 | BgseR
IR[5:0] R3
SEXT Sigtn-d R4
Field Values . RS
R6
OP DR BaseR offset6 x001D R
6 1 2 0x1D \ ore
loaded
1. Add 16 @
. . Address
Machine Code cakcuiation
OoP DR BaseR offset6 MAR MEMORY MDA
0110{001|{010(011101
2. Memory
15 12 11 9 8 6 5 0 read

[Again, the address of the operand can be anywhere in the memory]

45

Base+Offset Addressing Mode in MIPS

In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code MIPS assembly
A[2] = a; SW $s3, 8($s0)
Memory[$s0 + 8] < $s3
Field Values
op rs rt imm
43 16 19 8

iImm is the 16-bit offset, which is sign-extended to 32 bits

46

An Example Program in MIPS and 1.C-3

High-level code

& = A[O0];

= a + b - 5;
B[O0] = c;
MIPS assembly

1w $t0, 0($s0)
add $tl, $t0, $s2
addi $t2, s$tl, -5
SW st2, 0(S$Ssl)

MIPS registers
A = $s0
b = $s2
B = Ssli

LC-3 assembly

LDR R5, RO,
ADD Ro6, RD,
ADD R7, Ro,
STR R7, RI1,

LC-3 registers
A = RO
b = R2
B = R1

#0
R2
#-5
#0

47

Immediate Addressing Mode

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

OP DR PCoffset9
4 bits 3 bits 9 hits

2 OP =1110
o DR = destination register

o LEA: DR « PCT + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

4 A
Answer: Instructions with PC-Relative mode access memory,
but LEA does not > Hence the name Load Effective Address

\. J

TThis is the incremented PC

LEA in LLC-3

LEA assembly and machine code

LC-3 assembly

LEA R5, #-3
Field Values
OoP DR PCoffset9
E 5 Ox1FD
Machine Code
OoP DR PCoffset9
1110|101 111111101
15 12 11 9 8 0

IR

Instruction register Register file
15 0) ———
111 111111101 R1 _—
LEA 5P] e—

Incremented PC

PC

meo) RO |

an-
0100 0000 0001 1001 SEXT S Ra -_

extend - B0900000000010110

DR

49

Immediate Addressing Mode 1n MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the
lower half to 0

= It is used to assign 32-bit constants to a register

High-level code MIPS assembly

a = 0Oxodb5edf3c;

lui $s0, 0Ox6dbe
ori S$s0, 0x4f3c

50

Addressing Example in 1.C-3

What is the final value of R3?
P&P, Chapter 5.3.5

Address 15 14 13 12 11 10 9 8 7 6
1 11

x30F6gl1 1 1 ORO O 1
x30F7 R2<- R1l+14

x30F8 M[x30F4]<- R2

x30rOQg0 [0O [QU [UR0 [UNINU U U U UNR2<- 0

x30FAgQU 0 U 1T N0 [ON0 [UNIQU U 1 U [fR2<- R2+5

x30FBgo 1 [1 N0 1 ONO U [§0O O [| [UNM[R1+14]<- R2
x30FCgl O [OQO [1@l I [[[U I | [R3<- M[M[x30F4]]

R1<- PC-3

51

Addressing Example in 1.C-3
= What is the final value of R3?

P&P, Chapter 5.3.5

Address 15 14 13 12 11 10 9
1

= o0
~J
@)}
W
N
L
\®)
p—
-)

x30F6 R1 = PC - 3 = 0x30F7 — 3 = 0x30F4
x30F7 R2 = R1 + 14 = 0x30F4 + 14 = 0x3102
x30F8 - M[PC - 5] = M[0x030F4] = 0x3102
x30F9 UL _URU L Ul [}l R2=0

x30FA U 1 Uy | Unlgt R2=R2+5=5

x30FB IV (VYA M[R1 + 14] = M[OX30F4 + 14] = M[0x3102] = 5
x30FC -9 R3 = M[M[PC = 9]] = M[M[0x30FD —9]] =

M[M[0x30F4]] = M[0x3102] =5

= The final value of R3is 5

52

Control Flow Instructions

53

Control Flow Instructions

Allow a program to execute out of sequence

Conditional branches and unconditional jumps

o Conditional branches are used to make decisions
E.g., if-else statement

a In LC-3, three condition codes are used

o Jumps are used to implement
Loops
Function calls

2 JMP in LC-3 and j in MIPS

54

Condition Codes in 1.C-3

Each time one GPR (R0-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

a If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and Z are cleared

x86 and SPARC are examples of ISAs that use condition codes

55

Conditional Branches in 1.C-3

BRz (Branch if Zero)

Q

Q

Q

BRz PCoffset9

0000 |n|z|p PCoffset9
4 bits 9 bits
n, z, p = which condition code is tested (N, Z, and/or P)
n, z

N, Z,

PCoffset9 = immediate or constant value

if (n AND N) OR (p AND P) OR (z AND 2))

then PC — PCT + sign-extend(PCoffset9)

Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

TThis is the incremented PC

, p: instruction bits to identify the condition codes to be tested
P: values of the corresponding condition codes

56

Conditional Branches in 1.C-3

= BRz

Yes!

Program 0100 0001 0000 0001
Counter |
BRz Ox0D9 PC | 0100 0000 0010 1000
Instruction
register BR N Z P_PCoffsetd
IR | 0000|0{1{0{011011001
9
Condition
registers 6 @6
N Z P 0000000011011001
0 1 0
e _ ~
Whatifn=z=p = 1?* Hj) H) \ .0 /
(i.e., BRnzp) ”
 andwhatifn e 007 o o
And what if n =z =p = 07?
\ y,

n, z, p are the instruction bits to identify the condition codes to be tested

57

Conditional Branches in MIPS

= beq (Branch if Equal)

Q

beg $s0, S$sl, offset

4 rs rt offset
6 bits 5 bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs ==rt
= then PC — PC' + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

TThis is the incremented PC

58

Branch If Equal in MIPS and L.C-3

MIPS assembly LC-3 assembly

beg $s0, $sl, offset NOT R2, R1

ADD R3, R2, #1 S;g’”git
R4, R3, RO IRE= 1

offset

= This is an example of tradeoff in the instruction set
o The same functionality requires more instructions in LC-3

o But, the control logic requires more complexity in MIPS

59

What We Learned

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

. : Problem
o Data movement instructions -
_ _ Algorithm
a Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes

60

ere Is A Lot More to Cover on ISAs

A\ Note on IS \ Fvolutnon

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:
Limited on-chip and off-chip memory size

Limite piler optimization te hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

P »l o) 14352/15110

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
s * Jan 24,2015

— :
N egie Mellon Computer Architecture
&

ribers

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (htt
Date: Jan 16th, 2015

https: / /www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Many Different ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine

VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, ...

What are the fundamental differences?
o E.g., how instructions are specified and what they do

o E.g., how complex are the instructions
62

Complex vs. Simple Instructions

Complex instruction: An instruction does a lot of work, e.q.
many operations

o Insert in a doubly linked list
o Compute FFT

o String copy
Q

Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

o Add
XOR
Multiply

o o O

063

Complex vs. Simple Instructions

Advantages of Complex instructions

+ Denser encoding = smaller code size > better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware

64

ISA-level Tradeotts: Number of Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler = fewer saves/restores

-- Larger instruction size
-- Larger register file size

65

ere Is A Lot More to Cover on ISAs

A\ Note on IS \ Fvolutnon

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:
Limited on-chip and off-chip memory size

Limite piler optimization te hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

P »l o) 14352/15110

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
s * Jan 24,2015

— :
N egie Mellon Computer Architecture
&

ribers

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (htt
Date: Jan 16th, 2015

https: / /www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

There Is A Lot More to Cover on ISAs

4 P Pl o) 2529/1:30:28 ¢ @O0

Ld

Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

« Jan 23,2015 SHARE

Carnegie Mellon Computer Architecture
22.8K subscribers

Lecture 4. ISA Tradeoffs (cont.) & MIPS ISA

Lecturer: Kevin Chang (
Date: Jan 21th, 2015

https:/ /www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=QKdiZSfwg-
g&list=PL5PHM2jkkXmi5CxxI17b3JCL1 TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHmM2jkkXmi5CxxI17b3]
CL1TWybTDtKg&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHmM2jkkXmi5CxxI17b3]
CL1TWybTDtKg&index=2

https: / /www.youtube.com/onurmutlulectures 68

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.

Lecture 10a: Instruction Set
Architectures 11

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
26 March 2021

