Digital Design & Computer Arch.

Lecture 11: Microarchitecture

Fundamentals

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
1 April 2021

Readings

This week
o Introduction to microarchitecture and single-cycle
microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Next week
o Pipelining
H&H, Chapter 7.5
= Pipelining Issues
H&H, Chapter 7.7, 7.8.1-7.8.3

Agenda for Today & Next Few Lectures

= Instruction Set Architectures (ISA): LC-3 and MIPS
s Assembly programming: LC-3 and MIPS

= Microarchitecture (principles & single-cycle uarch)
= Multi-cycle microarchitecture

= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution

Recall: The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

Recall: LLC-3: A von Neumann Machine

PROCESSOR BUS

3 REG
DR—“> FILE

LD.REG —>|

3, | SR2 SR1 3
SR2 -4 OUT OUuT << SR1

/46 /18
CLK —>
16, .
7 4 . y
R—>| FINITE '\SE@

R

STATE »
l IR LD.IR |MACHINE ’16 !
[
2 \e V a
/|16 7

ALUK \ ALY

CONTROL UNIT PROCESSING
UNIT

GateALU |

MEMORY INPUT

OUTPUT
Figure 4.3 The LC-3 as an example of the von Neumann model

Recall: The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O o O

Recall: The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 8 bits)
Word- or Byte-addressable

a The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes

Data types

Addressing modes
Semantics of instructions

Problem

Algorithm

Program

ISA

Microarchitecture

An implementation of the ISA

How do we implement the ISA?
o We will discuss this for many lectures

There can be many implementations of the same ISA

o MIPS R2000, R10000, ...
o x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,

Coffee Lake, Comet Lake, ... AMD K5, K7, K9, Bulldozer, BobCat, ...

IBM POWER 4, 5, 6, 7, 8, 9, 10

Alpha 21064, 21164, 21264, 21364, ...

O 0O O O

ARM Cortex-M*, ARM Cortex-A*, NVIDIA Denver, Apple A*, M1, ...

(A Bit More on)
ISA Design and Tradeofts

The von Neumann Model/ Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program

o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing

10

Recall: The Instruction Cycle

a0 DECODE
a0 EVALUATE ADDRESS

a FETCH OPERANDS

0 FXECUTE Interpret memory value as Data

o STORE RESULT

Whether a value fetched from memory is interpreted as an instruction depends on
when that value is fetched in the instruction processing cycle.

11

The von Neumann Model/ Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions

12

The von Neumann Model/ Architecture

Recommended reading

o Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Required reading

o Patt and Patel book, Chapter 4, "The von Neumann Model”

Stored program

Sequential instruction processing

13

The Von Neumann Model (of a Computer)

INPUT OUTPUT
Keyboard, Monitor,
Mouse, Printer,
Disk... Disk...

14

The Von Neumann Model (of a Computer)

Q: Is this the only way that a computer can process
computer programs?

The von Neumann Model

In order to build a computer, we need an execution model for
processing computer programs
John von Neumann proposed a fundamental model in 1946

The von Neumann Model consists of 5 components
a Memory (stores the program and data)

a Processing unit

a Input

a Output

o Control unit (controls the order in which instructions are carried out)

Throughout this lecture, we will examine two examples of the
von Neumann model

o LC-3 Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
a MIPS of an electronic computing instrument,” 19486.

A: No.

Qualified Answer: No. But, it has been the dominant way
o i.e., the dominant paradigm for computing
o for N decades

Let's examine a completely different model for processing computer programs 13

The Dataflow Execution Model
ot a Computer

The Datatlow Model (of a Computer)

Von Neumann model: An instruction is fetched and
executed in control flow order

o As specified by the program counter (instruction pointer)
o Sequential unless explicit control flow instruction

Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no program counter (instruction pointer)
o Instruction ordering specified by data flow dependence

Each instruction specifies "who"” should receive the result
An instruction can “fire” whenever all operands are received

o Potentially many instructions can execute at the same time

Inherently more parallel
17

Von Neumann vs. Dataflow

Consider a Von Neumann program
o What is the significance of the program order?
o What is the significance of the storage locations?

v<=a+b;
w<=b *2;
X<=V-W
y<=V+WwW
z<=x*y

Sequential

d

S

;
5

; Dataflow

Z

Which model is more natural to you as a programmer?

18

More on Dataflow

In a dataflow machine, a program consists of dataflow
nodes

o A dataflow node fires (fetched and executed) when all it
inputs are ready

i.e. when all inputs have tokens

Dataflow node and its ISA representation

\\’/ | *¥ R ARG1 R ARG2 Dest. Of Resuit

19

Example Dataflow Nodes

X |
* Conditional F
(=)= (=)
I 7
m\¥ g
* Relational
=
TRUE

*Barrier Synch i t t
| =

R ? %

20

A Simple Example Datatlow Program

OuT

21

ISA-level Tradeott: Program Counter

Do we need a Program Counter (PC or IP) in the ISA?

o Yes: Control-driven, sequential execution
An instruction is executed when the PC points to it

PC automatically changes sequentially (except for control flow
instructions)

o No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available (dataflow)

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?

22

ISA vs. Microarchitecture Level Tradeoft

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a dataflow execution order

Microarchitecture: How the underlying implementation
actually executes instructions

o Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA
23

Let’s Get Back to the von Neumann Model

= But, if you want to learn more about dataflow...

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= A later lecture

= If you are really impatient:
o http://www.youtube.com/watch?v=D2uue?izU2c

a http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt

24

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

Lecture Video on Dataflow Model

> Ml o) 4227/1:2500 «0c @ & (& O 3

Carnegie Mellon - Parallel Computer Architecture 2012-Onur Mutlu - Lec 22 - Dataflow |

3,627 views * Apr 21,2013 il 24 &l o) SHARE =i SAVE

1+ Carnegie Mellon Computer Architecture

1.79K subscribers SUBSCRIBED [:l

http://www.youtube.com/watch?v=D2uue7izU2c 25

http://www.youtube.com/watch?v=D2uue7izU2c

The von Neumann Model

All major /nstruction set architecturestoday use this model
o x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, ...

Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
s very different

o Pipelined instruction execution: Intel 80486 uarch
o Multiple instructions at a time: Intel Pentium uarch
o Out-of-order execution: Intel/ Pentium Pro uarch

o Separate instruction and data caches

But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

o Difference between ISA and microarchitecture

26

What 1s Computer Architecture?

ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

Traditional (ISA-only) definition: “The term
architectureis used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdah/, IBM Journal of R&D, April 1964

27

ISA vs. Microarchitecture

s ISA

o Agreed upon interface between software
and hardware
= SW/compiler assumes, HW promises

Problem

a What the software writer needs to know Algorithm

to write and debug system/user programs Program
ISA

= Microarchitecture
o Specific implementation of an ISA
o Not visible to the software

= Microprocessor
o ISA, uarch, circuits
o “Architecture” = ISA + microarchitecture

28

ISA vs. Microarchitecture

What is part of ISA vs. Uarch?
o Gas pedal: interface for “acceleration”
o Internals of the engine: implement “acceleration”

Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

o Add instruction vs. Adder implementation

Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

o X86 ISA has many implementations:

Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, Coffee Lake, Comet Lake, AMD K5,
K7, K9, Bulldozer, BobCat, ...

Microarchitecture usually changes faster than ISA

o Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs

o Why?
29

ISA

Instructions

o Opcodes, Addressing Modes, Data Types

o Instruction Types and Formats . |

o Registers, Condition Codes (Inte,

Memory

o Address space, Addressability, Alignment

o Virtual memory management Intel® 64 and IA-32 Architectures

: : I

Call, Interrupt/Exception Handling >oftware Developer's Manua
- . - . Volume 1:

Access Control, Priority/Privilege Basic Architecture

I/O: memory-mapped vs. instr.

Task/thread Management

Power and Thermal Management
Multi-threading support, Multiprocessor support

30

Microarchitecture

Implementation of the ISA under specific design constraints
and goals

Anything done in hardware without exposure to software
Pipelining

In-order versus out-of-order instruction execution

Memory access scheduling policy

Speculative execution

Superscalar processing (multiple instruction issue?)

Clock gating

Caching? Levels, size, associativity, replacement policy
Prefetching?

Voltage/frequency scaling?

Error correction?

c 0o 0o 0o o0 0 o0 o0 o0

31

Property ot ISA vs. Uarch?

ADD instruction’s opcode

Bit-serial adder vs. Ripple-carry adder

Number of general purpose registers

Number of cycles to execute the MUL instruction
Number of ports to the register file

Whether or not the machine employs pipelined instruction
execution

Remember

o Microarchitecture: Implementation of the ISA under specific
design constraints and goals

32

Design Point

A set of design considerations and their importance
o leads to tradeoffs in both ISA and uarch

Example considerations: Problem

o Cost Algorithm

a Performance Program

o Maximum power consumption, thermal ISA

o Energy consumption (battery life) Microarchitecture
o Availability Circuits

o Reliability and Correctness Electrons

o Time to Market

o Security, safety, predictability, ...

Design point determined by the “Problem” space
(application space), the intended users/market

Application Space

Dream, and they will appear...

Other examples of the application space that continue to
drve the need for unique design points are the following:

1) u::h as those whose computa-
fions control a.rpmrer plant:; detcmum: where to

OMIMEerce]]115]]1&‘:55;
pplications, such as those
@ik o ﬂl payrolls, IRS activity,
and vanous persnnnelrcmrdkeepmg whether the per-
sonnel are employees, students, or voters;

4 h as high-speed routing of

EIne p iels, al enable the connection of your
WIwinils m o take ad Hﬂm.gﬂﬂf'ttﬂmtﬂr[ﬂt
d a. real tme) apphications that
require the result of a computation by a certain critical
deadline;

6) jembedded apphications fwhere the processor 1s a com-
ponent of a larger system that 15 used to solve the (usu-

ally) dedicated apphication;
I) uch as those that decode video and
audio files;

8) random software packages that desktop users would
like to mn on their PCs.

Each of these applhcation areas has a very different set of
charactenistics. Each apphication area demands a different set
of tradeoffs to be made mm specifying the microprocessor to
do the job.

3) &

Patt, “Requirements, bottlenecks,

and good fortune: agents for
microprocessor evolution,”
Proc. of the IEEE 2001.

Many other workloads:

Genome analysis
Machine learning
Robotics
Web search
Graph analytics

34

Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.

SAFARI 3

Tradeotfs: Soul of Computer Architecture

s [SA-level tradeoffs
s Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

o Why art?

36

Why Is It (Somewhat) Art?

New demands
from the top

(Look Up) New demands and

personalities of users
/ (Look Up)

Runtime System

ISA

New issues and
capabilities

at the bottom
(Look Down)

= We do not (fully) know the future (applications, users, market)

37

Why Is It (Somewhat) Art?

Changing demands
at the top
(Look Up and Forward)

Changing demands and
personalities of users
/ (Look Up and Forward)

Runtime System

ISA

Changingissues and
capabilities

at the bottom

(Look Down and Forward)

= And, the future is not constant (it changes)!

38

Analogue from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a mill be later used as a theater + restaurant
+ conference room?

39

Miuhle Tiefenbrunnen

= Originally built as a brewery in 1889, part of it was
converted into a mill in 1913, and the other part into a cold
store

= Today is a center for a variety of activities: theater,
conferences, restaurants, shops, museum...

Brewery in 1900

http:/mww. mue hle-tiefe nbrunnen.ch/ 40

Another Example (I)

Photo credit: Prof. Can Alkan

Photo credit: Prof. Can Alkan

42

By Roland zh (Own work) [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

43

https://creativecommons.org/licenses/by-sa/3.0)

Implementing the ISA:
Microarchitecture Basics

Now That We Have an ISA

How do we implement it?

i.e., how do we design a system that obeys the
hardware/software interface?

Aside: “"System” can be solely hardware or a combination of
hardware and software

o “Translation of ISAs”

o A virtual ISA can be converted by “software” into an
implementation ISA

We will assume “hardware” implementation for most lectures

45

How Does a Machine Process Instructions?

What does processing an instruction mean?
We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an
instruction is processed

&

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

Processing an instruction: Transforming AS to AS’ according

to the ISA specification of the instruction
46

The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

47

Recall: The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

48

Recall: Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform

the values of programmer visible state
49

The “Process Instruction™ Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS - AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 > AS+MS2 - AS+MS3 > AS’ (take multiple

clock cycles to transform AS to ASY) =

A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute

= Only combinational logic is used to implement instruction
execution
o Mo intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginnin@of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

51

A Very Basic Instruction Processing Engine

= Single-cycle machine

AS’ AS

Sequential
Logic
(State)

Combinational
Logic

= What is the clock cycle time determined by?

= What is the critical path (i.e., longest delay path) of the
combinational logic determined by?

AS: Architectural State >2

Single-cycle vs. Multi-cycle Machines

Single-cycle machines

a

Each instruction takes a single clock cycle

o All state updates made at the end of an instruction’s execution

a

Big disadvantage: The slowest instruction determines cycle time >
long clock cycle time

Multi-cycle machines

a

a

Q

Instruction processing broken into multiple cycles/stages
State updates can be made during an instruction’s execution

Architectural state updates made at the end of an instruction’s
execution

Advantage over single-cycle: The slowest “stage” determines cycle time

Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

53

Instruction Processing “Cycle”

Instructions are processed under the direction of a “control
unit” step by step.

Instruction cycle: Sequence of steps to process an instruction
Fundamentally, there are six steps:

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

Not all instructions require all six steps (see P&P Ch. 4)
54

Recall: The Instruction Processing “Cycle”

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O o O

55

Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

o All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Multi-cycle machine:

o All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

o In fact, each phase can take multiple clock cycles to complete

56

Instruction Processing Viewed Another Way

Instructions transform Data (AS) to Data’ (AS’)

This transformation is done by functional units
o Units that “operate” on data

These units need to be told what to do to the data

An instruction processing engine consists of two components
o Datapath: Consists of hardware elements that deal with and
transform data signals
functional units that operate on data

hardware structures (e.g., wires, muxes, decoders, tri-state bufs)
that enable the flow of data into the functional units and registers

storage units that store data (e.g., registers)
o Control logic: Consists of hardware elements that determine

control signals, i.e., signals that specify what the datapath
elements should do to the data

57

Recall: LLC-3: A von Neumann Machine

Program
Counter

PROCESSOR

BUS

GatePC

Control signals mjm |) //;\\ 8 General Purpose
\ 3 REG Registers (GPR)
Data PCMUX \ o i
—— "W LD.REG
L L o\ SRz SRty]
. . \OUT OUT
Finite State Machine Clock —_ g
(for Generating Control Signals) fie s
CLK
Instruction FINTE i L
Register IR LD, MACHINE: ALU: 2 InputS, 1 Output
/16 f'\
& N
— ALU operation
CONTROL UNIT PROCESSING
UNIT
GateALU \J GateA L U
Memory Data Ga"’MD?S 6 - Keyboard
Register =% MEMEN,RW / KBDR (data), KBSR (status)
LD.MDR -:@ y MAR ’
Memory Address B 16-bit - _I\D/llgr;iztc()c;ata) DSR (status)
Register addressabl ’
MEMORY INPUT OUTPUT 5 8

Figure 4.3

The LC-3 as an example of the von Neumann model

Single-cycle vs. Multi-cycle: Control & Data

Single-cycle machine:

o Control signals are generated in the same clock cycle as the
one during which data signals are operated on

o Everything related to an instruction happens in one clock cycle
(serialized processing)

Multi-cycle machine:

o Control signals needed in the next cycle can be generated in
the current cycle

o Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

See P&P Appendix C for more (microprogrammed multi-

cycle microarchitecture)
59

Many Ways of Datapath and Control Design

There are many ways of designing the datapath and control
logic

Example ways
o Single-cycle, multi-cycle, pipelined datapath and control
o Single-bus vs. multi-bus datapaths

o Hardwired/combinational vs. microcoded/microprogrammed
control

Control signals generated by combinational logic versus
Control signals stored in a memory structure

Control signals and structure depend on the datapath
design

60

Flash-Forward: Performance Analysis

= Execution time of a single instruction
o {CPI} x {clock cycle time} CPI: Cycles Per Instruction

= Execution time of an entire program

o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single-cycle microarchitecture performance
o CPI =1
o Clock cycle time = long

= Multi-cycle microarchitecture performance

o CPI = different for each instruction In multi-cycle, we have
= Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently

01

A Single-Cycle Microarchitecture
A Closer 1ook

Remember...

= Single-cycle machine

AS’ AS

Sequential
Logic
(State)

Combinational
Logic

AS: Architectural State 63

Data and control inputs

Instruction
address

Instruction
memory

Instruction

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Let’s Start with the State Elements

;5| Read
register 1
Read
5 | Read data 1
“| register 2
5 ~ Registers
3 \r/g/rl_te
gister
Read ,
Write data 2
—
data
‘ RegWrite
‘ MemWrite
»| Address Read
data
Write Data
| data memory
MemRead

MIPS State Elements

CLK CLK CLK
| | | |
PC'ﬁiPC WE3 WE
= [<A RrD= 75| A ol
32 32 - A2 RD2 |-
Instruction ° 32 ="~ RDI=%
Memory Data
-1 A3 Reqi Memory
egister
q; WD3 File q; WD

o Program counter:
32-bit register
o Instruction memory:

Takes input 32-bit address A and reads the 32-bit data (i.e., instruction)
from that address to the read data output RD.

o Register file:
The 32-element, 32-bit register file has 2 read ports and 1 write port
o Data memory:

If the write enable, WE, is 1, it writes 32-bit data WD into memory location
at 32-bit address A on the rising edge of the clock.

If the write enable is 0, it reads 32-bit data from address A onto RD.
This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)

For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges

Single-cycle, synchronous memory

o Contrast this with memory that tells when the data is ready

i.e., Ready signal: indicating the read or write is done
0 See P&P Appendix C (LC3-b) for multi-cycle memory

066

Instruction Processing

= 5 generic steps (P&H book)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)

Q
o Execute/Evaluate memory address (EX/AG)
o Memory operand fetch (MEM)

Q

Store/writeback result (WB)

PC =] Address

Instruction
memory

Instruction

L

Data

Register #

Registers

ister #

Register #

gALU

| -

Address

Data
memory

**Base

d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

67

We Need

to Provide the

Datapath+Control Logic

to Execute Al

|1 ISA Instructions

What Is To Come: The Full MIPS Datapath

Instruction [25-0] | @\

Jump address [31- 0]
\ \
26 @28 0 I_> 1
PC+4 [31-28] "Lj' '\lf
\ X X
" ALU
>Add result 1 0
> Add
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address . 9 Read
Instruction [20—16] Read data 1
: register 2 bcond
Instr[gcitloor} l—» 0 ~ Registers Read >ALU ALU
) M Write data 2 >0 result »| Address Read|
Instruction u register M data M
memory Instruction [15-11] | X Write ;J u
1 d Data X
ata 1 memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{2

N Tlextend | M

Instruction [5-0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]

JAL, JR, JALR omitt&d

Another Complete Single-Cycle Processor

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.

Single-Cycle Datapath for
Arithmetic and 1 ogical Instructions

R-Type ALU Instructions

= R-type: 3 register operands

MIPS assembly (e.g., register-register signed addition)
add $s0, S$sl, S$s2 #Ss0=rd, S$sl=rs, Ss2=rt

Machine Encoding

0 rs t rd 0 |add@2) | R-Type

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

= Semantics

If MEM[PC] == add rd rs rt
GPR[rd] < GPR[rs] + GPR|rt]
PC« PC+4

72

(R-Type) ALU Datapath

>Add

4 —
25:21 Read
4| Read register 1
—|PC address g Read
20:1d Read data 1
register 2
Instruction ~ Registers >ALU ALU
. Lo Write result
In;tg::g&n register Read
Write data 2
"| data

|F ID EX MEM| WB

if MEM[PC] == ADDrd rs rt
GPR[rd] <~ GPR]rs] + GPR|rt]
PC«<PC+4

Combinational
state update logic

73

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Example: ALU Design

= ALU operation (F,.,) comes from the control logic

P T : Function

N A|B

A0

IN-1]|S
\ w N [B) /L?F.
10 111 SLT

I-Type ALU Instructions

= I-type: 2 register operands and 1 immediate

MIPS assembly (e.g., register-immediate signed addition)

addi S$sO0,

Ssl,

5 #Ss0=rt, Ssl=rs

Machine Encoding

addi (0) rs rt immediate
6 bits 5 hits 5 bits 16 bits
= Semantics

If MEM[PC] == addi rs rt immediate
PC<« PC+4

GPR[rt] « GPR]rs] + sign-extend(immediate)

I-Type

75

Datapath for R- and I-Type ALU Insts.

4 —p
Read Read
ea register 1
—{PC address theafl
Read aa
register 2
Instruction Registers >A|—U ALU

_ : Write result
Instruction register Read
memor i
y | write data 2
| data

\ | Sign
| 'W

IF ID EX MEM| WB
if MEM[PC] == ADDI rt rs immediate

GPR[rt] <— GPR[rs] + sign-extend (immediate) Combinational _
PC < PC+4 state-updatelogic—

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Recall: ADD with one Literal in 1.C-3

ADD assembly and machine code

LC-3 assembly Register file
RO
ADD Rl / R4 ’ #—2 R1 | 0000000000000100 DR
Instruction register "
ADD Ri R4 -2 R3
F|e|d Va|ueS IR | 0001]001] 1001 11;0 R4 | 0000000000000110 |SR
3 R5
. Sign-
OoP DR SR Imm>S extend :j
1 1 4 1 -2
1111111111111110
I
. Bit[5]
Machine Code
OoP DR SR imm5

0001 | 001 100 {1 11110

15 12 11 9 8 6 5 4 0

Single-Cycle Datapath for

Data Mowvement Instructions

lL.oad Instructions

= Load 4-byte word
MIPS assembly

lw S$s3, 8($s0) #$sO=rs, Ss3=rt

Machine Encoding

op rs=base rt imm=offset
lw (35) | base rt offset
= Semantics
If MEM[PC] == lw rt offset,; (base)
PC« PC+4

EA = sign-extend(offset) + GPR(base)
GPR]rt] « MEM]| translate(EA)]

I-Type

79

LW Datapath

4 w—
Read
—>PC address
Instruction
Instruction
memory

.

Read
register 1

Read
register 2

Registers

Write
register

Write
data

Read

data 1

Read
data 2

if MEM[PC]==LW rt offset, (base)
EA = sign-extend(offset) + GPR[base]

GPR[rt] «~ MEM][translate(EA)]

PC<«PC+4

—>| Address Read|
ALU aLU data
resul
: — | write Data
data memory
IF |[iID |leEx |[mEM|wB
Combinational

state update logic so

Store Instructions

= Store 4-byte word

MIPS assembly

SW $s3, 8($s0) #SsO=rs, S$s3=rt

Machine Encoding

op rs=base rt imm=offset
sw (43) | base rt offset
= Semantics
If Mem[PC] == sw rt offset,; (base)
PC« PC+4

EA = sign-extend(offset) + GPR(base)
MEM[translate(EA) | < GPR[rt]

I-Type

81

SW Datapath

4 w—
Read
—>PC address
Instruction
Instruction
memory

.

Read
register 1

Read
register 2

Registers

Write
register

Write
data

Read

data 1

Read
data 2

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]

MEM([translate(EA)] <~ GPR]rt]

PC<«PC+4

—>| Address Read|
ALU aLU data
resul
: — | write Data
data memory
IF |[iID |leEx |[mEM|wB
Combinational

state update logic s>

[Load-Store Datapath

4 —
Read
—> PC[= address
Instruction
Instruction
memory

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALLRIGHTS RESERVED.]

Read
register 1 Read
Read data 1
register 2
. Registers Read
Write R Address d
register Read ata
, data2 [
Write
Data
data
. memory
Write
| data
16 _ 32
\ .| Sign
N | extend
83

Datapath for Non-Control-Flow Insts.

v

4 ey
Read Read
| €3 register 1
—|PC address g theald
Read ata
register 2
Instruction . Registers
_ Write R Address I?jead
Instruction register Read ata
memor [
y | write data 2 Sata
| data
) memory
Write
isltype | o
16 _ 32
\ | Sign
N lextend
N
84

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

Jump Instruction

= Unconditional branch or jump

J target

J (2)

Immediate

6 bits

o 2 = opcode

26 bits

o immediate (target) = target address

= Semantics

if MEM[PC]== j immediate,¢

target = { PC t[31:28], immediate,¢, 2’ b00 }

PC <« target

J-Type

TThis is the incremented PC

86

Unconditional Jump Datapath

4 —
ALU operation
Read | Read 3 P
> »| nEa " | register 1 MemWrite
PCHT address 9 theaf .
Read ata
‘ register 2
Instruction _ Registers >ALU ALU
_ Write R result Address I?jead
Instruction register Read ata
memor
e y _| Write data 2 Data
data
? . memory
/W RegWrite > \é\gt';e
/ 16] 32
\ | Sign MemRead
N | extend
**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’ b00 } What about JR, JAL, JALR?

Other Jumps 1n MIPS

o jal: jump and link (function calls)
= Semantics
if MEM[PC]== jal immediate,
$ra <« PC+ 4
target = { PC 1[31:28], immediate,¢, 2’ b00 }
PC « target

QO jr: jump register
= Semantics
if MEM[PC]== jr rs
PC < GPR(rs)

o jalr: jump and link register
= Semantics
if MEM[PC]== jalr rs
$ra < PC + 4
PC <« GPR(rs)

TThis is the incremented PC

38

Aside: MIPS Cheat Sheet

g2021/lib/exe/fetc

= https://safari.ethz.ch/digitaltechnik/sprin
h.php?media=mips reference data.pdf

= On the course website

0]
“ I P SReference Data %

CORE INSTRUCTION SET OPCODE
R- /FUNCT
NAME,MNEMONIC MAT OPERATION (in Verilog) (Hex)
Add asd R R[d] = R[] + R (1) 0420,
AddImmediaste aca [R[]~ R[]+ SignExthmm (12) Syex
Add Imm, Unsigned acais T R[] = R[rs] + SignExtimm) e
AddUnsigned agas R R[rd] = R[] + R[r1] 0/ 21pen
And and R Rlrd]= Rirs] & R[n1] 0124,
Andlmmediste and: [R[]~ R[s] & ZeoBxtimm () Cuex
Branch OnEqual bes 1 anRED @ e
Beanch On Not Equlzne 1 RTRIED @ e
Jump 1 PO=JumpAddr [
Jump And Link 1 RBIFPCHBPC-TumpAdds () Fen
JumpRegister 3¢ R PC=R[n] 0108y
Loud Byte Unsigned 160 1 fffgzﬂgﬂﬂww o =
e sy @ e
Load Linked 1 R[] = M[R[rs]+SignBxtlmm] (27) 30he
Load Upperlmm. 1wi | R[n]= (imm, 16°B0} frex
Load Word W 1 R[A]=MR[rs]+SignBxtlmm] (2) 23
Nor aer R Rlrd] =~ (R[] | R[AD) 012y
o e R R[rd] = Rins] | R[] 0/ 25,4,
O Immediate ari 1 R[n]=R{n] | ZeroExtimm [
Set Less Than slt R R[rd]=(Rlss] <R ?1:0 0/ 24y
SetLess Than Imm. =1e5 1 R[rt] = (R[rs] < SignExifmm)? 1 :0(2) Shex
Set Less Than lmim | Rl = (Rlss] < SignExttimm) e
Unsigned 71:0 26 e
Set Less Than Unsig. sltu R R[rd] = (R[rs] < R[]} 7 1 .0 (6) 0/ 2byeye
Shift Left Logieal R R[rd] = Rrt] << shamt 0/ 00y,
Shift Right Logical R R{rd] = R[r1] > shamt 01024
Store Byte w1 M[”"I‘S‘D‘E"'R“‘[;‘]](‘;:'g}" @ =
Store Conditional e 1 M[""]*sl"y]“"“:::};ﬂ“% an B
S bafeod o1 M[Rl:s]+swnrnﬂmm](lf]§)6] @ P
Store Ward I M[R[sHSignExtimm] = Rrt) (2) Zhue
Subtract asb R R[rd]= Rirs] - Rirt] (1) 0/ 22hex
Subtract Unsigned subu R = R[rs] - R[rt] 07234
(1) May cause overflow exception
(2) SignExtlmm = { 16{immediate[15]}, immediate }
(3) ZeroExtlmm = { 16{1b°0), immediate }
(4) BranchAddr = { 14{immediate[15]}, immediate, 2'D0 }
(5) JumpAddr = { PC+4[31:28], address, 2'b0 }
(6) Operands considered unsigned numbers (vs. 2's comp.)
(7) Atomic testdset pair; R[rt] = 1 {f pair atomic, 0 if not atomic
BASIC INSTRUCTION FORMATS
R [opcode | s | n | | sham | funat
i T FIET) TN ER—TNT] %3 O
— 1 | opde | s | n immediate
) ¥) I3E W
3 [opeade | address |
T

ARITHMETIC CORE INSTRUCTION SET

FOR-
NAME, MNEMONIC ~ MAT

OPERATION
Branch On FPTrue belt FI if{FPeond)PC=PC-+4+BranchAddr (4)
Branch On FP False be1f F1 if(!FPoond)PC=PC-+4+BranchAddr(4)
Divide div R R[rs]R[rt]
Divide Unsigned aivu R s[%Rin] (6)
FPAddSingle add.s FR 0] 1
FP Add FIRLFLR1]} = [FIBLFIG+1])
PP Al .o v (UL = (LBLE 1) +
FPCumpamSmgl: cxs® FR FPeond = (F|fs] ap FIR) 7 1:0 1100ty
caae pr FPoond = ({FIE]FIRH] op A
cxd® PR [F[n]F[nﬂ]})"L o Nl
1or 1) (op is ==, <, or <=) (yis 32, 3c, or 3¢)
= FR F[fd] = F[fs] / F[R] o3

div.d FR

{FIRLFIf+1]} = (F[fS].FlfWD
{F(A].

1W1-/3

FA+]}

FP Multiply Single mul.s FR F[fl] = F[fs] * F[A] 072
FP Multiply ot PR FRLFIR = (FIBLF(1)) *
Double - (FLALFLA+1]}
FP Subtract Single sub.s FR FIRI-F[s) - FIR]
FP Subract oo pr (FIRLFIRHTE = (FIBLFIG+1]} -
ble - (FIALFTA+1]}
Load FPSingle lwe: 1 F{AFM[R[s]+SignBstinm] (2) 3
Load F# e 1 F[rl] MIR[s]SignEstimm]; (2}
Double d M[R[rs]+SignExilmm+4]
Move FromHi meni R R[rﬂ] Hi
MoveFromLo mrio R Rird]=Lo
Move From Control mrcd R R{rd] = CR[rs]
Multiply mult R {HiLo}=R[rs] ® R[rt]
Multiply Unsigned mulcu R {HiLo}=R[rs] * Rin]
Shift Right Arith, ~ sza R Rfrd] = R[rt] >>> shami
Store FP Single swel 1 M[R[rs]*SignExtimm] = r[ﬂ]
Store FP aer 1 MIRIrs)#SignExtimm] = Flr]
Double d M(R[rs]+SignExilmm+4)
FLOATING-POINT INSTRUCTION FORMATS
FR [opeode | fm | 0 5| W |
] EE FED 85 [0 %5 i
FI [opcode | fmt | immediate
0 EE] EE] W i
PSEUDOINSTRUCTION SET
NAME MNEMONIC OPERATION
Branch Less Than it R{r]<R[n]) PC = Label
Branch Greater Than gt ifR[r]>R[n]) PC = Label
Branch Less Than or Equal ple ifR{rsje=Rln]) PC = Label
Branch Greater Than or Equal bge
Load Immediate 1
Move nove Rlrd]= F.[n]
NAME, NUMBER, USE, CALL
PRESERVED ACROSS
NAME NUMBER USE A CALLY
Szero 0 The Constant Value 0 WA
Sat T Assembler Temporary No
Values for Function Results
$vo-svl 1l Expression Evaluation No
Sa0-503 47 Anguments Neo
$10-517 815 Temporaries No
$s0-857 _ 16-23 Saved Temporaries Ves
S50 2425 No
SkO-Sk1 26-27 Reserved for OS Kerel No
Sep 28 Global Pointer Ves
$sp 29 Stack Pointer Yes|
sip 30 Frame Pointer Yes
S 31 Retum Address Yes

7 EE 0
Copyright 2009 by Elsevier, Inc., All ights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

®

IEEE 754 FLOATING-POINT

CODES, BASE CONVERSION, ASCIl SYMBOLS
W
Dy

IEEE 754 Symbols.

1) MIPS (2) M . Hexa- ASCIT|,, Hexa- ASCIT Exponent | Frection| Object
opeode funct | Binary z:l deci- Char- b:‘“‘l deci- Char- (+19% (1 + Fraction) x 2(Expapent - Bias) o o ::
(G126) (5:0) (5:0) mal _acter mal__acter 0 70| Deno
[L Gaaf (0000 0 O NUL| 6 40 @ where Single Precision . m
supf (000001 1 | SOH | 65 41 A Double Precision Bias Tto MAX-T myg-msiFl-Pt-Nm
mulf 000010 2 2 STX | 66 42 B MAX =
jal g vff COL IV R 1 S IEEE Single Precision and MAX #0 NaN
beq sgrey 5 - S P MAX =255, DP. MAX = 2047
bre apsf (000101 5 5 ENQ| 69 45 E Double Precision Formats: "
blez movf (000110 6 6 ACK| 70 46 F [s] Exponemt | Fraction]
bots negf (0001 7 7 BEL| 71 47 G EE EE 0
addi T ¥ ¥BS 23 £ H
addiu 001001 9 9 HT | 73 49 1 [s] Exponent [Fraction }é:
s1ti 0 s LF [74 4 J e & = v
sltiu 11 b VI |75 4 K MEMORY ALLOCATION STACK FRAME
andl T ¢ FF [% 4 L Stack Higher
ozt 3 4 CR|T 4 M Ssp T My Argumeni6 | Memory
4 c SO |78 4 N Argament 5] Addresses
lui syne floor.wf|00NII 1S £ SI | 79 4f O St —pt
mehi 010000 16 10 DLE| B0 50 P Kaved Regist
@ mend 010001 17 11 DCI| 81 51 Q Dymankc Data Ved REQISErS | ek
wflo movaf (010010 18 12 DC2| B2 2 R Sgp hex Grows
mtle mewnf (010011 19 13 DC3 | 83 53§ Staic
W 4 DCA| B 3T 10000000, tatic Data Local Variables
21 15 NAK| BS 55 U Sop—p)
22 16 SYN| 86 56V Text Lower
23 17 ETB 87 57T W pe hex l;lrm
Tt I TE CAN| BE 58 X Addre
multy 25 19 EM | B9 59 Y Opee | Reserved ses
div 26 la SUB 90 Sa z
div 27 1b ESC | 81 S [DATA ALIGNMENT
® Tc FS |92 &\
9 1d GS | 9B s | Double Word
30 le RS | 84 S Word Word
31 1f US| 95 S _
—— B Halfword | Halfword | Halfword | Halfword
1 addu ew 3 20 1 |97 6l a Byle | Byle | Byte | Byte | Byte | Byte | Byle | Byte
vl s 34 2 " |9 6 b T T T T T3 L
W s 33 03 8 | W & o Value of three least significant bits of byle address (Big Endian)
Tbu and evif A ST & d EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS
e er 37 25 % [101 65 ¢ E
e xor 3B 2% & |12 66 i
nor 3% 271 ' |13 6T g Mask Code
£ WX (|14 & h s) 3
sh a1 29 3 105 69 i Pending u 1
awl 42 2 * |16 6 j mrupt M L|E
aw 4%+ |7 ek T 5 7 T
T g e BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable
B m
aue 46 2 10 6 = EXCEPTION CODES — g S
cache @ 2% 7 | 6 o Nu;.bcr Neme ;ms:ol‘(l’.:spuan) Nun;bcr Nome _ Caee ﬂ.ff:Ecq:uun]
i1 T w®WO0 [T t terrupt (hardware P spoint Exception_|
el tges o @ 3 1 | o7 g 4 AduL Adress Brror Exception| | P Reserved Insiruction
ez tit .. 00032 2 |[1a mox (load or instruction fetch) Exception
pref tlts e 5103 3 |15 7B s 5 Adps Address Ewor Exception| | o Coprocessor
ten = T W 4 (16 Tt ? i (store) P Unimplemented
1det - 5335 5 N7 75w Pa— Bus Ertor on 2 Oy Anihmetic Overlow
1422 tre e 54 3% 6 |18 W v Instruction Fetch Exception
e 55 37 7 |19 T w s Erroron
3¢ <. 36 38 § [0 T’ x 7 DBE Load o Siore 13T Trap
el e 57 3% 9 |12 W™y acall Exception FPE T Fcapih
el : gy mry ¥ S cept 5 FPE_Floating Point Excepion
<. 59 3 5 |13 T x
s LN R } SIZE (1:':;'ornllk, muni 2F&:;}m-mm\,)P
sdat congef [II1I0L 61 34 = |15 74}
o Cief U0 & 3 = |1 T - SIZE FIX | SIZE FIX |SIZE FIX |SIZE FIX
c.ongef [1001 63 3f 7 |127 7 DEL 1082 Kilo- | 1075, 2% 10° milli- | 1075 femto-
(T opeode(31:26) — 0 105,27 Mega- | 10', 2590 10 micro- [107Fatto-
(2) opeode(31:26) == 17,q (1) if 0252111610, (10, /= 5 (single); 10°.29_ Giga 109,27 Zens | 107 nano- | 1070 zepio-
I AMI25:211=17, (1]) = i (double) 107, 2% Tera [10% 29 voua | 1077 pico | 107 yocto-

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patierson and Hennessy, Computer Organization and Design, 4th ed.

The symbol for cach prefix s just s frst leticr, cxcept L 15 used for micro,

89

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=mips_reference_data.pdf

Conditional Branch Instructions

= beq (Branch if Equal)

beqg $s0, S$sl, offset #SsO=rs, Ssl=rt

beq (4) rs rt immediate=offset

6 bits 5 bits 5 bits 16 bits

= Semantics (assuming no branch delay slot)
if MEM[PC] == beq rs rt immediateyq
target = PCT + sign-extend(immediate) x 4
if GPR[rs]==GPR[rt] then PC « target
else PC« PC+ 4

o Variations: beq, bne, blez, bgtz

[-Type

TThis is the incremented PC

90

Conditional Branch Datapath (for you to tfinish)

12222

PC p—b|

Read
address

Instruction
memory

Instruction —‘—E

watch out

PC + 4 from instruction datapath ==

i

>Add Sum

>ALU bcon

Read
register 1 Read
Read data 1
register 2
Registers

Write
register Read
Write data 2
data

16) 32

\ Sign

N |extend

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

=-—> Branch target

To branch
control logic

How to uphold the delayed branch semanti¢s?

Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ { shift |\ Jump address [31-0]
M\left2) |
26 UZS 0 1
PC+4 [31-28] M M
u u
\ X X
. ALU
>Add result 1 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20— 16] Read data 1
: register 2 bcond
Instruction | :
[31-0] 0 _ Registers Read 0 >ALU ALU read
) M Write data 2 " result »| Address ead
Instruction u register M data M
memory Instruction [15—-11] 1X Write ;’ bat u
data 1 ata X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign 3;2

N lextend [N ALU operation

Instruction [5-0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittgg

Single-Cycle Control Logic

Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31 26 25 21 20 16 15 11 10 6 5 0

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 bits 5 bits 5 bits 16 bits

31 26 25 0

opcode immediate

6 bits 26 bits
Consider
o All R-type and I-type ALU instructions
o lw and sw
no beq, bne, blez, bgtz
a j, jr, jal, jalr

R-Type

[-Type

J-Type

94

Generate Control Signals (in Orange Color

PCSrc,=Jump
Instruction [25-0] \ { shift |\ Jump address [31-0]
M\left2) |
26 UZS 0 1
PC+4 [31-28] M M
u u
\ X X
. ALU
>Add result 1 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20— 16] Read data 1
: register 2 bcond
Instruction | :
[31-0] 0 _ Registers Read 0 >ALU ALU read
) M Write data 2 " result »| Address ead
Instruction u register M data M
memory Instruction [15—-11] 1X Write ;’ bat u
data 1 ata X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign 3;2

N Tlextend | M

Instruction [5-0] r

ALU operation

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.]

JAL, JR, JALR omittéd

Single-Bit Control Signals (I)

When De-asserted

When asserted

Equation

GPR write select
accordingto rt, i.e.,
inst[20:16]

GPR write select
accordingto rd, i.e.,
inst[15:11]

opcode==

2" ALU input from 2nd
GPR read port

2" ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&
(opcode!=BEQ) &&
(opcode!=BNE)

Steer ALU result to GPR
write port

steer memory load to
GPR write port

opcode==LW

GPR write disabled

GPR write enabled

(opcode!=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg optidhs

Single-Bit Control Signals (I1)

When De-asserted When asserted Equation
Memory read disabled Memory read port opcode==LW
return load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==)) ||

bit immediate jump
target

(opcode==JAL)

next PC=PC+4

next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&
“bcondis satisfied”

JR and JALR require additional PCSrc opti®hs

R-Type ALU

PCSrc,=Jump
Instruction [25-0] \ { shift \\ Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

7
./

>Add ALU

result
Add
> PCSrc,=Br Taken
Jump
4
Instruction [31-26]
> Control
Instruction [25-21] Read -
Read register 1 O
pC address) ’ Read
Instruction [20—16] Read data 1
; register 2 bcond
|n$tf[g(it10(')'i I—» Registers Read >A|-U ALU
Write data 2 result Address Read|
Instruction register data
memory Instruction [15—11] J Write
Data
data — memory d
Write
data
Instruction [15-0] 1\6 Sign %2
Y lextend [¥ un Ct ALU operation O
Instruction [5— 0]
**Based on original figure from [P&H CO&D, COPYRIGHT £

2004 Elsevier. ALLRIGHTS RESERVED.]

[-Type ALU

PCSrc,=Jump
Instruction [25-0] \ { shift \\ Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

7
./

>Add ALU

result
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25—-21] Read -
Read register 1 O
PC address _ g Read
Instruction [20—16] Read data 1
; register 2 bcond
Instr[g(itio(r)'i ~ Registers Read 5 >ALU ALU Read
. Write data 2 result Address cadi__,
Instruction u register M data
memory Instruction [15—11] [X Write y
1 data Data d
) memory
Write
data
Instruction [15-0] 1\6 Sign :’12
Y lextend [¥ COd éLU operation O
Instruction [5— 0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 g

Elsevier. ALL RIGHTS RESERVED.]

LW

/

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Jump

ft 2 [

\
A

28

PC+4 [31-28]

Add

N

PC

Read
address

Instruction
[31-0]
Instruction
memory

./

ALU
>Add result

\d

o

(=

\

bcond
ALU ALU

N

PCSrc,=Br Taken

result

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read -
register 1 Read
Instruction [20—16] Read data 1
register 2
Registers Read
Write data 2
u register
Instruction [156—11] | X Write
S data
Instruction [15-0] l\ Sign :i
N Tlextend [M

Instruction [5— 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Address

Write
data

Read
data
Data

memory

I"Add ALU operation 1

—
(@)

SW

PC

/

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Jump

ft 2 [

\
A

28

PC+4 [31-28]

Add

N

Read
address

Instruction
[31-0]
Instruction
memory

./

ALU
>Add result

\d

o

(=

\

bcond
ALU ALU

N

PCSrc,=Br Taken

result

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read et
register 1 Read
Instruction [20—16] Read data 1
I register 2
Registers Read
Write data 2
T register
Instruction [15—11] } { Write
S data
Instruction [15-0] l\ Sign :i
N Tlextend [M

Instruction [5— 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Read
Address data
Data
) memory
Write
data

I"Add ALU operation 0

—

(@)

Branch (Not Taken)

Some control signals are dependent
on the processing of data

Instruction [25—0] | @\

Jump address [31-0]

\@\

Instruction [5— 0]

cond 0

**Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

\ \
26 @28
PC+4 [31- 28] \ ‘
ALU \
\ >Add result 1
> Add
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read el
Read register 1 O
pC address _ g Read
Instruction [20—-16] Read data 1
; l register 2 bcond
Instr[%(itio(r)'i 0 ~ Registers Read >ALU ALU
) M Write data 2 result Address Readl _,
Instruction u register data
memory Instruction [15—11] Write
data Data
) memory
Write
data
Instruction [15-0] 1\6 Sign :’12

—
(@)»

Branch (Taken)

Some control signals are dependent
on the processing of data

Instruction [25-0] | ®\ Jump address [31- 0]
\ \
26 @28
PC+4 [31-28]
ALU
>Add result

|
7
\&/

>Add

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read el
Read register 1 O
PC address) 9 Read
Instruction [20—-16] Read data 1
; register 2 bcond
Instr[%(itio(r)'i l—> ~ Registers Read >ALU ALU Read
. Write data 2 result Address eadl
Instruction register data
memory Instruction [15—11] } ‘ Write
data) N Data
) memory
Write
data
Instruction [15-0] 1\6 Sign :’12

\ U | eond 0

Instruction [5— 0]

—
(@)»
(O8]

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Jump

PCSrc,=Jump
Instruction [25-0] \ { shift \\ Jump address [31-0]
\ \
26 @28 L.
PC+4 [31-28] ’\lj'
\ X
ALU
>Add result 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read el
Read register 1 O
pC address _ g Read
Instruction [20—-16] Read data 1
; register 2 bcond
Instr[g(itio(r)'i l—> ~ Registers Read /O'\ >ALU ALU Read
. Write data 2 result Address eadl
Instruction register M data
memory Instruction [15—11] }A‘ Write \ Y Dat
ata
data Y) memory
Write
data
Instruction [15-0] 1\6 Sign %2
N Tlextend | M ALU operation O

X

Instruction [5— 0]

—
(@)»

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

What 1s in That Control Box?

Combinational Logic = Hardwired Control

o Idea: Most control signals generated combinationally based on
bits in instruction encoding

Sequential Logic = Sequential Control

o Idea: A memory structure contains the control signals
associated with an instruction

Called Control Store

Both types of control structure can be used in single-cycle
Processors

o Choice depends on latency of each structure + how much on
the critical path control signal generation is, etc.

105

Review: Complete Single-Cycle Processor

PCSrc,=Jump
Instruction [25-0] \ { shift |\ Jump address [31-0]
M\left2) |
26 UZS 0 1
PC+4 [31-28] M M
u u
\ X X
. ALU
>Add result 1 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20— 16] Read data 1
: register 2 bcond
Instruction | :
[31-0] 0 _ Registers Read 0 >ALU ALU read
) M Write data 2 " result »| Address ead
Instruction u register M data M
memory Instruction [15—-11] 1X Write ;’ bat u
data 1 ata X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign 3;2

N Tlextend | M

Instruction [5-0] r

ALU operation

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.]

JAL, JR, JALR omittdd

Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:
H&H, Chapter 7.1-7.3, 7.6

Another Complete Single-Cycle Processor

31

MemtoReg

)
Control

MemWrite

Unit
Branch

ALUControl,

26

5:0

Op ALUSIC

25

Funct RegDst

CLK
|

RegWrite

WE3

'F PC' PC A RD Instr
1

Instruction
Memory

20

21y A1 RD1

161 A2 RD2

A3

w3 Register

~ + PCPlus4

20

File

SrcA

[—

Zero

:16

U/

ALUResult

PCSrc

CLK
|

WE

'E SrcB
1

\

WriteData

Data
Memory

WD

15

11

[0
- 1
WriteReg,,,

15

0 Sign Extend

Signlmm

<<?2

PCBranch
+

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.

108

Example: Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $s&$# read memory word 1 into $s3

op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

25:21
dnstr >

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signlmm
Sign Extend }

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIz:O
010

SrcA Zero
ALUResult

=

o
SrcB <

Signlmm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite

1
CLK

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs It Imm

6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CLK
\
pc, V' PC

)
PCPlus4
4

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Similarly, We Need to Design the Control Unit

= Control signals are generated by the decoder in control unit

R-type 000000
Iw 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
addi 001000 1 0 1 0 0 0 00 0
j 000010 0 X X X 0 X XX 1

Single-cycle processor. Harris and Harris, Chapter 7.3. 115

Another Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

116

Your Reading Assignment

= Please read the Lecture Slides and the Backup Slides

= Please do your readings from the H&H Book
o H&H, Chapter 7.1-7.3, 7.6

117

Single-Cycle Uarch I (We Developed in Lectures)

PCSrc,=Jump
Instruction [25-0] \ { shift |\ Jump address [31-0]
M\left2) |
26 UZS 0 1
PC+4 [31-28] M M
u u
\ X X
. ALU
>Add result 1 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
> Control
Instruction [25—-21] Read
.| Read register 1
—|PC address] 9 Read
Instruction [20— 16] Read data 1
: register 2 bcond
Instruction | :
[31-0] 0 _ Registers Read 0 >ALU ALU read
) M Write data 2 " result »| Address ead
Instruction u register M data M
memory Instruction [15—-11] 1X Write ;’ bat u
data 1 ata X
memor
Write Y 0
data
Instruction [15-0] 1\6 Sign 3;2

N Tlextend | M

Instruction [5-0] r

ALU operation

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.]

JAL, JR, JALR omitted

Single-Cycle Uarch II (In Your Readings)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op |ALUSIC
Funct |RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WES3 SrcA [~

2521 Zero WE
-ro pc™M]ec Instr 2l Al RD1
1

0
ALUResult ReadData 1

Instruction 20:16 - <
Memory ata
A3) -|1 I , Memory
Register WriteData

WwD3 File WD

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

A RD

U/

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

119

Evaluating the Single-Cycle
Microarchitecture

A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

121

Pertormance Analysis Basics

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed

m So how fast are my instructions ?
= |nstructions are realized on the hardware
= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware

= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

= The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions
= Qur processor needs CPI cycles for each instruction

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions
= Qur processor needs CPI cycles for each instruction

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program executes in
N x CPI x (1/f) =

N x CPI x T seconds

Pertformance Analysis Basics

= Execution time of a single instruction

o {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of an entire program
o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

128

Pertormance Analysis of

Our Single-Cycle Design

A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
o CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Critical path of the design is determined by the processing
time of the slowest instruction

130

What is the Slowest Instruction to Process?

= Let's go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

0 Fetch 1. Instruction fetch (IF)

o Decode 2. Instruction decode and

o Evaluate Address register operand fetch (ID/RF)

o Fetch Operands 3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)

2 Execute 5. Store/writeback result (WB)

o Store Result

= Do each of the above phases take the same time (latency)
for all instructions?

131

Let’s Find the Critical Path

PC

/

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Jump

\ \
26 @28

PC+4 [31-28]

N

Add

Read
address

Instruction
[31-0]
Instruction
memory

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read
register 1 Read
Instruction [20—16] Read data 1
[register 2 bcond
0 ~ Registers Read >ALU ALU
M Write data 2 0 result Address
u register M
Instruction [15—11] x Write)li
1 data 1
Write
data
Instruction [15-0] 1\6 Sign :i
N Tlextend [M

>

./

Al

\d

dd ALU

L.

result

0
M
u
X
\l/

o xcZ -

PCSrc,=Br Taken

Instruction [5— 0]

-

[Based on originalfigure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Read
data

Data
memory

OXCzi—‘

ALU operation

Example Single-Cycle Datapath Analysis

Assume (for the design in the previous slide)

o memory units (read or write): 200 ps
o ALU and adders: 100 ps

o register file (read or write): 50 ps

Q

other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200

Let’s Find the Critical Path

PC

/

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Jump

\ \
26 @28

PC+4 [31-28]

N

Add

Read
address

Instruction
[31-0]
Instruction
memory

>

./

Al

\d

dd ALU

L.

o xcZ -

result

0
M
u
X
\l/

PCSrc,=Br Taken

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read
register 1 Read
Instruction [20—16] Read data 1
[register 2 bcond
0 ~ Registers Read >ALU ALU
M Write data 2 0 result Address %ead —
u register M ata
. u
Instruction [15— 11 X ;
[] 1 \évme X Data
ata 1
) memory
Write
data
Instruction [15-0] 1\6 Sign :i
N Tlextend [M

Instruction [5— 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

-

ALU operation

OXCzi—‘

R-Type and I-Type ALU

PS

Instruction [25—0] | @\

Jump address [31-0]

PCSrcy=Jum

\ \
26 @28

PC+4 [31-28]

Add
4 —
Read
In jon
Instruction
memory

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read
register 1 Read
3 lgstruction [20— 16 data 1
0 ~ Registers
M Write data 2
u
Instruction [15—11] X Write 400 p S
1 data
Instruction [15-0]

x

ALU
>Add result

bcond
ALU aLU

350p:

16) 32
\ Sign |\

N Tlextend | M

Instruction [5— 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

\J)

P oxc=Z

xcZ P

PCSrc,=Br Taken

Wi

Address

rite

data

Read
data

Data
memory 0

ALU operati

LW

PCSrc,=Jum
Instruction [25-0] \ { shift \\ Jump address [31-0]
\ \

26 @28 1

PC+4 [31-28] IL/I l\ljl

X X

ALU
>Add result 1
Add
PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read
Read register 1 Read
2() 3 lgstruction [20—16 data 1 [
| | S bcond
n on 0 ~ Registers ALU ALU
. M Write data 2 It Address
Instruction u
memory Instruction [15—11] [X i x u
1 ! 3 5 c Data X
memor
p 'DWrite Y 0
data
Instruction [15-0] 1\6 Sign %2
N Tlextend | M ALU operation

Instruction [5— 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Instruction [25—0] | @\

Jump address [31-0]

PCSrc{=Jump

ft 2 [

\
)

28

PC+4 [31-28]

Instruction [31-26] R

ALU
>Add result

PCSrc,=Br Taken

Control
100ps
Instruction [25-21] Read
register 1 Read
2() 3 ¢ lgstruction [20— 16 Doad data 1
In jon ’ 0 Registers Read
M Write data 2 Address eadi__,
Instruction u register — data }\A
memory Instruction [156—-11] | X Write u
1 data ‘S Data X
> 2 [0
Wr|t5 5 @p S
data
Instruction [15-0] l\ Sign)
V" | extend ALU operation

Instruction [5— 0]

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Branch Taken

Instruction [25—0] | @\

Jump address [31-0]

PCSrc,=Ju

\ \
26 @28

PC+4 [31-28]

100ps

Add
Jump
4 —
Instruction [31-26]
> Control
Instruction [25-21] Read
Read register 1 Read
2() 3 lgstruction [20—16 data 1
In o 0 ~ Registers
. M Write data 2
Instruction u register
memory Instruction [15—11] [X Write
S data
Instruction [15-0] l\ Sign :’i
N Tlextend | M

Shift
left 2

x

Ad AL
bcond
ALU ALu

xcZ -

PCSrc,=Br Taken

PS

Read
Address data 1 1
M
u
Data X
memor
Write v 0
data

Instruction [5— 0]

-

[Based on originalfigure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALLRIGHTS RESERVED.]

ALU operation

Instruction 8

PC+4 [31-28]

L

Instruction
memory

./

ALU
>Add result

\d

0
M
u
X
\l/

0

PCSrc,=Br Taken

[Based on originalfigure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALLRIGHTS RESERVED.]

Instruction [25-21] Read
register 1 Read
\|gStruction [20— 16] Read data 1
S] [register 2 beond
0 ~ Registers Read >ALU ALU
M Write data 2 0 result Address R(’jead —>1
u register M aa M
. u
Instruction [15—11] x Write X Y
1 data 1 mgﬁwt?)ry (;(
Write
data
Instruction [15-0] 1\6 Sign
N Tlextend ALU operation
Instruction [5— 0]
A
|50,

What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?

o Historical example:
CDC 5600: control store access too long...

140

What is the Slowest Instruction to Process?

Real world: Memory is slow (not magic)
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?

141

Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient

o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

Not easy to optimize/improve performance
o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
142

(Micro)architecture Design Principles

Critical path design
a Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

o Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do

2 Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work

143

Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare
with respect to these principles?

144

Aside: System Design Principles

When designing computer systems/architectures, it is
important to follow good principles

o Actually, this is true for *any* system design
Real architectures, buildings, bridges, ...
Good consumer products

Remember: “principled design” from our second lecture

o Frank Lloyd Wright: “architecture [...] based upon principle,
and not upon precedent”

145

Aside: From Lecture 2

= “architecture[...] based upon principle, and not upon
precedent’

This

147

Recall: Takeaways

It all starts from the basic building blocks and design
principles

And, knowledge of how to use, apply, enhance them

Underlying technology might change (e.g., steel vs. wood)
o but methods of taking advantage of technology bear resemblance
o methods used for design depend on the principles employed

149

Aside: System Design Principles

We will continue to cover key principles in this course
Here are some references where you can learn more

Yale Patt, "Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn's Bottleneck - Balanced design)

Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law - Common-case design)

Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf

150

http://research.microsoft.com/pubs/68221/acrobat.pdf

A Key System Design Principle

= Keep it simple

= "Everything should be made as simple as possible,
but no simpler.” " 2me

o Albert Einstein

= And, keep it low cost: "An engineer is a person who can
do for a dime what any fool can do for a dollar.”

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf

151

http://research.microsoft.com/pubs/68221/acrobat.pdf

Multi-Cycle Microarchitectures

152

Digital Design & Computer Arch.

Lecture 11: Microarchitecture

Fundamentals

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
1 April 2021

Backup Slides on Single-Cycle
Uarch for Your Own Study

Please study these to reinforce the concepts
we covered in lectures.

Please do the readings together with these slides:
H&H, Chapter 7.1-7.3, 7.6

Another Single-Cycle
MIPS Processor (from H&H)

These are slides for your own study.
They are to complement your reading
H&H, Chapter 7.1-7.3, 7.6

What to do with the Program Counter?

m The PC needs to be incremented by 4 during each cycle
(for the time being).

m Initial PC value (after reset) is 9x00400000

reg [31:0] PC_p, PC n; // Present and next state of PC
/][]
assign PC n <= PC p + 4; // Increment by 4;

always @ (posedge clk, negedge rst)

begin
if (rst == ‘9°) PC_p <= 32’°h00400000; // default
else PC_p <= PC_n; // when clk

end

We Need a Register File

m Store 32 registers, each 32-bit
= 2°==132,we need 5 bits to address each

m Every R-type instruction uses 3 register

= Two for reading (RS, RT)
= One for writing (RD)

m We need a special memory with:
= 2 read ports (address x2, data out x2)
= 1 write port (address, data in)

Register File

input [4:0] ars, art, a rd;
input [31:0] di rd;

input we rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs
// Circuit description
assign do rs = R_arr[a_rs]; // Read RS

assign do rt = R_arr[a_rt]; // Read RT

always @ (posedge clk)
if (we rd) R_arr[a_rd] <= di_rd; // write RD

Register File

input [4:0] ars, art, a rd;
input [31:0] di rd;

input we rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0

assign do rs = (a_rs != 5’bo000O)? // is address ©?
R_arr[a_rs] : 0; // Read RS or ©

assign do rt = (a_rt != 5’°b0000O)? // is address ©?
R_arr[a_rt] : 0; // Read RT or ©

always @ (posedge clk)
if (we rd) R_arr[a_rd] <= di_rd; // write RD

Data Memory Example

m Will be used to store the bulk of data

input [15:0] addr; // Only 16 bits in this example
input [31:0] di;
input we;
output [31:0] do;

reg [31:0] M_arr [0:65535]; // Array for Memory

// Circuit description
assign do = M _arr[addr]; // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di; // write memory

Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $s&$# read memory word 1 into $s3

op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

25:21
dnstr >

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signlmm
Sign Extend }

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIz:O
010

SrcA Zero
ALUResult

=

o
SrcB <

Signlmm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite

1
CLK

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs It Imm

6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CLK
\
pc, V' PC

)
PCPlus4
4

lw $s3, 1($0) # read memory word 1 into $s3

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: sw

m Write data in rt to memory

MemWrite

il
CITK

N

WriteData

>

sw $t7, 44($0) # write t7 into memory address 44

I-Type
op rs It Imm
6 bits 5 bits 5 bits 16 bits

Single-Cycle Datapath: R-type Instructions

m Read from rs and rt, write ALUResult to register file

RegDst ALUSrc MemtoReg
1 0 0

0
ALUResult

— 01SrcB
IR
>
20:16
- 1
WriteReg,,.,
Result
add t, b, ¢ # t =b + c
R-Type
op rs rt rd [shamt| funct
6 bits 5bits 5bits 5bits 5 bits 6 bits

Single-Cycle Datapath: beq

PCSrc

Branch
1

Zero

0] PC
1

Branch

beq $s0, $sl1, target # branch is taken

m Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

Complete Single-Cycle Processor

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op ALUSTrc
Funct |RegDst

RegWrite

)
Control
Unit

31:26

5:0

—
CLK CLK
| |

WE3 SrcA [~

2521 Zero WE
'F pc'|™|PC Instr = Al RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 - <
Memory ata
A3) -|1 I , Memory
Register WriteData

WwD3 File WD

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

Our MIPS Datapath has Several Options

m ALU inputs
= Either RT or Immediate (MUX)

m Write Address of Register File
= Either RD or RT (MUX)

m Write Data In of Register File
= Either ALU out or Data Memory Out (MUX)

m Write enable of Register File
= Not always a register write (MUX)

m Write enable of Memory
= Only when writing to memory (sw) (MUX)

All these options are our control signals

Control Unit

Functs.g ALUControls.g

5' Control

i Unit ' }— MemtoReg |

— MemWrite |

EOpcode . Branch

: 5:0 ain :

§ Decoder| ALUSre : ALUOp Meaning
5 —— RegDst ' 00 1
—— RegWrite ; a

E : 01 subtract
' ALUOpD10 :

E ‘ 10 look at funct field
11 n/a

ALU Does the Real Work in a Processor

000 A&B
A B

N AN

\/ 010 A+B
ALU 3 F 011 not used

001 A|B

)(N 100 A & ~B
Y 101 A|~B
110 A-B

111 SLT

ALU Internals

000 A&B
M j - 001 A|B
N 010 A+B
RLJ tj 011 not used
Cout {Y J/ 100 A& ~B
7\ al 101 A|~B
§§ N N N 110 A-B

w N ol o
\ /L? Flo 111 SLT

Control Unit: ALU Decoder

...

{ Unit — MemtoReg
— MemWrite
EO q — Branch
iOpcodes. '
5 p 50— Main | ALUSIC
Decoder
— RegDst
— RegWrite
ALUOp10

ALU

E Functs. Decoder

--

ALUControl,.q f

ALUOp, ., Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp,,, |Funct ALUControl,.,
00 X 010 (Add)

X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010(s1t) 111 (SLT)

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

Let us Develop our Control Table

Instruction Op;. RegWrite RegDst AluSrc MemWsrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add
SW 101011 0 X 1 1 X add

= RegWrite: Write enable for the register file

= RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do

More Control Signals

Instruction Ops, RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 %) 0 9 @ funct
lw 100011 1 0 1 0 0 1 add
sw 101011 ¢ X 1 0 1 X add
beq 000100 ¢ X) 1 %) X sub

m New Control Signal

= Branch: Are we jumping or not ?

Control Unit: Main Decoder

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,

R-type 000000 1 1 %) %) 0 0 10
1w 100011 00

Sw 101011 00
beq 900100 01

=
=

®
X X O©

=
) ® O
®© B ©
X X B

Qv
Qv

——\MemtoReg
‘YOI MemWrite
Branch
IALUControl,,,
31:26

——°P [ALUSIc

PCSrc

2 Funct [RegDst
RegWrite
—
CLK CLK
L L
WE3 WE
0
ReadData
A RD 1
2164 A2 RD2 Data
A3 . | Memory
WD3 Reg; er WD

Single-Cycle Datapath Example: or

MemtoReg
MemWrite
Branch 0
ALUControl, , D PCsrc
Op ALUSTIC
Funct [RegDst

RegWrite

SR
Control
Unit

31:26

5.0

—
CLK
|

1

. WE3

i10.]pc o m sRDm LS Vil = =R g
-

Instruction ba16

Memory

CLK

001

Zero] WE 0

1

ALUResult I ReadData 1

A = = mRB2 Data

P A3 Memory

i WriteData
) WD3 Regillséter WD

] 2016 0

15:11
WriteReg,, o
¥ PCPlus4 * ’
! _/ Signimm <<2
4 15:0 ;
Sign Extend N PCBranch

Result

Extended Functionality: addi

Instr

31:26

)
Control

5.0

25:21

MemtoReg

Unit MemWrite

Branch

ALUControl,.,

Op ALUSICc

Funct RegDst

RegWrite
CLK
|

-F rcMlec] » rp
1

Instruction
Memory

20:16

~ + PCPlus4

20:16

WE3

Al RD1

SrcA

Zero

A2
A3
WD3

RD2

Register

File

ALUResult

PCSrc

CLK
|

WE

FC SrcB
1

\Lalu /

WriteData

Data
Memory

WD

15:11

WriteReg,,

[0
1

150 Sign Extend

Signimm

<<?2

PCBranch
+

0
ReadData 1

Result

m No change to datapath

Control Unit: add1i

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,,

R-type 000000 1 1 %) %) 90 0 10

1w 100011 1 0 1 %) %) 1 (5]1%)
sw 101011 O X 1 %) 1 X (5]%)
beq 000100 O X %) 1 %) X 01
addi 001000 1 (%) 1 (%) (%) (%) 00

Extended Functionality: j

PCJump

Control Unit: Main Decoder

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,, Jump

R-type 000000 1 1 %) %) 0 %) 10 0

1w 100011 1 © 1 © %) 1 k6 ©
Sw 101011 © X 1 0 1 X k6 ©
beq 000100 0O X © 1 %) X 1 ©
Jj 000100 O X X X (7 X XX 1

Review: Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite
Branch
ALUControl,., E}PCSW
Op [ALUSIC
Funct RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
| |

WE3 SrcA ™ Zero WE

-rC pc'|™|pPc Instr 2211 A1 RD1
1

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 o <
A2 RD2 |C ISch D
Memory aa
A3 1) Memory
WriteData

WD3 Regllster WD
File

2016 B
15:11 1
o WriteReg,

~ + PCPlus4

\

Signimm
4 - 15:0 i <<2
Sign Extend N PCBranch

Result

187

A Bit More on
Pertormance Analysis

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
= |nstructions are realized on the hardware
= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware

= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

= The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.

Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program

o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

192

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Processor Performance

m Now as a general formula
= Qur program consists of executing N instructions.
= Qur processor needs CPI cycles for each instruction.

= The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program will execute in

N x CPI x (1/f) = N x CPI x T seconds

How can | Make the Program Run Faster?

N x CPI x (1/f)

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

m Use less cycles to perform the instruction

= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions
= Make instructions that ‘do’ more (CISC)
= Use better compilers

m Use less cycles to perform the instruction
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

m Increase the clock frequency

" Find a ‘newer’ technology to manufacture
= Redesign time critical components
= Adopt pipelining

Single-Cycle Performance

m T.is limited by the critical path (1w)

mMemtoReg
(l)Jr:]irto MemWrite
Branch 0 0
ALUControl,, . 1 »—Pcsre
31:26 -
Op |ALUSIC
20 1 Funct |RegDst
RegWrite
—
CLK CLK
CLK | 1 010 l 0)
i WE3 SrcA ~, Zero WE
0 lec|™|pc A == =RD J10SU s B R RB1- 'T -
1 1 [>“DI ALUResult M- -RD ReadData | .
Instruction 2016 e~ - -l == !
Memory A2 RD2 0]SrcB /< Data
A3 '|1, Memor
Register WriteData y
»| WD3 e WD
0
20:16 0
15:11
O WriteReg,,
~ 4 PCPlus4 40
Signlmm
49 120 Sign Extend pCBranch
+
Result

Single-Cycle Performance

m Single-cycle critical path:

. Tc = tF’cCl_PC + tmem + max(tRFreadl tsext + tmux) + tALU + tmem + tmux + tRFsetup

m In most implementations, limiting paths are:

= memory, ALU, register file.

. Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

MemtoReg
MemWrite
Branch 0 0
ALUControl,, PCSre
31:26

—Op [ALUSIc
=2 Funct |RegDst

RegWrite

CLK ~
& ‘ - 010 | 0
1
- WE3 Zero WE
i A Rp Jinstr 2921 Al = = m RB1- SrcA - y
etruc 1 ~J| ALUResult - -Rp JRE20DaE] .
Instruction " 2 . |

; D
Memory K RD2 0]srcB Data

Control
Unit

A3 i 2 WriteData Memory
»| wp3 Regi||seter WD

0
20:16 0
15:11 1
WriteReg,
Signimm
' <<2
—|15'° Sign Extend PCBranch

+

PCPlus4

Result

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq pe 30
Register setup teetup 20
Multiplexer tux 25

ALU sy 200
Memory read tem 250
Register file read terread 150
Register file setup tREsetup 20

T =

C

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq pe 30
Register setup teetup 20
Multiplexer tux 25

ALU sy 200
Memory read tem 250
Register file read terread 150
Register file setup tREsetup 20

7-c = pcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Execution Time = # instructionsx CPIxTC
= (100 x 10°)(1)(925 x 101?s)
=92.5 seconds

