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Readings

◼ Last time and today

❑ Introduction to microarchitecture and single-cycle 
microarchitecture

◼ H&H, Chapter 7.1-7.3

◼ P&P, Appendices A and C

❑ Multi-cycle microarchitecture

◼ H&H, Chapter 7.4

◼ P&P, Appendices A and C

◼ Tomorrow and next week

❑ Pipelining

◼ H&H, Chapter 7.5

◼ Pipelining Issues

◼ H&H, Chapter 7.8.1-7.8.3

2



Agenda for Today & Next Few Lectures

◼ Instruction Set Architectures (ISA): LC-3 and MIPS

◼ Assembly programming: LC-3 and MIPS

◼ Microarchitecture (principles & single-cycle uarch)

◼ Multi-cycle microarchitecture

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling, 

State Maintenance and Recovery, …

◼ Out-of-Order Execution
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Recall: A Very Basic Instruction Processing Engine

◼ Each instruction takes a single clock cycle to execute

◼ Only combinational logic is used to implement instruction 
execution 

❑ No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state 

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state 

at the end of a clock cycle
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Recall: The Instruction Processing “Cycle”

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT
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Instruction Processing “Cycle” vs. Machine Clock Cycle

◼ Single-cycle machine: 

❑ All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

◼ Multi-cycle machine: 

❑ All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete

❑ In fact, each phase can take multiple clock cycles to complete
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Recall: Single-Cycle Machine

◼ Single-cycle machine
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(State)
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Logic
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Recall: Datapath and Control Logic

◼ An instruction processing engine consists of two components

❑ Datapath: Consists of hardware elements that deal with and 
transform data signals

◼ functional units that operate on data

◼ hardware structures (e.g., wires, muxes, decoders, tri-state bufs) 
that enable the flow of data into the functional units and registers

◼ storage units that store data (e.g., registers)

❑ Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath
elements should do to the data
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Single-Cycle Datapath for

Arithmetic and Logical Instructions



Datapath for R- and I-Type ALU Insts.
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate) 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

n



Single-Cycle Datapath for

Data Movement Instructions



Datapath for Non-Control-Flow Insts.
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Single-Cycle Datapath for

Control Flow Instructions



Jump Instruction

◼ Unconditional branch or jump

❑ 2 = opcode

❑ immediate (target) = target address

◼ Semantics

if MEM[PC]== j immediate26

target = { PC ✝[31:28], immediate26, 2’b00 }

PC  target
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j (2) immediate

6 bits 26 bits

j target

J-Type

✝This is the incremented PC



Unconditional Jump Datapath
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?

**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }



Other Jumps in MIPS
❑ jal: jump and link (function calls)

◼ Semantics

if MEM[PC]== jal immediate26

$ra  PC + 4

target = { PC✝[31:28], immediate26, 2’b00 }

PC  target

❑ jr: jump register

◼ Semantics

if MEM[PC]== jr rs

PC  GPR(rs)

❑ jalr: jump and link register

◼ Semantics

if MEM[PC]== jalr rs

$ra  PC + 4

PC  GPR(rs)

16✝This is the incremented PC



Aside: MIPS Cheat Sheet

◼ https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetc
h.php?media=mips_reference_data.pdf

◼ On the course website
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Conditional Branch Instructions

◼ beq (Branch if Equal)

◼ Semantics (assuming no branch delay slot)

if MEM[PC] == beq rs rt immediate16

target = PC✝+ sign-extend(immediate) x 4 

if GPR[rs]==GPR[rt] then PC  target

else PC  PC + 4

❑ Variations: beq, bne, blez, bgtz
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beq (4) rs rt immediate=offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset #$s0=rs,$s1=rt

✝This is the incremented PC

I-Type



Conditional Branch Datapath (for you to finish)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out



Putting It All Together
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Cycle Control Logic



Single-Cycle Hardwired Control
◼ As combinational function of Inst=MEM[PC]

◼ Consider

❑ All R-type and I-type ALU instructions

❑ lw and sw

❑ beq, bne, blez, bgtz

❑ j, jr, jal, jalr
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0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
15 0162021252631 11 10 6 5

opcode rs rt immediate I-Type
15 0162021252631

6 bits 5 bits 5 bits 16 bits

opcode immediate

6 bits 26 bits

J-Type
0252631



Generate Control Signals (in Orange Color)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Bit Control Signals (I)
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Single-Bit Control Signals (II)
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R-Type ALU
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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I-Type ALU
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LW
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SW
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
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Branch (Not Taken)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]
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Some control signals are dependent

on the processing of data



Branch (Taken)

31

Shift 
left 2

PC

Instruction 
memory

Read 
address

Instruction 
[31– 0]

Data 
memory

Read 
data

Write 
data

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU 
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M 
u 
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign 
extend

16 32
Instruction [15– 0]

1

M 
u 
x

1

0

M 
u 
x

0

1

M 
u 
x

0

1

ALU 
control

Control

Add
ALU 

result

M 
u 
x

0

1 0

ALU

Shift 
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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Jump
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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What is in That Control Box?

◼ Combinational Logic → Hardwired Control

❑ Idea: Control signals generated combinationally based on bits 
in instruction encoding

◼ Sequential Logic → Sequential Control

❑ Idea: A memory structure contains the control signals 
associated with an instruction

◼ Called Control Store

◼ Both types of control structure can be used in single-cycle 
processors

❑ Choice depends on latency of each structure + how much on 
the critical path control signal generation is, etc. 
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Review: Complete Single-Cycle Processor
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Another Single-Cycle 

MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered. 

They are to complement your reading:

H&H, Chapter 7.1-7.3, 7.6



Another Complete Single-Cycle Processor
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Carnegie Mellon
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Example: Single-Cycle Datapath: lw fetch

 STEP 1: Fetch instruction
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Carnegie Mellon
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Single-Cycle Datapath: lw register read

 STEP 2: Read source operands from register file
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Single-Cycle Datapath: lw immediate

 STEP 3: Sign-extend the immediate
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Single-Cycle Datapath: lw address

 STEP 4: Compute the memory address
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Single-Cycle Datapath: lw memory read

 STEP 5: Read from memory and write back to register file
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Single-Cycle Datapath: lw PC increment

 STEP 6: Determine address of next instruction
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◼ Control signals are generated by the decoder in control unit

Similarly, We Need to Design the Control Unit

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

43Single-cycle processor. Harris and Harris, Chapter 7.3.



Another Complete Single-Cycle Processor (H&H)
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Your Reading Assignment

◼ Please read the Lecture Slides & the Backup Slides

◼ Please do your readings from the H&H Book

❑ H&H, Chapter 7.1-7.3, 7.6
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Single-Cycle Uarch I (We Developed in Lectures)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Cycle Uarch II (In Your Readings)
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47Single-cycle processor. Harris and Harris, Chapter 7.3.



Evaluating the Single-Cycle 

Microarchitecture
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A Single-Cycle Microarchitecture

◼ Is this a good idea/design?

◼ When is this a good design?

◼ When is this a bad design?

◼ How can we design a better microarchitecture?
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Performance Analysis Basics



Recall: Performance Analysis Basics

◼ Execution time of a single instruction

❑ {CPI}  x  {clock cycle time} 

◼ CPI: Number of cycles it takes to execute an instruction

◼ Execution time of an entire program

❑ Sum over all instructions [{CPI}  x  {clock cycle time}]

❑ {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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Carnegie Mellon
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed

 How fast are my instructions?
▪ Instructions are realized on the hardware

▪ Each instruction can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

 How fast are my instructions?
▪ Instructions are realized on the hardware

▪ Each instruction can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI

 How long is one clock cycle?
▪ The critical path determines how much time one cycle requires = 

clock period.

▪ 1/clock period = clock frequency = how many cycles can be done 
each second.
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Processor Performance

 As a general formula
▪ Our program consists of executing N instructions

▪ Our processor needs CPI cycles (on average) for each instruction

▪ The clock frequency of the processor is f 

→ the clock period is therefore T=1/f
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Processor Performance

 As a general formula
▪ Our program consists of executing N instructions

▪ Our processor needs CPI cycles (on average) for each instruction

▪ The clock frequency of the processor is f 

→ the clock period is therefore T=1/f

 Our program executes in 

N x CPI x (1/f) = 

N x CPI x T seconds



Performance Analysis of 

Our Single-Cycle Design



A Single-Cycle Microarchitecture: Analysis

◼ Every instruction takes 1 cycle to execute

❑ CPI (Cycles per instruction) is strictly 1

◼ How long each instruction takes is determined by how long 

the slowest instruction takes to execute

❑ Even though many instructions do not need that long to 

execute

◼ Clock cycle time of the microarchitecture is determined by 

how long it takes to complete the slowest instruction

❑ Critical path of the design is determined by the processing 
time of the slowest instruction
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What is the Slowest Instruction to Process?

◼ Let’s go back to the basics

◼ All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

❑ Fetch

❑ Decode

❑ Evaluate Address

❑ Fetch Operands

❑ Execute

❑ Store Result

◼ Do each of the above phases take the same time (latency) 
for all instructions?

59

1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Let’s Find the Critical Path
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[Based on original figure from P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]



steps IF ID EX MEM WB

Delay
resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600

SW 200 50 100 200 550

Branch 200 50 100 350

Jump 200 200

Example Single-Cycle Datapath Analysis

◼ Assume (for the design in the previous slide)

❑ memory units (read or write): 200 ps

❑ ALU and adders: 100 ps

❑ register file (read or write): 50 ps

❑ other combinational logic: 0 ps



Let’s Find the Critical Path
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[Based on original figure from P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]



R-Type and I-Type ALU
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[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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[Based on original figure from P&H CO&D, COPYRIGHT 
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[Based on original figure from P&H CO&D, COPYRIGHT 
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Branch Taken
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Jump
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What About Control Logic?

◼ How does that affect the critical path?

◼ Food for thought for you:

❑ Can control logic be on the critical path?

❑ Historical example:

◼ CDC 5600: control store access too long…
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What is the Slowest Instruction to Process?

◼ Real world: Memory is slow (not magic)

◼ What if memory sometimes takes 100ms to access?

◼ Does it make sense to have a simple register to register 

add or jump to take {100ms+all else to do a memory 
operation}?

◼ And, what if you need to access memory more than once to 

process an instruction?

❑ Which instructions need this?

❑ Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity
◼ Contrived 

❑ All instructions run as slow as the slowest instruction

◼ Inefficient

❑ All instructions run as slow as the slowest instruction

❑ Must provide worst-case combinational resources in parallel as required 
by any instruction

❑ Need to replicate a resource if it is needed more than once by an 
instruction during different parts of the instruction processing cycle

◼ Not necessarily the simplest way to implement an ISA

❑ Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

◼ Not easy to optimize/improve performance

❑ Optimizing the common case does not work (e.g. common instructions)

❑ Need to optimize the worst case all the time
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(Micro)architecture Design Principles

◼ Critical path design

❑ Find and decrease the maximum combinational logic delay

❑ Break a path into multiple cycles if it takes too long

◼ Bread and butter (common case) design

❑ Spend time and resources on where it matters most

◼ i.e., improve what the machine is really designed to do

❑ Common case vs. uncommon case 

◼ Balanced design

❑ Balance instruction/data flow through hardware components

❑ Design to eliminate bottlenecks: balance the hardware for the 
work
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Single-Cycle Design vs. Design Principles

◼ Critical path design

◼ Bread and butter (common case) design

◼ Balanced design

How does a single-cycle microarchitecture fare 

with respect to these principles?
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Aside: System Design Principles

◼ When designing computer systems/architectures, it is 
important to follow good principles

❑ Actually, this is true for *any* system design

◼ Real architectures, buildings, bridges, …

◼ Good consumer products

◼ …

◼ Remember: “principled design” from our second lecture

❑ Frank Lloyd Wright: “architecture […] based upon principle, 
and not upon precedent”
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Aside: From Lecture 2

◼ “architecture […] based upon principle, and not upon 
precedent”
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This
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That
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Recall: Takeaways

◼ It all starts from the basic building blocks and design 
principles

◼ And, knowledge of how to use, apply, enhance them

◼ Underlying technology might change (e.g., steel vs. wood)

❑ but methods of taking advantage of technology bear resemblance

❑ methods used for design depend on the principles employed
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Aside: System Design Principles

◼ We will continue to cover key principles in this course

◼ Here are some references where you can learn more

◼ Yale Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for 
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of 
transformation, design point, etc)

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966. (Flynn’s Bottleneck → Balanced design)

◼ Gene M. Amdahl, "Validity of the single processor approach to achieving 
large scale computing capabilities," AFIPS Conference, April 1967. 
(Amdahl’s Law → Common-case design)

◼ Butler W. Lampson, “Hints for Computer System Design,” ACM 
Operating Systems Review, 1983.

❑ http://research.microsoft.com/pubs/68221/acrobat.pdf
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A Key System Design Principle 

◼ Keep it simple

◼ “Everything should be made as simple as possible,           
but no simpler.”

❑ Albert Einstein

◼ And, keep it low cost: “An engineer is a person who can   
do for a dime what any fool can do for a dollar.”

◼ For more, see:

❑ Butler W. Lampson, “Hints for Computer System Design,” ACM 
Operating Systems Review, 1983.

❑ http://research.microsoft.com/pubs/68221/acrobat.pdf
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Multi-Cycle Microarchitectures
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Multi-Cycle Microarchitectures

◼ Goal: Let each instruction take (close to) only as much time 
it really needs

◼ Idea

❑ Determine clock cycle time independently of instruction 
processing time

❑ Each instruction takes as many clock cycles as it needs to take

◼ Multiple state transitions per instruction

◼ The states followed by each instruction is different
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Recall: The “Process Instruction” Step
◼ ISA specifies abstractly what AS’ should be, given an 

instruction and AS

❑ It defines an abstract finite state machine where

◼ State = programmer-visible state 

◼ Next-state logic = instruction execution specification

❑ From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution

◼ One state transition per instruction

◼ Microarchitecture implements how AS is transformed to AS’

❑ There are many choices in implementation 

❑ We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction

◼ Choice 1: AS → AS’ (transform AS to AS’ in a single clock cycle)

◼ Choice 2: AS → AS+MS1 → AS+MS2 → AS+MS3 → AS’ (take multiple 

clock cycles to transform AS to AS’)
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Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state 

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state 

at the end of a clock cycle
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Benefits of Multi-Cycle Design

◼ Critical path design

❑ Can keep reducing the critical path independently of the worst-
case processing time of any instruction

◼ Bread and butter (common case) design

❑ Can optimize the number of states it takes to execute “important” 
instructions that make up much of the execution time

◼ Balanced design

❑ No need to provide more capability or resources than really 

needed 

◼ An instruction that needs resource X multiple times does not require 
multiple X’s to be implemented

◼ Leads to more efficient hardware: Can reuse hardware components 
needed multiple times for an instruction
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Downsides of Multi-Cycle Design

◼ Need to store the intermediate results at the end of each 
clock cycle

❑ Hardware overhead for registers

❑ Register setup/hold overhead paid multiple times for an 
instruction
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Remember: Performance Analysis

◼ Execution time of a single instruction

❑ {CPI}  x  {clock cycle time} 

◼ Execution time of an entire program

❑ Sum over all instructions [{CPI}  x  {clock cycle time}]

❑ {# of instructions}  x  {Average CPI}  x  {clock cycle time}

◼ Single-cycle microarchitecture performance 

❑ CPI = 1

❑ Clock cycle time = long

◼ Multi-cycle microarchitecture performance

❑ CPI = different for each instruction

◼ Average CPI → hopefully small

❑ Clock cycle time = short
86

In multi-cycle, we have 

two degrees of freedom

to optimize independently

CPI: Cycles Per Instruction



A Multi-Cycle Microarchitecture

A Closer Look
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How Do We Implement This?

◼ Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer 

Inaugural Conf., 1951.

◼ An elegant implementation:

❑ The concept of microcoded/microprogrammed machines
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Multi-Cycle Microarchitectures

◼ Key Idea for Realization

❑ One can implement the “process instruction” step as a 

finite state machine that sequences between states and 
eventually returns back to the “fetch instruction” state

❑ A state is defined by the control signals asserted in it

❑ Control signals for the next state are determined in 
current state
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Recall: The Instruction Processing “Cycle”

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT
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A Basic Multi-Cycle Microarchitecture

◼ Instruction processing cycle divided into “states”

◼ A stage in the instruction processing cycle can take multiple states

◼ A multi-cycle microarchitecture sequences from state to 
state to process an instruction 

◼ The behavior of the machine in a state is completely determined by 
control signals in that state

◼ The behavior of the entire processor is specified fully by a 
finite state machine

◼ In a state (clock cycle), control signals control two things:

◼ How the datapath should process the data

◼ How to generate the control signals for the (next) clock cycle
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One Example Multi-Cycle 

Microarchitecture
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Remember: Single-Cycle MIPS Processor
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Multi-Cycle MIPS Processor

 Single-cycle microarchitecture:
- cycle time limited by longest instruction (lw) → low clock frequency 

- three adders/ALUs and two memories → high hardware cost

 Multi-cycle microarchitecture:
+ higher clock frequency

+ simpler instructions take few clock cycles

+ reuse expensive hardware across multiple cycles

- sequencing overhead paid many times

- hardware overhead for storing intermediate results

 Multi-cycle requires the same design steps as single cycle: 
▪ datapath

▪ control logic
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What Do We Want To Optimize?

 Single-cycle microarchitecture uses two memories

▪ One memory stores instructions, the other data

▪ We want to use a single memory (lower cost)
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What Do We Want To Optimize?

 Single-cycle microarchitecture uses two memories

▪ One memory stores instructions, the other data

▪ We want to use a single memory (lower cost)

 Single-cycle microarchitecture needs three adders 

▪ ALU, PC, Branch address calculation

▪ We want to use the ALU for all operations (lower cost)
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What Do We Want To Optimize?

 Single-cycle microarchitecture uses two memories

▪ One memory stores instructions, the other data

▪ We want to use a single memory (lower cost)

 Single-cycle microarchitecture needs three adders 

▪ ALU, PC, Branch address calculation

▪ We want to use the ALU for all operations (lower cost)

 Single-cycle microarchitecture: each instruction takes one cycle

▪ The slowest instruction slows down every single instruction

▪ We want to determine clock cycle time independently of instruction 
processing time

▪ Divide each instruction into multiple clock cycles

▪ Simpler instructions can be very fast (compared to the slowest)



Let’s Construct 

the Multi-Cycle Datapath
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Consider the lw Instruction

 For an instruction such as: lw $t0, 0x20($t1)

 We need to:

▪ Read the instruction from memory

▪ Then read $t1 from register array

▪ Add the immediate value (0x20) to calculate the memory address

▪ Read the content of this address

▪ Write to the register $t0 this content
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Multi-Cycle Datapath: Instruction Fetch

 We will consider lw, but fetch is the same for all instructions

▪ STEP 1: Fetch instruction

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

PCPC' Instr

CLK

WD

WE

CLK

EN

IRWrite

read from the memory location [rs]+imm to location [rt]

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type



Carnegie Mellon

101

Multi-Cycle Datapath: lw register read
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Multi-Cycle Datapath: lw immediate
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Multi-Cycle Datapath: lw address
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Multi-Cycle Datapath: lw memory read
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Multi-Cycle Datapath: lw write register
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Multi-Cycle Datapath: increment PC

PCWrite
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Multi-Cycle Datapath: sw

 Write data in rt to memory
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Multi-Cycle Datapath: R-type Instructions

 Read from rs and rt

▪ Write ALUResult to register file

▪ Write to rd (instead of rt)
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Multi-Cycle Datapath: beq

 Determine whether values in rs and rt are equal

▪ Calculate branch target address: 
Target Address = (sign-extended immediate << 2) + (PC+4)
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Complete Multi-Cycle Processor
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Let’s Construct 

the Multi-Cycle Control Logic
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Control Unit
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Main Controller FSM: Fetch
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Main Controller FSM: Fetch
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Main Controller FSM: Decode
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Main Controller FSM: Address Calculation
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Main Controller FSM: Address Calculation
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Main Controller FSM: lw
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Main Controller FSM: sw
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Main Controller FSM: R-Type
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Main Controller FSM: beq
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Complete Multi-Cycle Controller FSM
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Main Controller FSM: addi
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Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback
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Main Controller FSM: addi

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 0

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback
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Extended Functionality: j

SignImm

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc
1:0

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0

IRWriteIorD PCWrite

PCEn

00

01

10

<<2

25:0 (jump)

31:28

27:0

PCJump



Carnegie Mellon

126

Control FSM: j

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 00

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback

Op = J

S11: Jump
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Control FSM: j

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 00

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback

PCSrc = 10

PCWrite

Op = J

S11: Jump



Review: Single-Cycle MIPS Processor

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC
0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

0

1

25:0 <<2

27:0 31:28

PCJump

Jump
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Review: Single-Cycle MIPS FSM

◼ Single-cycle machine

129

ASSequential
Logic 
(State)

Combinational
Logic

AS’ 

AS: Architectural State



Review: Multi-Cycle MIPS Processor

ImmExt

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero

CLK

A
L
U

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

00

01

10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA

RegWrite
Op

Funct

Control

Unit

PCSrc

CLK

ALUControl
2:0

ALUSrcB
1:0IRWrite

IorD

PCWrite

PCEn

R
e

g
D

s
t

M
e
m

to
R

e
g
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Review: Multi-Cycle MIPS FSM

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 00

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback

PCSrc = 10

PCWrite

Op = J

S11: Jump

What is the 
shortcoming of 
this design?

What does 
this design
assume
about memory?
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What If Memory Takes > One Cycle?

◼ Stay in the same “memory access” state until memory 
returns the data

◼ “Memory Ready?” bit is an input to the control logic that 

determines the next state

132



Another Example: 

Microprogrammed Multi-Cycle 

Microarchitecture



Recall: How Do We Implement This?

◼ Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer 

Inaugural Conf., 1951.

◼ An elegant implementation:

❑ The concept of microcoded/microprogrammed machines
134



Example uProgrammed Control & Datapath

135

2APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

26

23

R

Memory, I/O

Addr

16

Inst.
Data,

16
16

Data

Control

Data Path

BEN

Control Signals

IR[15:11]

(J, COND, IRD)

9

35

3

Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b

that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current

clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates

JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components

For your own study

P&P Revised Appendix C 

On website

+ In Backup Slides



For More on Microprogrammed Designs

136https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Detailed Lectures on Microprogramming

◼ Design of Digital Circuits, Spring 2018, Lecture 13

❑ Microprogramming (ETH Zürich, Spring 2018)

❑ https://www.youtube.com/watch?v=u4GhShuBP3Y&list=PL5Q2soXY2Zi_QedyPWtR
mFUJ2F8DdYP7l&index=13

◼ Computer Architecture, Spring 2013, Lecture 7

❑ Microprogramming (CMU, Spring 2013)

❑ https://www.youtube.com/watch?v=_igvSl5h8cs&list=PL5PHm2jkkXmidJOd59REog
9jDnPDTG6IJ&index=7

137https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/onurmutlulectures


Digital Design & Computer Arch.

Lecture 11: Microarchitecture 

Fundamentals II

Prof. Onur Mutlu

ETH Zürich

Spring 2021

15 April 2021



Backup Slides on Single-Cycle

Uarch for Your Own Study

Please study these to reinforce the concepts 

we covered in lectures.

Please do the readings together with these slides:

H&H, Chapter 7.1-7.3, 7.6



Another Single-Cycle 

MIPS Processor (from H&H)

These are slides for your own study.

They are to complement your reading

H&H, Chapter 7.1-7.3, 7.6
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What to do with the Program Counter?

reg [31:0] PC_p, PC_n;      // Present and next state of PC

// […]

assign PC_n <= PC_p + 4;                   // Increment by 4;

always @ (posedge clk, negedge rst)
begin

if (rst == ‘0’) PC_p <= 32’h00400000; // default
else PC_p <= PC_n;         // when clk

end

 The PC needs to be incremented by 4 during each cycle 
(for the time being). 

 Initial PC value (after reset) is 0x00400000
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We Need a Register File

 Store 32 registers, each 32-bit
▪ 25 == 32, we need 5 bits to address each

 Every R-type instruction uses 3 register
▪ Two for reading (RS, RT)

▪ One for writing (RD)

 We need a special memory with:
▪ 2 read ports (address x2, data out x2)

▪ 1 write port (address, data in)
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Register File

input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description
assign do_rs = R_arr[a_rs];          // Read RS

assign do_rt = R_arr[a_rt];          // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD
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Register File

input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0
assign do_rs = (a_rs != 5’b00000)? // is address 0?  

R_arr[a_rs] : 0;     // Read RS or 0

assign do_rt = (a_rt != 5’b00000)? // is address 0?
R_arr[a_rt] : 0;     // Read RT or 0

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD
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Data Memory Example

input [15:0]  addr; // Only 16 bits in this example 
input [31:0]  di;
input we;
output [31:0] do;

reg [31:0] M_arr [0:65535];          // Array for Memory

// Circuit description
assign do = M_arr[addr];             // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di;       // write memory

 Will be used to store the bulk of data
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Single-Cycle Datapath: lw fetch

 STEP 1: Fetch instruction

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPC
PC'

Instr

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw register read

 STEP 2: Read source operands from register file

Instr

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

25:21

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw immediate

 STEP 3: Sign-extend the immediate

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw address

 STEP 4: Compute the memory address

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl
2:0

A
L
U

010

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw memory read

 STEP 5: Read from memory and write back to register file

A1

A3

WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD

Instruction

Memory

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw PC increment

 STEP 6: Determine address of next instruction

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: sw

 Write data in rt to memory

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl
2:0

A
L
U

10100

sw $t7, 44($0)  # write t7 into memory address 44

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: R-type Instructions

 Read from rs and rt,  write ALUResult to register file

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCPC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

ALUResult ReadData

WriteData

SrcA

PCPlus4
WriteReg

4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0
varies1 001

add t, b, c  # t = b + c

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
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Single-Cycle Datapath: beq

 Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

RegDst Branch MemWrite MemtoRegALUSrcRegWrite

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

0
1100 x0x 1

beq $s0, $s1, target  # branch is taken
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Complete Single-Cycle Processor

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U
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Our MIPS Datapath has Several Options

 ALU inputs
▪ Either RT or Immediate (MUX)

 Write Address of Register File
▪ Either RD or RT (MUX)

 Write Data In of Register File
▪ Either ALU out or Data Memory Out (MUX)

 Write enable of Register File
▪ Not always a register write  (MUX)

 Write enable of Memory
▪ Only when writing to memory (sw) (MUX)

All these options are our control signals
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Control Unit

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite
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ALU Does the Real Work in a Processor

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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ALU Internals

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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Control Unit: ALU Decoder

ALUOp1:0 Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

sw 101011 0 X 1 1 X add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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More Control Signals

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 funct

lw 100011 1 0 1 0 0 1 add

sw 101011 0 X 1 0 1 X add

beq 000100 0 X 0 1 0 X sub

 New Control Signal

▪ Branch: Are we jumping or not ?
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01
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Single-Cycle Datapath Example: or
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Extended Functionality: addi
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 No change to datapath
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Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00
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Extended Functionality: j
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

j 000100 0 X X X 0 X XX 1



Review: Complete Single-Cycle Processor (H&H)
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A Bit More on

Performance Analysis
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How can I Make the Program Run Faster?

N x CPI x (1/f)
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel

 Increase the clock frequency
▪ Find a ‘newer’ technology to manufacture

▪ Redesign time critical components

▪ Adopt pipelining



Performance Analysis of 

Single-Cycle vs. Multi-Cycle Designs



Single-Cycle Performance

◼ TC is limited by the critical path (lw)
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Single-Cycle Performance

◼ Single-cycle critical path:

❑ Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + 
tmem + tmux + tRFsetup

◼ In most implementations, limiting paths are: 

❑ memory, ALU, register file. 

❑ Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
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Tc =

181

Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20



Single-Cycle Performance Example

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

= [30 + 2(250) + 150 + 25 + 200 + 20] ps

= 925 ps

182

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20



Single-Cycle Performance Example

◼ Example:

For a program with 100 billion instructions executing on a 
single-cycle MIPS processor:
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Single-Cycle Performance Example

◼ Example:

For a program with 100 billion instructions executing on a 
single-cycle MIPS processor:

Execution Time = # instructions x CPI x Tc

= (100 × 109)(1)(925  × 10-12 s)

= 92.5 seconds

184



Multi-Cycle Performance: CPI

◼ Instructions take different number of cycles:

❑ 3 cycles: beq, j

❑ 4 cycles: R-Type, sw, addi

❑ 5 cycles: lw

◼ CPI is weighted average, e.g. SPECINT2000 benchmark: 

❑ 25% loads

❑ 10% stores

❑ 11% branches

❑ 2% jumps

❑ 52% R-type

◼ Average CPI = (0.11 + 0.02) 3 +(0.52 + 0.10) 4 +(0.25) 5 

= 4.12

Realistic?
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Multi-Cycle Performance: Cycle Time

◼ Multi-cycle critical path:

Tc =
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Multi-Cycle Performance: Cycle Time

◼ Multi-cycle critical path:

Tc = tpcq + tmux + max(tALU + tmux, tmem) + tsetup
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Multi-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc =

18



Multi-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc = tpcq_PC + tmux + max(tALU + tmux, tmem) + tsetup

= [30 + 25 + 250 + 20] ps

= 325 ps
19



Multi-Cycle Performance Example

◼ For a program with 100 billion instructions executing on a 
multi-cycle MIPS processor

❑ CPI = 4.12

❑ Tc = 325 ps

◼ Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(4.12)(325  × 10-12)

= 133.9 seconds

◼ This is slower than the single-cycle processor (92.5 
seconds). Why? 

◼ Did we break the stages in a balanced manner?
◼ Overhead of register setup/hold paid many times
◼ How would the results change with different assumptions 

on memory latency and instruction mix?
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Review: Single-Cycle MIPS Processor
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Review: Single-Cycle MIPS FSM

◼ Single-cycle machine

192
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Review: Multi-Cycle MIPS Processor
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Review: Multi-Cycle MIPS FSM

IorD = 0
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shortcoming of 
this design?

What does 
this design
assume
about memory?
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What If Memory Takes > One Cycle?

◼ Stay in the same “memory access” state until memory 
returns the data

◼ “Memory Ready?” bit is an input to the control logic that 

determines the next state
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Backup Slides on 

Microprogrammed Multi-Cycle 

Microarchitectures



These Slides Are Covered in A Past Lecture

197https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Lectures on Microprogrammed Designs

◼ Design of Digital Circuits, Spring 2018, Lecture 13

❑ Microprogramming (ETH Zürich, Spring 2018)

❑ https://www.youtube.com/watch?v=u4GhShuBP3Y&list=PL5Q2soXY2Zi_QedyPWtR
mFUJ2F8DdYP7l&index=13

◼ Computer Architecture, Spring 2013, Lecture 7

❑ Microprogramming (CMU, Spring 2013)

❑ https://www.youtube.com/watch?v=_igvSl5h8cs&list=PL5PHm2jkkXmidJOd59REog
9jDnPDTG6IJ&index=7

198https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/onurmutlulectures


Another Example: 

Microprogrammed Multi-Cycle 

Microarchitecture



How Do We Implement This?

◼ Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer 

Inaugural Conf., 1951.

◼ An elegant implementation:

❑ The concept of microcoded/microprogrammed machines

200



Recall: A Basic Multi-Cycle Microarchitecture

◼ Instruction processing cycle divided into “states”

❑ A stage in the instruction processing cycle can take multiple 
states

◼ A multi-cycle microarchitecture sequences from state to 
state to process an instruction 

❑ The behavior of the machine in a state is completely 
determined by control signals in that state

◼ The behavior of the entire processor is specified fully by a 
finite state machine

◼ In a state (clock cycle), control signals control two things:

❑ How the datapath should process the data

❑ How to generate the control signals for the (next) clock cycle
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Microprogrammed Control Terminology

◼ Control signals associated with the current state

❑ Microinstruction

◼ Act of transitioning from one state to another

❑ Determining the next state and the microinstruction for the 
next state

❑ Microsequencing

◼ Control store stores control signals for every possible state

❑ Store for microinstructions for the entire FSM

◼ Microsequencer determines which set of control signals will 
be used in the next clock cycle (i.e., next state)
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Simple Design 

of the Control Structure

Example

Control

Structure
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C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the



What Happens In A Clock Cycle?

◼ The control signals (microinstruction) for the current state 
control two things:

❑ Processing in the data path

❑ Generation of control signals (microinstruction) for the next 
cycle

❑ See Supplemental Figure 1 (next-next slide)

◼ Datapath and microsequencer operate concurrently

◼ Question: why not generate control signals for the current 
cycle in the current cycle?

❑ This could lengthen the clock cycle

❑ Why could it lengthen the clock cycle? 

❑ See Supplemental Figure 2
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Example uProgrammed Control & Datapath
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2APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

26
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Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b

that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current

clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates

JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components

Read P&P Revised Appendix C 

On website



A Clock Cycle
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A Bad Clock Cycle!
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A Simple LC-3b Control and Datapath

208

2APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

26

23

R

Memory, I/O

Addr

16

Inst.
Data,

16
16

Data

Control

Data Path

BEN

Control Signals

IR[15:11]

(J, COND, IRD)

9

35

3

Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b

that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current

clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates

JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components

Read P&P Revised Appendix C 

On website



What Determines Next-State Control Signals?

◼ What is happening in the current clock cycle

❑ See the 9 control signals coming from “Control” block

◼ What are these for?

◼ The instruction that is being executed

❑ IR[15:11] coming from the Data Path

◼ Whether the condition of a branch is met, if the instruction 
being processed is a branch

❑ BEN bit coming from the datapath

◼ Whether the memory operation is completing in the current 

cycle, if one is in progress

❑ R bit coming from memory
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A Simple LC-3b Control and Datapath
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35
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Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b

that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current

clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates

JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components



The State Machine for Multi-Cycle Processing

◼ The behavior of the LC-3b uarch is completely determined by

❑ the 35 control signals and

❑ additional 7 bits that go into the control logic from the datapath

◼ 35 control signals completely describe the state of the control 
structure

◼ We can completely describe the behavior of the LC-3b as a 

state machine, i.e. a directed graph of 

❑ Nodes (one corresponding to each state)

❑ Arcs (showing flow from each state to the next state(s))
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An LC-3b State Machine

◼ Patt and Patel, Revised Appendix C, Figure C.2

◼ Each state must be uniquely specified 

❑ Done by means of state variables

◼ 31 distinct states in this LC-3b state machine

❑ Encoded with 6 state variables

◼ Examples

❑ State 18,19 correspond to the beginning of the instruction 
processing cycle

❑ Fetch phase: state 18, 19 → state 33 → state 35

❑ Decode phase: state 32
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Figure C.2: A state machine for the LC-3b



The FSM Implements the LC-3b ISA
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◼ P&P Appendix A 
(revised):

❑ https://safari.ethz.ch/digi
taltechnik/spring2018/lib/
exe/fetch.php?media=pp

-appendixa.pdf

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=pp-appendixa.pdf


LC-3b State Machine: Some Questions

◼ How many cycles does the fastest instruction take?

◼ How many cycles does the slowest instruction take?

◼ Why does the BR take as long as it takes in the FSM? 

◼ What determines the clock cycle time?
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LC-3b Datapath

◼ Patt and Patel, Revised Appendix C, Figure C.3

◼ Single-bus datapath design

❑ At any point only one value can be “gated” on the bus (i.e., 
can be driving the bus)

❑ Advantage: Low hardware cost: one bus

❑ Disadvantage: Reduced concurrency – if instruction needs the 

bus twice for two different things, these need to happen in 
different states

◼ Control signals (26 of them) determine what happens in the 
datapath in one clock cycle

❑ Patt and Patel, Revised Appendix C, Table C.1
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Logic BEN

P
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IR[11:9]
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.

Remember the MIPS datapath
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LC-3b Datapath: Some Questions

◼ How does instruction fetch happen in this datapath 
according to the state machine?

◼ What is the difference between gating and loading?

❑ Gating: Enable/disable an input to be connected to the bus

◼ Combinational: during a clock cycle

❑ Loading: Enable/disable an input to be written to a register

◼ Sequential: e.g., at a clock edge (assume at the end of cycle)

◼ Is this the smallest hardware you can design?
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LC-3b Microprogrammed Control Structure

◼ Patt and Patel, Appendix C, Figure C.4

◼ Three components:

❑ Microinstruction, control store, microsequencer

◼ Microinstruction: control signals that control the datapath  
(26 of them) and help determine the next state (9 of them)

◼ Each microinstruction is stored in a unique location in the 

control store (a special memory structure)

◼ Unique location: address of the state corresponding to the 
microinstruction

❑ Remember each state corresponds to one microinstruction

◼ Microsequencer determines the address of the next 
microinstruction (i.e., next state)
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Simple Design 

of the Control Structure
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Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.7: Specification of the control store



LC-3b Microsequencer

◼ Patt and Patel, Appendix C, Figure C.5

◼ The purpose of the microsequencer is to determine the 
address of the next microinstruction (i.e., next state)

❑ Next state could be conditional or unconditional

◼ Next state address depends on 9 control signals (plus 7 
data signals)
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IRD

Address of Next State
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0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



The Microsequencer: Some Questions

◼ When is the IRD signal asserted?

◼ What happens if an illegal instruction is decoded?

◼ What are condition (COND) bits for?

◼ How is variable latency memory handled?

◼ How do you do the state encoding?

❑ Minimize number of state variables (~ control store size)

❑ Start with the 16-way branch

❑ Then determine constraint tables and states dependent on COND

227



An Exercise in 

Microprogramming



Handouts

◼ 7 pages of Microprogrammed LC-3b design

◼ https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc
h.php?media=lc3b-figures.pdf
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Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b

that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current

clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates

JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components
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Figure C.2: A state machine for the LC-3b



A Simple Datapath

Can Become 

Very Powerful
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State 18 (010010)
State 33 (100001)
State 35 (100011)
State 32 (100000)
State 6    (000110)
State 25 (011001)
State 27 (011011)

State Machine for LDW
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IRD

Address of Next State
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0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

Microsequencer

Fill in the microinstructions

for the 7 states for LDW 
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.
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Simple Design 
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Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.7: Specification of the control store



End of the Exercise in 

Microprogramming



Variable-Latency Memory

◼ The ready signal (R) enables memory read/write to execute 
correctly

❑ Example: transition from state 33 to state 35 is controlled by 
the R bit asserted by memory when memory data is available

◼ Could we have done this in a single-cycle 
microarchitecture?

◼ What did we assume about memory and registers in a 
single-cycle microarchitecture?
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The Microsequencer: Advanced Questions

◼ What happens if the machine is interrupted?

◼ What if an instruction generates an exception?

◼ How can you implement a complex instruction using this 

control structure?

❑ Think REP MOVS instruction in x86

◼ string copy of N elements starting from address A to address B
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The Power of Abstraction

◼ The concept of a control store of microinstructions enables 
the hardware designer with a new abstraction: 

microprogramming

◼ The designer can translate any desired operation to a 
sequence of microinstructions

◼ All the designer needs to provide is 

❑ The sequence of microinstructions needed to implement the 
desired operation

❑ The ability for the control logic to correctly sequence through 

the microinstructions

❑ Any additional datapath elements and control signals needed 
(no need if the operation can be “translated” into existing 
control signals)
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Let’s Do Some More Microprogramming

◼ Implement REP MOVS in the LC-3b microarchitecture

◼ What changes, if any, do you make to the 

❑ state machine?

❑ datapath?

❑ control store?

❑ microsequencer?

◼ Show all changes and microinstructions

◼ Optional HW Assignment
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x86 REP MOVS (String Copy) Instruction

244

REP MOVS (DEST SRC)

How many instructions does this take in MIPS ISA?

How many microinstructions does this take to add to the LC-3b microarchitecture?



Aside: Alignment Correction in Memory

◼ Unaligned accesses

◼ LC-3b has byte load and byte store instructions that move 
data not aligned at the word-address boundary

❑ Convenience to the programmer/compiler

◼ How does the hardware ensure this works correctly?

❑ Take a look at state 29 for LDB

❑ States 24 and 17 for STB

❑ Additional logic to handle unaligned accesses

◼ P&P, Revised Appendix C.5
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Aside: Memory Mapped I/O

◼ Address control logic determines whether the specified 
address of LDW and STW are to memory or I/O devices

◼ Correspondingly enables memory or I/O devices and sets 

up muxes

◼ An instance where the final control signals of some 
datapath elements (e.g., MEM.EN or INMUX/2) cannot be 

stored in the control store

❑ These signals are dependent on memory address

◼ P&P, Revised Appendix C.6
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Advantages of Microprogrammed Control

◼ Allows a very simple design to do powerful computation by 
controlling the datapath (using a sequencer)

❑ High-level ISA translated into microcode (sequence of u-instructions)

❑ Microcode (u-code) enables a minimal datapath to emulate an ISA

❑ Microinstructions can be thought of as a user-invisible ISA (u-ISA)

◼ Enables easy extensibility of the ISA

❑ Can support a new instruction by changing the microcode

❑ Can support complex instructions as a sequence of simple 
microinstructions (e.g., REP MOVS, INC [MEM])

◼ Enables update of machine behavior

❑ A buggy implementation of an instruction can be fixed by changing the 
microcode in the field

◼ Easier if datapath provides ability to do the same thing in different ways
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Update of Machine Behavior

◼ The ability to update/patch microcode in the field (after a 
processor is shipped) enables 

❑ Ability to add new instructions without changing the processor!

❑ Ability to “fix” buggy hardware implementations

◼ Examples

❑ IBM 370 Model 145: microcode stored in main memory, can be 
updated after a reboot

❑ IBM System z: Similar to 370/145.

◼ Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM 
JR&D, May/Jul 2004.

❑ B1700 microcode can be updated while the processor is running

◼ User-microprogrammable machine!
◼ Wilner, “Microprogramming environment on the Burroughs B1700”, CompCon 1972.
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Multi-Cycle vs. Single-Cycle uArch

◼ Advantages

◼ Disadvantages

◼ For you to fill in
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