
Digital Design & Computer Arch.

Lecture 10b: Assembly Programming

Prof. Onur Mutlu

ETH Zürich

Spring 2021

26 March 2021

Agenda for Today & Next Few Lectures

◼ LC-3 and MIPS Instruction Set Architectures

◼ LC-3 and MIPS assembly and programming

◼ Introduction to microarchitecture and single-cycle

microarchitecture

◼ Multi-cycle microarchitecture

2

Required Readings

◼ This week
❑ Von Neumann Model, ISA, LC-3, and MIPS

◼ P&P, Chapters 4, 5

◼ H&H, Chapter 6 (until 6.5)
◼ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

◼ H&H, Appendix B (MIPS instructions)

❑ Programming
◼ P&P, Chapter 6

❑ Recommended:H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

◼ Next week
❑ Introduction to microarchitecture and single-cycle microarchitecture

◼ H&H, Chapter 7.1-7.3
◼ P&P, Appendices A and C

❑ Multi-cycle microarchitecture
◼ H&H, Chapter 7.4

◼ P&P, Appendices A and C

3

What Will We Learn Today?

◼ Assembly Programming

❑ Programming constructs

❑ Debugging

❑ Conditional statements and loops in MIPS assembly

❑ Arrays in MIPS assembly

❑ Function calls

◼ The stack

4

Recall: The Von Neumann Model

5

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Recall: LC-3: A Von Neumann Machine

6

Scanned by CamScanner

Recall: The Instruction Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

7

Recall: The Instruction Set Architecture
◼ The ISA is the interface between what the software commands

and what the hardware carries out

◼ The ISA specifies
❑ The memory organization

◼ Address space (LC-3: 216, MIPS: 232)
◼ Addressability (LC-3: 16 bits, MIPS: 32 bits)

◼ Word- or Byte-addressable

❑ The register set
◼ R0 to R7 in LC-3

◼ 32 registers in MIPS

❑ The instruction set
◼ Opcodes
◼ Data types

◼ Addressing modes

8

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Our First LC-3 Program:

Use of Conditional Branches

for Looping

9

An Algorithm for Adding Integers

◼ We want to write a program that adds 12 integers

❑ They are stored in addresses 0x3100 to 0x310B

❑ Let us take a look at the flowchart of the algorithm

10

R1: initial address of integers

R3: final result of addition

R2: number of

integers left to be
added

Check if R2

becomes 0
(done with all
integers?)

Load integer in R4

Accumulate integer value in R3

Increment address R1

Decrement R2

◼ We use conditional branch instructions to create a loop

A Program for Adding Integers in LC-3

11

LEA
AND

AND

ADD

BR z

LDR

ADD

ADD

ADD

BR n z p

R1 = PC✝+ 0x00FF = 3100 // load address0x00FF

5

0

1

-1

-6

R3 = 0 // reset register

R2 = 0 // reset register

R2 = R2 + 12 // initialize counter

BRz (PC ✝ + 5) = BRz 0x300A // check condition

R4 = M[R1 + 0] // load value

R3 = R3 + R4 // accumulate

R1 = R1 + 1 // increment address

R2 = R2 – 1 // decrement counter

BRnzp (PC ✝ – 6) = BRnzp 0x3004 // jump

?

✝This is the incremented PCBit 5 to differentiate both ADD instructions

The LC-3 Data Path Revisited

12

The LC-3 Data Path

13

Global bus

MAR

Multiplexer

Adder

Sign

extension

(Address)

Sign

extension

(Operand)

Condition

codes

We highlight some
data path
components used in
the execution of the
instructions in the
previous slides (not
shown in the
simplified data
path)

Processing

Unit

Control Unit

(Assembly) Programming

14

Programming Constructs

◼ Programming requires dividing a task, i.e., a unit of work
into smaller units of work

◼ The goal is to replace the units of work with programming

constructs that represent that part of the task

◼ There are three basic programming constructs

❑ Sequential construct

❑ Conditional construct

❑ Iterative construct

15

Scanned by CamScanner

Sequential Construct

◼ The sequential construct is used if the designated task can
be broken down into two subtasks, one following the other

16

Scanned by CamScanner

Scanned by CamScanner

Conditional Construct

◼ The conditional construct is used if the designated task
consists of doing one of two subtasks, but not both

❑ Either subtask may be ”do nothing”

❑ After the correct subtask is completed, the program moves
onward

◼ E.g., if-else statement, switch-case statement

17

Scanned by CamScanner

Scanned by CamScanner

Is the condition

“true” or “false”?

Iterative Construct

◼ The iterative construct is used if the designated task
consists of doing a subtask a number of times, but only as

long as some condition is true

◼ E.g., for loop, while loop, do-while loop

18

Scanned by CamScanner

Scanned by CamScanner

Is the condition

still “true”?

Constructs in an Example Program

◼ Let us see how to use the programming constructs in an
example program

◼ The example program counts the number of occurrences of

a character in a text file

◼ It uses sequential, conditional, and iterative constructs

◼ We will see how to write conditional and iterative

constructs with conditional branches

19

Counting Occurrences of a Character

◼ We want to write a program
that counts the occurrences
of a character in a file

❑ Get character-to-search from
the keyboard (TRAP instr.)

❑ The file finishes with the
character EOT (End Of Text)

◼ That is called a sentinel

◼ In this example, EOT = 4

❑ Output result to the monitor
(TRAP instr.)

20

R2: counter

R3: initial address

Input char

Read char from file

Increment address

Read char from file

Check if end of file

Is it the searched char?

Increment R2

Move output to R0

Output counter

Halt the program

Scanned by CamScanner

Programming constructs

TRAP Instruction

◼ TRAP invokes an OS service call

❑ OP = 1111

❑ trapvect8 = service call

◼ 0x23 = Input a character from the keyboard

◼ 0x21 = Output a character to the monitor

◼ 0x25 = Halt the program

21

OP 0 0 0 0 trapvect8

4 bits 8 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

TRAP 0x23;

LC-3 assembly Machine Code

◼ We use conditional branch instructions to create a loops
and if statements

Counting Occurrences of a Char in LC-3

22

R2 = 0 // initialize counter
R3 = M[0x3012] // initial address
TRAP 0x23 // input char to R0
R1 = M[R3] // char from file
R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file

R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from
file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter
R3 = R3 + 1 // increment address
R1 = M[R3] // char from file

BRnzp 0x3004
R0 = M[0x3013]
R0 = R0 + R2
TRAP 0x21
TRAP 0x25

// output counter

to monitor with
TRAP

ASCII TEMPLATE

?

?

AND
LD
TRAP
LDR
ADD
BR
NOT
ADD
ADD
BR
ADD
ADD
LDR
BR
LD
ADD
TRAP
AND

z

n p

n z p

◼ Let us do some reverse engineering to identify conditional
constructs and iterative constructs

Programming Constructs in LC-3

23

R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file

R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from

file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter

BRnzp 0x3004

?

?

while (R1 != EOT) {

...

}

if (R1 == R0) {

… // increment the counter

}

AND
LD
TRAP
LDR
ADD
BR
NOT
ADD
ADD
BR
ADD
ADD
LDR
BR
LD
ADD
TRAP
AND

z

n p

n z p

Debugging

24

Debugging

◼ Debugging is the process of removing errors in programs

◼ It consists of tracing the program, i.e., keeping track of the
sequence of instructions that have been executed and the
results produced by each instruction

◼ A useful technique is to partition the program into parts,
often referred to as modules, and examine the results
computed in each module

◼ High-level language (e.g., C programming language)
debuggers: dbx, gdb, Visual Studio debugger

◼ Machine code debugging: Elementary interactive debugging
operations

25

Interactive Debugging

◼ When debugging interactively, it is important to be able to

❑ 1. Deposit values in memory and in registers, in order to test
the execution of a part of a program in isolation

❑ 2. Execute instruction sequences in a program by using
◼ RUN command: execute until HALT instruction or a breakpoint

◼ STEP N command: execute a fixed number (N) of instructions

❑ 3. Stop execution when desired

◼ SET BREAKPOINT command: stop execution at a specific
instruction in a program

❑ 4. Examine what is in memory and registers at any point in
the program

26

Example: Multiplying in LC-3 (Buggy)

◼ A program is necessary to multiply, since LC-3 does not
have multiply instruction

❑ The following program multiplies R4 and R5

❑ Initially, R4 = 10 and R5 = 3

❑ The program produces 40. What went wrong?

❑ It is useful to annotate each instruction

27

Scanned by CamScanner

R2 = 0 // initialize register

R2 = R2 + R4

R5 = R5 – 1

BRzp 0x3201

HALT // end program

?

AND

ADD

ADD

BR

HALT
z p

Debugging the Multiply Program

◼ We examine the contents of all registers after the execution

of each instruction

28

Scanned by CamScanner

R2 = 0 // initialize register

R2 = R2 + R4

R5 = R5 – 1

BRzp 0x3201

HALT // end program

Scanned by CamScanner

← Correct result
← BR should not be taken if R5 = 0

The branch condition
codes were set wrong.
The conditional branch

should only be taken if R5
is positive

?

Correct instruction:

BRp #-3 // BRp 0x3201

AND

ADD

ADD

BR

HALT
z p

Easier Debugging with Breakpoints

◼ We could use a breakpoint to save some work

◼ Setting a breakpoint in 0x3203 (BR) allows us to examine

the results of each iteration of the loop

29

Scanned by CamScanner

One last question:
Does this program work if
the initial value of R5 is 0?

Scanned by CamScanner

← BR should not be taken if R5 = 0

A good test should also consider the corner cases,
i.e., unusual values that the programmer might fail to consider

R2 = 0 // initialize register

R2 = R2 + R4

R5 = R5 – 1

BRzp 0x3201

HALT // end program

?

AND

ADD

ADD

BR

HALT
z p

Conditional Statements

and Loops in MIPS Assembly

30

◼ In MIPS, we create conditional constructs with conditional
branches (e.g., beq, bne…)

If Statement

31

if (i == j)

f = g + h;

f = f – i;

$s0 = f, $s1 = g

$s2 = h

$s3 = i, $s4 = j

bne $s3, $s4, L1

add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

High-level code MIPS assembly

Branch not equal
Compares two values ($s3=i, $s4=j) and

jumps if they are different

◼ We use the unconditional branch (i.e., j) to skip the ”else”
subtask if the ”if” subtask is the correct one

If-Else Statement

32

if (i == j)

f = g + h;

else

f = f – i;

$s0 = f, $s1 = g,

$s2 = h

$s3 = i, $s4 = j

bne $s3, $s4, L1

add $s0, $s1, $s2

j done

L1: sub $s0, $s0, $s3

done:

High-level code MIPS assembly

1. Compare two values ($s3=i, $s4=j)

and, if they are different, jump to L1, to

execute the “else” subtask

2. Jump to done, after

executing the “if” subtask

◼ As in LC-3, the conditional branch (i.e., beq) checks the condition
and the unconditional branch (i.e., j) jumps to the beginning of

the loop

While Loop

33

// determines the power

// of 2 equal to 128

int pow = 1;

int x = 0;

while (pow != 128) {

pow = pow * 2;

x = x + 1;

}

$s0 = pow, $s1 = x

addi $s0, $0, 1

add $s1, $0, $0

addi $t0, $0, 128

while: beq $s0, $t0, done

sll $s0, $s0, 1

addi $s1, $s1, 1

j while

done:

High-level code MIPS assembly

1. Conditional branch to check if the

condition still holds

2. Unconditional branch to the

beginning of the loop

◼ The implementation of the ”for” loop is similar to the
”while” loop

For Loop

34

// add the numbers from 0 to 9

int sum = 0;

int i;

for (i = 0; i != 10; i = i+1)

{

sum = sum + i;

}

$s0 = i, $s1 = sum

addi $s1, $0, 0

add $s0, $0, $0

addi $t0, $0, 10

for: beq $s0, $t0, done

add $s1, $s1, $s0

addi $s0, $s0, 1

j for

done:

High-level code MIPS assembly

1. Conditional branch to check if the

condition still holds

2. Unconditional branch to the

beginning of the loop

◼ We use slt (i.e., set less than) for the ”less than” comparison

For Loop Using SLT

35

// add the powers of 2 from 1

// to 100

int sum = 0;

int i;

for (i = 1; i < 101; i = i*2)

{

sum = sum + i;

}

$s0 = i, $s1 = sum

addi $s1, $0, 0

addi $s0, $0, 1

addi $t0, $0, 101

loop: slt $t1, $s0, $t0

beq $t1, $0, done

add $s1, $s1, $s0

sll $s0, $s0, 1

j loop

done:

High-level code MIPS assembly

Set less than
$t1 = $s0 < $t0 ? 1:0

Shift left logical

Initialize sum

and i

Arrays in MIPS

36

Arrays

◼ Accessing an array requires loading the base address into a
register

◼ In MIPS, this is something we cannot do with one single
immediate operation

◼ Load upper immediate + OR immediate

37

array[4]

array[3]

array[2]

array[1]

array[0]0x12348000

0x12348004

0x12348008

0x1234800C

0x12340010

lui $s0, 0x1234

ori $s0, $s0, 0x8000

◼ We first load the base address of the array into a register
(e.g., $s0) using lui and ori

Arrays: Code Example

38

int array[5];

array[0] = array[0] * 2;

array[1] = array[1] * 2;

array base address = $s0

Initialize $s0 to 0x12348000

lui $s0, 0x1234

ori $s0, $s0, 0x8000

lw $t1, 0($s0)

sll $t1, $t1, 1

sw $t1, 0($s0)

lw $t1, 4($s0)

sll $t1, $t1, 1

sw $t1, 4($s0)

High-level code MIPS assembly

Function Calls

39

Function Calls

◼ Why functions (i.e., procedures)?

❑ Frequently accessed code

❑ Make a program more modular and readable

◼ Functions have arguments and return value

◼ Caller: calling function

❑ main()

◼ Callee: called function

❑ sum()

40

void main()

{

int y;

y = sum(42, 7);

...

}

int sum(int a, int b)

{

return (a + b);

}

Function Calls: Conventions

◼ Conventions

❑ Caller

◼ passes arguments

◼ jumps to callee

❑ Callee

◼ performs the procedure

◼ returns the result to caller

◼ returns to the point of call

◼ must not overwrite registers or memory needed by the caller

41

Function Calls in MIPS and LC-3

◼ Conventions in MIPS and LC-3

❑ Call procedure

◼ MIPS: Jump and link (jal)

◼ LC-3: Jump to Subroutine (JSR, JSRR)

❑ Return from procedure

◼ MIPS: Jump register (jr)

◼ LC-3: Return from Subroutine (RET)

❑ Argument values

◼ MIPS: $a0 - $a3

❑ Return value

◼ MIPS: $v0

42

◼ jal jumps to simple() and saves PC+4 in the return address
register ($ra)

❑ $ra = 0x00400204

❑ In LC-3, JSR(R) put the return address in R7

◼ jr $ra jumps to address in $ra (LC-3 uses RET instruction)

Function Calls: Simple Example

43

int main() {

simple();

a = b + c;

}

void simple() {

return;

}

0x00400200 main: jal simple

0x00400204 add $s0,$s1,$s2

...

0x00401020 simple: jr $ra

High-level code MIPS assembly

Function Calls: Code Example

44

$s0 = y

main:

...

addi $a0, $0, 2 # argument 0 = 2

addi $a1, $0, 3 # argument 1 = 3

addi $a2, $0, 4 # argument 2 = 4

addi $a3, $0, 5 # argument 3 = 5

jal diffofsums # call procedure

add $s0, $v0, $0 # y = returned value

...

$s0 = result

diffofsums:

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result=(f + g) - (h + i)

add $v0, $s0, $0 # put return value in $v0

jr $ra # return to caller

int main()

{

int y;

...

// 4 arguments

y = diffofsums(2, 3, 4, 5);

...

}

int diffofsums(int f, int g,

int h, int i)

{

int result;

result = (f + g) - (h + i);

// return value

return result;

}

High-level code MIPS assembly Argument values

Return value

Return address

◼ What if the main function was using some of those

registers?

❑ $t0, $t1, $s0

◼ They could be overwritten by the function

◼ We can use the stack to temporarily store registers

Function Calls: Need for the Stack

45

diffofsums:

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result=(f + g) - (h + i)

add $v0, $s0, $0 # put return value in $v0

jr $ra # return to caller

MIPS assembly

The Stack

◼ The stack is a memory area used to save local variables

◼ It is a Last-In-First-Out (LIFO) queue

◼ The stack pointer ($sp) points to the top of the stack

❑ It grows down in MIPS

46

Data

7FFFFFFC 12345678

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address

$sp 7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address Data

12345678

$sp

AABBCCDD

11223344

Two words

pushed on

the stack

◼ Saving and restoring all registers requires a lot of effort
◼ In MIPS, there is a convention about temporary registers (i.e.,

$t0-$t9): There is no need to save them
❑ Programmers can use them for temporary/partial results

The Stack: Code Example

47

diffofsums:

addi $sp, $sp, -12 # allocate space on stack to store 3 registers

sw $s0, 8($sp) # save $s0 on stack

sw $t0, 4($sp) # save $t0 on stack

sw $t1, 0($sp) # save $t1 on stack

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result=(f + g) - (h + i)

add $v0, $s0, $0 # put return value in $v0

lw $t1, 0($sp) # restore $t1 from stack

lw $t0, 4($sp) # restore $t0 from stack

lw $s0, 8($sp) # restore $s0 from stack

addi $sp, $sp, 12 # deallocate stack space

jr $ra # return to caller

MIPS assembly

◼ Temporary registers $t0-$t9 are nonpreserved registers. They
are not saved, thus, they can be overwritten by the function

◼ Registers $s0-$s7 are preserved (saved; callee-saved) registers

MIPS Stack: Register Saving Convention

48

diffofsums:

addi $sp, $sp, -4 # allocate space on stack to store 1 register

sw $s0, 0($sp) # save $s0 on stack

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result=(f + g) - (h + i)

add $v0, $s0, $0 # put return value in $v0

lw $s0, 0($sp) # restore $s0 from stack

addi $sp, $sp, 4 # deallocate stack space

jr $ra # return to caller

MIPS assembly

Lecture Summary

◼ Assembly Programming

❑ Programming constructs

❑ Debugging

❑ Conditional statements and loops in MIPS assembly

❑ Arrays in MIPS assembly

❑ Function calls

◼ The stack

49

Digital Design & Computer Arch.

Lecture 10b: Assembly Programming

Prof. Onur Mutlu

ETH Zürich

Spring 2021

26 March 2021

